MAT 137Y: Calculus with proofs
Assignment 1 - Sample solutions

Question 1. In this problem, assume all functions have domain R. I will define a new concept. For
every pair of functions f and g, we define the set

Q? ={xeR: f(x) <gx)}

We say that the function f loves the function g when

Vx € Qf, 3y € QF such that x <y

(a) Consider the functions Walt and Tor defined by

Walt(x) = sinx, Tor(x) = —2sinx.

Prove that Tor loves Walt.

Suggestion: Before doing anything else, find out what the sets QoL and Q¥alt are.

Tor

(b) Let f(x) = 3 and let g(x) = x. Prove that f doesn’t love g.

(c) Which functions f satisfy that f loves f?

Solutions

@ o

First, I will prove that

QI ={xeR|IncZst 2n—1)n<x < 2nm} (1)
and
QYWalt _x e R|[IneZst 2nm<x< (2n+1)m}. ()

Indeed, by the definitions of Walt and Tor I have that
Walt(x) < Tor(x) <= sin(x) < —2sin(x) <= 3sin(x) < 0.

Since 3 is a positive real number, the above is equivalent to sin(x) < 0, so Eq. (1)
follows directly from the properties of the function sin and the definition of Q{0
Eq. (2) is obtained in complete analogy.

Now I want to show that Tor loves Walt; in other words, my goal is to prove that

vx € QW 3y € Qfor such that x < y.

To prove this, fix x € QWal and let y = x + 7. Clearly x < y. I will now prove

T Tor 7
or
thaty € Q-

By Eq. (2), there exists an integer n such that

2nm < x < (2n+1)m.



I can add 7 to all three expressions in the chain of inequalities to get
Cn+1n<x < (2n+2)w

or, equivalently
2m—1)r < x < 2mm

with m = n + 1. This proves that y € Q{1 .

I have proven that there is indeed an element y € Q&‘]’;h such that x < y. Since x

was arbitrary, this proves that Tor loves Walt.

(b) I need to show that the negation of "f loves g" is true. In other words, I need to argue
that there exists some x € Qf for which I cannot find y € Qg such that x < y. Said
even differently, I need to prove that

Ix € Qf suchthaty e Qf, x> y. 3)
Let x = 7. Then:

o e QF because f(x) =3 < 7= g(x).

* Moreover, if y € O.‘; is fixed then
y=gy) <fly)=3<m=x.

This shows that x = 7t is an element as in (3), as desired.

(c) Every function f loves itself. Indeed, fix f and notice that
Qf={xeR|f(x)<f(x)}=0.
Therefore, the statement
vx € Qf, 3y € Qf such that x <y

is vacuously true, which proves the assertion.



Question 2. We continue with the assumptions, notation and definitions as in Question 1.
Given a function f and any t € IR, we define a new function, called fy, via the equation

fe(x) = f(x) +t.

Determine whether each of the following claims is true or false. If true, prove it directly. If false,
prove it with a counterexample.

(a) Let f, g, and h be functions. IF f loves g and g loves h, THEN f loves h.

Suggestion: It may be helpful to think of functions in terms of graphs instead of in terms of
their equations at first.

(b) For every function f there exists a function g such that, for every t € R, g loves fy.

Solutions

(a) The claim is false. I will prove it with a counterexample.
Let f(x) = —%, g = —2sin(x), and h(x) = sin(x).

* We already know from Question 1la that g loves h.

¢ I will prove that f loves g. For every n € Z, let us call
1
Cn = <2n + 2) s

cneﬂg

Notice that

because

glen) =2 < —3 = lcn)

Therefore, if x is any real number, there exists an element y € Qg such that x < y:
just take y = ¢y, for sufficiently large n € Z.

This is true, in particular, for every x € Q? . Therefore, f loves g.

* However, f does not love h: Q' = R and Qf = (), since f(x) < h(x) for every real
number x. The statement

Vx € R, 3y € @ such that x <y

is not true.

This shows that there exist functions f, g, and h such that f loves g and g loves h, but
f does not love h.

(b) The claim is true.

Let us fix a function f. I define the function g via the equation
g(x) =f(x)+x.

Fix t € R. I will prove that g loves f;.



For every x € R I have that
g(x) < fi(x) <= f(x)+x<f(x)+t < x<t

and therefore

Q‘;t = (—o0, 1),
and similarly
Q?t = (t,00).

Therefore, for every x € Qgt the real number y = t+ 1 is an element of Q gt, and it
is bigger than x. I conclude that g loves fi. Since t was arbitrary I have proved the
statement.



Question 3. Prove by induction that for every positive integer n, the number 5°™ + 11 is a multiple
of 12.

Proof. The base step corresponds to n = 1, in which case I have that 52" 4+ 11 = 36, which is
a multiple of 12.
For the induction step, let n > 1 be fixed and assume that there exists an integer a such that

51 111 = 12a.

In that case we can write

52n+1) 4 11 =52.52" 411 =
=25.5" +11 =
=(24—-1)-5" 411 =
=245 452 111 =
=24.5" 4 (5" +11) = (by induction hypothesis)
=24.5"" 4+ 12a =
=12-(2-5°™) +12a =
=12-(2-5"" +a).

Therefore, 52("t1) 4+ 11 = 12b, where b =2 -5*" + a is an integer number.

This shows that if 5°™ + 11 is a multiple of 12 then so is 5>("*!) + 11, which is the induction
step. This concludes the proof. O



