MAT 137Y: Calculus with proofs
Assignment 4 — Sample solutions

1. In this problem, we will only work with functions with domain R and codomain R. Therefore,
if we say that two functions f and g are equal (f = g), it means that

vz e R, f(z) =g(z).
We need a new definition. We say that a function f is faithful when

“For every two functions g and h, fog=foh = g=h"

Before beginning this question, we recall the definitions for a function f with domain R to be

one-to-one.
Ve, ze €R,  f(z1) = f(22) = 21 = 19 (1)

(a) Prove that if a function is one-to-one, then it is faithful.

Solution:

e Let f be a one-to-one function. We would like to prove that f is faithful.
e Let g, h be two functions. Assume that fog = f o h. We want to show that g = h.
e Let z € R. We want to show that g(x) = h(x).

e We know that (f o g)(x) = (f o h)(x). Thus f(g(z)) = f(h(z)). We can regard g(x)
and h(x) as two inputs to the function f. Since f is one-to-one, from (1), we conclude
that g(x) = h(x).



(b) Prove that if a function is NOT one-to-one, then it is NOT faithful.

Solution:

e Let f be a function which is not one-to-one. Negating (1), this means there exists
x1, Ty € R, such that xy # x5, but f(z1) = f(22).

e We wish to show that f is not faithful. In other words, we want to find two functions
g and h such that fog= foh but g #h.

e Define a function g to be the constant function with value x; (so g(u) = x; for all
u € R) and h to be the constant function with value x5 (so h(u) = x5 for all u € R).

— Then for all u € R, we have

flg(u)) = f(x1) = f(x2) = f(h(u))

Thus fog= foh.
— On the other hand g # h because, for example, g(0) = z1, h(0) = x, and x; # .

That is what we wanted to prove.



2. Given two functions [ and g, we say that g is a quasi-inverse of f when

“There exists a non-empty, open interval I contained in the domain of f, such that
the restriction of f to I is one-to-one, and ¢ is the inverse of that restriction.”
For example, arctan is a quasi-inverse of tan.

Construct a function f that satisfies all the following properties at once:

(a) The domain of f is R.
(b) f is differentiable.

(c) For every ¢ > 0 there exists a quasi-inverse g of f such that g is differentiable at 0 and
and 0 < ¢'(0) < c.

Solution: In order to satisfy property (c) we need the graph of f to cross the x-axis infinitely
many times and the slopes at these points should become arbitrarily large. There are many
possible solutions, including f(x) = xsinz and f(x) = sin(2?). I will use the former.

Define the function f(x) = zsinz.
The domain of f is R, so (a) is satisfied.
Also, f is differentiable because it is a product of differentiable functions (so (b) is satisfied).
By the product rule:
f'(x) = xcosx +sinz.

Here is the graph of f:

y=f(x)
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For each positive integer n, define the point z,, = 27mn. These points are marked in red in the
picture. Notice that they all satisfy

f(xn) =0, f(zn) = x, = 2mn.




Each point x,, is inside an open interval [,, such that f is increasing (and hence one-to-one) on
I,,. Specifically, I, = (2mn — 7/2,2mn + 7w /2). Therefore, the restriction of f to I, is one-to-one.
In the graph, I have marked the restriction of f to I3 as an example.

Let g, be the inverse of the restriction of f to I,,. By definition, g, is a quasi-inverse of f. Since
f(z,) = 0, we get ¢g(0) = x,. In addition, using the Theorem about derivative of the inverse
function (Video 4.4), we get

1

' (0) — _ b
9n(0) = f'(z,)  2mn’

1
We can now justify condition (c). Let ¢ > 0. Pick a positive integer n such that n > oo This
e

1
guarantees that o < ¢. Then g, is a quasi-inverse of f such that 0 < ¢'(0) < c.
™



3. In the videos we discussed how to define the number e, how to define exponentials and loga-
rithms, and how to obtain formulas for their derivatives. In this problem you are going to get
the same formulas in a different way.

We will assume that exponentials and logarithms are well-defined and continuous, and we will
assume the common properties of exponentials and logarithms. However, we assume we still do
not know anything about their derivatives — that is the point of this problem!

For this problem we will define the number e as this limit.

— lim (1 +2)"/". 2
e =lim (1+1) )
We should first prove that this limit exists, but we are going to skip that part. Let’s just assume
the limit exists and therefore this is a valid way to define the number e. Other than that, during
this problem, make a particular effort to explain what you are doing: specifically mention any
property, result, or identity that you use in any step.

In(1
(a) Prove that lim Il +2)

x—0 x

=1

Solution: We use Theorem 3 in Video 2.16:

o We know
e = lim(1+xz)"".

x—0
e The function In 1is continuous at e.

e Therefore
Ine = lim In ((1 —I—x)l/x) .

x—0

Then, using properties of logarithms:

1= e = lm In ((1+2)7) = Ji 2L+ )

x—0 z—0 X



(b) Consider the function L(x) = Inx. Prove that L is differentiable everywhere on its domain,
and find a formula for its derivative.

Solution: Let x > 0. By the definition of derivative

I'(z) = lim L(x+ h) — L(x)

Then, using properties of logarithms:

L —L L (&th L(1+*%
L'(z) = lim (z+h) () = lim —( i) = lim (1+2)
h—0 h h—0 h h—0 h
. [1 L(1+1) )
— hm — . Tx
h—0 X ;

Notice that x is fixed: it does not depend on h. For the purpose of the limit, it is a
constant. It is also non-zero, and thus we could divide by it.

Next I want to use Theorem 2 from Video 2.16. Define the function f by the equation
f(h) =%. Notice that when h # 0, f(h) # 0. Therefore, we can indeed use Theorem 2
from Video 2.16 to get:

L(1+2
lim ( :—x) - hmw — hmln(l——l—u)
h—0 4 h—0 f(h) u—0 u
Returning to (3), we conclude that
1 In(1 1 1
L'(x) = _.hmM - .1 = =,
r w0 w x x

Thus L is differentiable at 2 and L'(z) = .



(c) Consider the function E(z) = . Using the fact that E and L are inverses of each other,
and now that you have a formula for L', obtain a formula for £’

Solution:
e Method 1: Let z € R. Let y = €*. Then y > 0 and L(y) = x. Notice that
L'(y) =y #0.

We use the theorem about derivatives of inverse functions (Video 4.4):

L(E(z)) = =
Therefore q q
T LE@)] = o |2

Using the Chain Rule:

Using our formula for L':

And finally
E'(z) = E(z) = €.

Note: Method 2 is simply repeating the derivation of the theorem we used in Method 1.



4. We define arccot as the inverse function of the restriction of cot to (0, 7).

(a) [Do not submit] Sketch a graph of cot and convince yourself that this is the most reasonable
choice to define arccot.

d
(b) Obtain and prove a formula for . arccot x.
x
Solution:

Let f(z) = cotx and let g(z) = arccot .
The domain of arccot is R.
We also know that f’(z) = —csc? z.

e Method 1: Let x € R and let y = arccot z. We use the theorem about derivatives of
inverse functions (Video 4.4):

, L 1
A [ e

We use the trig identity 1 + cot?y = csc?y and therefore:

() = 1 -1
g  —(1+4cot’y) 1+ a2

e Method 2: We know that for every x € R:

cot(g(z)) = =

Therefore

d
ar [cot(g(z))] = iz (2]

Using the Chain Rule:

And finally

P N B
I = csc2(g(w)) 1 +cot?(g(x)) 1+ a2

Note: Method 2 is simply repeating the derivation of the theorem we used in Method 1.




(¢) The following “theorem” is not quite true as stated:

Flawed “Theorem?”: arccotx = arctan —
x
Fake “Proof”:
0 = arccotx
cotd ==z
1 1
tanf = = —
cot d T

1
§ = arctan —

g

Explain the problem with the statement of the theorem and the errors in the proof. Then
fix them: correct the statement, and write a correct proof.

Solution:
e The statement is only correct for z > 0. For example, if x = —1, then arccot z = ?’T”,
but arctan% =71
e The flaw in the proof lies in the last step:
tan @ = I does not imply 6 = arctan - unless € (—m/2,7/2).
Equivalently, the identity arctan(tanf) = € is only true when 6 € (—7/2,7/2).
Correct Theorem:
arctan & ifx>0
arccotx = o L. (4)
m + arctan if x <0

Proof.
e Let x € R, assume that x # 0. Let 6 = arccot z.

By definition of arccot, we know that 6 € (0, 7). Actually, we know more:
— If x > 0, then 6 € (0,7/2)
— If . <0, then 6 € (7/2,7)
e Then
cot f = cot (arccot x) = x
because this identity is true for all possible values of x.

e In addition .

cot 0 -

1
tanf = —
T

since x # 0.



e Remember that arctan is the inverse of the restriction of tan to (—m/2,7/2). This
means that if we find a value |« € (7/2,7/2) | such that

1
tana = —,
T

then we can conclude

o = arctan —.
x

We need to break the proof into two cases.
— Case 1: z > 0. In this case 0 € (0,7/2). Therefore

1
tand = —
T
does become
f = arctan —.
T
— Case 2: z < 0. Inthis case § € (7/2, 7). However, we notice that  — 7w € (—7/2,0)
and )
tan(f — ) = tanf = —
x
Therefore
0 —m = arctan —
x
and
0 = m + arctan —.
T

Putting both cases together, we have proven (4).



