
MAT 137Y: Calculus with proofs
Assignment 4 – Sample solutions

1. In this problem, we will only work with functions with domain R and codomain R. Therefore,
if we say that two functions f and g are equal (f = g), it means that

∀x ∈ R, f(x) = g(x).

We need a new definition. We say that a function f is faithful when

“For every two functions g and h, f ◦ g = f ◦ h =⇒ g = h.”

Before beginning this question, we recall the definitions for a function f with domain R to be
one-to-one.

∀x1, x2 ∈ R, f(x1) = f(x2) =⇒ x1 = x2 (1)

(a) Prove that if a function is one-to-one, then it is faithful.

Solution:

• Let f be a one-to-one function. We would like to prove that f is faithful.

• Let g, h be two functions. Assume that f ◦ g = f ◦ h. We want to show that g = h.

• Let x ∈ R. We want to show that g(x) = h(x).

• We know that (f ◦ g)(x) = (f ◦ h)(x). Thus f(g(x)) = f(h(x)). We can regard g(x)
and h(x) as two inputs to the function f . Since f is one-to-one, from (1), we conclude
that g(x) = h(x).



(b) Prove that if a function is NOT one-to-one, then it is NOT faithful.

Solution:

• Let f be a function which is not one-to-one. Negating (1), this means there exists
x1, x2 ∈ R, such that x1 6= x2, but f(x1) = f(x2).

• We wish to show that f is not faithful. In other words, we want to find two functions
g and h such that f ◦ g = f ◦ h but g 6= h.

• Define a function g to be the constant function with value x1 (so g(u) = x1 for all
u ∈ R) and h to be the constant function with value x2 (so h(u) = x2 for all u ∈ R).

– Then for all u ∈ R, we have

f(g(u)) = f(x1) = f(x2) = f(h(u))

Thus f ◦ g = f ◦ h.

– On the other hand g 6= h because, for example, g(0) = x1, h(0) = x2, and x1 6= x2.

That is what we wanted to prove.



2. Given two functions f and g, we say that g is a quasi-inverse of f when

“There exists a non-empty, open interval I contained in the domain of f , such that
the restriction of f to I is one-to-one, and g is the inverse of that restriction.”

For example, arctan is a quasi-inverse of tan.

Construct a function f that satisfies all the following properties at once:

(a) The domain of f is R.

(b) f is differentiable.

(c) For every c > 0 there exists a quasi-inverse g of f such that g is differentiable at 0 and
and 0 < g′(0) < c.

Solution: In order to satisfy property (c) we need the graph of f to cross the x-axis infinitely
many times and the slopes at these points should become arbitrarily large. There are many
possible solutions, including f(x) = x sinx and f(x) = sin(x2). I will use the former.

Define the function f(x) = x sinx.
The domain of f is R, so (a) is satisfied.
Also, f is differentiable because it is a product of differentiable functions (so (b) is satisfied).
By the product rule:

f ′(x) = x cosx+ sinx.

Here is the graph of f :

For each positive integer n, define the point xn = 2πn. These points are marked in red in the
picture. Notice that they all satisfy

f(xn) = 0, f ′(xn) = xn = 2πn.



Each point xn is inside an open interval In such that f is increasing (and hence one-to-one) on
In. Specifically, In = (2πn− π/2, 2πn+ π/2). Therefore, the restriction of f to In is one-to-one.
In the graph, I have marked the restriction of f to I3 as an example.

Let gn be the inverse of the restriction of f to In. By definition, gn is a quasi-inverse of f . Since
f(xn) = 0, we get g(0) = xn. In addition, using the Theorem about derivative of the inverse
function (Video 4.4), we get

g′n(0) =
1

f ′(xn)
=

1

2πn
.

We can now justify condition (c). Let c > 0. Pick a positive integer n such that n >
1

2πc
. This

guarantees that
1

2πn
< c. Then gn is a quasi-inverse of f such that 0 < g′(0) < c.



3. In the videos we discussed how to define the number e, how to define exponentials and loga-
rithms, and how to obtain formulas for their derivatives. In this problem you are going to get
the same formulas in a different way.

We will assume that exponentials and logarithms are well-defined and continuous, and we will
assume the common properties of exponentials and logarithms. However, we assume we still do
not know anything about their derivatives – that is the point of this problem!

For this problem we will define the number e as this limit.

e = lim
x→0

(1 + x)1/x . (2)

We should first prove that this limit exists, but we are going to skip that part. Let’s just assume
the limit exists and therefore this is a valid way to define the number e. Other than that, during
this problem, make a particular effort to explain what you are doing: specifically mention any
property, result, or identity that you use in any step.

(a) Prove that lim
x→0

ln(1 + x)

x
= 1.

Solution: We use Theorem 3 in Video 2.16:

• We know
e = lim

x→0
(1 + x)1/x .

• The function ln is continuous at e.

• Therefore
ln e = lim

x→0
ln
(

(1 + x)1/x
)
.

Then, using properties of logarithms:

1 = ln e = lim
x→0

ln
(

(1 + x)1/x
)

= lim
x→0

ln(1 + x)

x



(b) Consider the function L(x) = lnx. Prove that L is differentiable everywhere on its domain,
and find a formula for its derivative.

Solution: Let x > 0. By the definition of derivative

L′(x) = lim
h→0

L(x+ h)− L(x)

h

Then, using properties of logarithms:

L′(x) = lim
h→0

L(x+ h)− L(x)

h
= lim

h→0

L
(
x+h
h

)
h

= lim
h→0

L
(
1 + h

x

)
h

= lim
h→0

[
1

x
·
L
(
1 + h

x

)
h
x

] (3)

Notice that x is fixed: it does not depend on h. For the purpose of the limit, it is a
constant. It is also non-zero, and thus we could divide by it.

Next I want to use Theorem 2 from Video 2.16. Define the function f by the equation
f(h) = h

x
. Notice that when h 6= 0, f(h) 6= 0. Therefore, we can indeed use Theorem 2

from Video 2.16 to get:

lim
h→0

L(1 + h
x
)

h
x

= lim
h→0

ln(1 + f(h))

f(h)
= lim

u→0

ln(1 + u)

u

Returning to (3), we conclude that

L′(x) =
1

x
· lim
u→0

ln(1 + u)

u
=

1

x
· 1 =

1

x
.

Thus L is differentiable at x and L′(x) = 1
x
.



(c) Consider the function E(x) = ex. Using the fact that E and L are inverses of each other,
and now that you have a formula for L′, obtain a formula for E ′.

Solution:

• Method 1: Let x ∈ R. Let y = ex. Then y > 0 and L(y) = x. Notice that
L′(y) = 1

y
6= 0.

We use the theorem about derivatives of inverse functions (Video 4.4):

E ′(x) =
1

L′(y)
= y = ex.

• Method 2: We know that for every x ∈ R, E(x) > 0 and:

L(E(x)) = x

Therefore
d

dx
[L(E(x))] =

d

dx
[x]

Using the Chain Rule:
L′(E(x)) · E ′(x) = 1

Using our formula for L′:
1

E(x)
· E ′(x) = 1

And finally
E ′(x) = E(x) = ex.

Note: Method 2 is simply repeating the derivation of the theorem we used in Method 1.



4. We define arccot as the inverse function of the restriction of cot to (0, π).

(a) [Do not submit] Sketch a graph of cot and convince yourself that this is the most reasonable
choice to define arccot.

(b) Obtain and prove a formula for
d

dx
arccotx.

Solution:

Let f(x) = cot x and let g(x) = arccot x.
The domain of arccot is R.
We also know that f ′(x) = − csc2 x.

• Method 1: Let x ∈ R and let y = arccotx. We use the theorem about derivatives of
inverse functions (Video 4.4):

g′(x) =
1

f ′(y)
=

1

− csc2 y
.

We use the trig identity 1 + cot2 y = csc2 y and therefore:

g′(x) =
1

−(1 + cot2 y)
=
−1

1 + x2

• Method 2: We know that for every x ∈ R:

cot(g(x)) = x

Therefore
d

dx
[cot(g(x))] =

d

dx
[x]

Using the Chain Rule:
− csc2(g(x)) · g′(x) = 1

And finally

g′(x) =
−1

csc2(g(x))
=

−1

1 + cot2(g(x))
=
−1

1 + x2

Note: Method 2 is simply repeating the derivation of the theorem we used in Method 1.



(c) The following “theorem” is not quite true as stated:

Flawed “Theorem”: arccotx = arctan
1

x
Fake “Proof”:

θ = arccot x

cot θ = x

tan θ =
1

cot θ
=

1

x

θ = arctan
1

x

�

Explain the problem with the statement of the theorem and the errors in the proof. Then
fix them: correct the statement, and write a correct proof.

Solution:

• The statement is only correct for x > 0. For example, if x = −1, then arccotx = 3π
4

,
but arctan 1

x
= −π

4
.

• The flaw in the proof lies in the last step:
tan θ = 1

x
does not imply θ = arctan 1

x
unless θ ∈ (−π/2, π/2).

Equivalently, the identity arctan(tan θ) = θ is only true when θ ∈ (−π/2, π/2).

Correct Theorem:

arccotx =

{
arctan 1

x
if x > 0

π + arctan 1
x

if x < 0
(4)

Proof.

• Let x ∈ R, assume that x 6= 0. Let θ = arccotx.

By definition of arccot, we know that θ ∈ (0, π). Actually, we know more:

– If x > 0, then θ ∈ (0, π/2)

– If x < 0, then θ ∈ (π/2, π)

• Then
cot θ = cot (arccotx) = x

because this identity is true for all possible values of x.

• In addition

tan θ =
1

cot θ
=

1

x

since x 6= 0.



• Remember that arctan is the inverse of the restriction of tan to (−π/2, π/2). This

means that if we find a value α ∈ (π/2, π/2) such that

tanα =
1

x
,

then we can conclude

α = arctan
1

x
.

We need to break the proof into two cases.

– Case 1: x > 0. In this case θ ∈ (0, π/2). Therefore

tan θ =
1

x

does become

θ = arctan
1

x
.

– Case 2: x < 0. In this case θ ∈ (π/2, π). However, we notice that θ − π ∈ (−π/2, 0)
and

tan(θ − π) = tan θ =
1

x

Therefore

θ − π = arctan
1

x

and

θ = π + arctan
1

x
.

Putting both cases together, we have proven (4).


