
MAT 137Y: Calculus with proofs
Assignment 1 - Sample solutions

Question 1. In this problem, assume all functions have domain R. I will define a new concept. For
every pair of functions f and g, we define the set

Ω
g
f = {x ∈ R : f(x) < g(x)}

We say that the function f loves the function g when

∀x ∈ Ωg
f , ∃y ∈ Ω f

g such that x < y

(a) Consider the functions Walt and Tor defined by

Walt(x) = sin x, Tor(x) = −2 sin x.

Prove that Tor loves Walt.

Suggestion: Before doing anything else, find out what the sets ΩTor
Walt and ΩWalt

Tor are.

(b) Let f(x) = 3 and let g(x) = x. Prove that f doesn’t love g.

(c) Which functions f satisfy that f loves f?

Solutions

(a) • First, I will prove that

ΩTor
Walt = { x ∈ R | ∃n ∈ Z s.t. (2n− 1)π < x < 2nπ } (1)

and
ΩWalt

Tor = { x ∈ R | ∃n ∈ Z s.t. 2nπ < x < (2n+ 1)π } . (2)

Indeed, by the definitions of Walt and Tor I have that

Walt(x) < Tor(x) ⇐⇒ sin(x) < −2 sin(x) ⇐⇒ 3 sin(x) < 0 .

Since 3 is a positive real number, the above is equivalent to sin(x) < 0, so Eq. (1)
follows directly from the properties of the function sin and the definition ofΩTor

Walt.
Eq. (2) is obtained in complete analogy.

• Now I want to show that Tor loves Walt; in other words, my goal is to prove that

∀x ∈ ΩWalt
Tor , ∃y ∈ ΩTor

Walt such that x < y .

To prove this, fix x ∈ ΩWalt
Tor , and let y = x+ π. Clearly x < y. I will now prove

that y ∈ ΩTor
Walt.

By Eq. (2), there exists an integer n such that

2nπ < x < (2n+ 1)π .
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I can add π to all three expressions in the chain of inequalities to get

(2n+ 1)π < x < (2n+ 2)π

or, equivalently
(2m− 1)π < x < 2mπ

with m = n+ 1. This proves that y ∈ ΩTor
Walt.

I have proven that there is indeed an element y ∈ ΩTor
Walt such that x < y. Since x

was arbitrary, this proves that Tor loves Walt.

(b) I need to show that the negation of "f loves g" is true. In other words, I need to argue
that there exists some x ∈ Ωg

f for which I cannot find y ∈ Ω f
g such that x < y. Said

even differently, I need to prove that

∃x ∈ Ωg
f such that ∀y ∈ Ω f

g, x > y . (3)

Let x = π. Then:

• π ∈ Ωg
f because f(x) = 3 < π = g(x).

• Moreover, if y ∈ Ω f
g is fixed then

y = g(y) < f(y) = 3 6 π = x .

This shows that x = π is an element as in (3), as desired.

(c) Every function f loves itself. Indeed, fix f and notice that

Ω f
f = { x ∈ R | f(x) < f(x) } = ∅ .

Therefore, the statement

∀x ∈ Ω f
f, ∃y ∈ Ω f

f such that x < y

is vacuously true, which proves the assertion.
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Question 2. We continue with the assumptions, notation and definitions as in Question 1.
Given a function f and any t ∈ R, we define a new function, called ft, via the equation

ft(x) = f(x) + t.

Determine whether each of the following claims is true or false. If true, prove it directly. If false,
prove it with a counterexample.

(a) Let f, g, and h be functions. IF f loves g and g loves h, THEN f loves h.

Suggestion: It may be helpful to think of functions in terms of graphs instead of in terms of
their equations at first.

(b) For every function f there exists a function g such that, for every t ∈ R, g loves ft.

Solutions

(a) The claim is false. I will prove it with a counterexample.
Let f(x) = −3

2 , g = −2 sin(x), and h(x) = sin(x).

• We already know from Question 1a that g loves h.

• I will prove that f loves g. For every n ∈ Z, let us call

cn =

(
2n+

1
2

)
π

Notice that
cn ∈ Ω f

g

because

g(cn) = −2 < −
3
2
= f(cn)

Therefore, if x is any real number, there exists an element y ∈ Ω f
g such that x < y:

just take y = cn for sufficiently large n ∈ Z.
This is true, in particular, for every x ∈ Ωg

f . Therefore, f loves g.

• However, f does not love h: Ωh
f = R and Ω f

h = ∅, since f(x) < h(x) for every real
number x. The statement

∀x ∈ R, ∃y ∈ ∅ such that x < y

is not true.

This shows that there exist functions f, g, and h such that f loves g and g loves h, but
f does not love h.

(b) The claim is true.

Let us fix a function f. I define the function g via the equation

g(x) = f(x) + x .

Fix t ∈ R. I will prove that g loves ft.
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For every x ∈ R I have that

g(x) < ft(x) ⇐⇒ f(x) + x < f(x) + t ⇐⇒ x < t

and therefore
Ω ft

g = (−∞, t) ,

and similarly
Ω

g
ft

= (t,∞) .

Therefore, for every x ∈ Ω ft
g the real number y = t+ 1 is an element of Ωg

ft
, and it

is bigger than x. I conclude that g loves ft. Since t was arbitrary I have proved the
statement.
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Question 3. Prove by induction that for every positive integer n, the number 52n + 11 is a multiple
of 12.

Proof. The base step corresponds to n = 1, in which case I have that 52n + 11 = 36, which is
a multiple of 12.
For the induction step, let n > 1 be fixed and assume that there exists an integer a such that

52n + 11 = 12a .

In that case we can write

52(n+1) + 11 = 52 · 52n + 11 =

= 25 · 52n + 11 =

= (24 − 1) · 52n + 11 =

= 24 · 52n + 52n + 11 =

= 24 · 52n +
(
52n + 11

)
= (by induction hypothesis)

= 24 · 52n + 12a =

= 12 · (2 · 52n) + 12a =

= 12 · (2 · 52n + a) .

Therefore, 52(n+1) + 11 = 12b, where b = 2 · 52n + a is an integer number.

This shows that if 52n + 11 is a multiple of 12 then so is 52(n+1) + 11, which is the induction
step. This concludes the proof.
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