
MAT 137Y: Calculus with proofs
Assignment 7 - Sample Solutions

1. For every natural number n, we define the function Fn by the equation

Fn(x) =

∫ x

0

tnetdt. (1)

(a) Use integration by parts to write Fn in terms of Fn−1 for n ≥ 1.

Solution: Let us fix n ≥ 1. I use integration by parts∫
u dv = uv −

∫
v du

with choices
u = tn du = ntn−1

dv = etdt v = et

to get ∫
tnetdt = tnet − n

∫
tn−1etdt (2)

Equation (2) is for an indefinite integral. Now let’s make it a definite integral: from 0
to x: ∫ x

0

tnetdt = tnet
∣∣∣∣t=x

t=0

− n

∫ x

0

tn−1etdt

Equivalently, using the definition of Fn:

Fn(x) = xnex − nFn−1(x) (3)



(b) Prove the following theorem by induction, using your result from Question 1a:

Theorem. For every natural number n there exists a polynomial Pn and a real
number λn such that

∀x ∈ R, Fn(x) = exPn(x) + λn

Solution: I will prove the theorem by induction on n.

• Base case (n = 0).

I need to prove that there exists a polynomial P0 and a real number λ0 such that,
for every x ∈ R:

F0(x) = exP0(x) + λ0. (4)

I can do this by direct calculation:

F0(x) =

∫ x

0

etdt = et
∣∣∣∣t=x

t=0

= ex − 1

I have shown that Equation (4) is true for the constant polynomial P0(x) = 1 and
the real number λ0 = −1.

• Induction step.

Let us fix n ≥ 1.
I assume there exists a polynomial Pn−1 and a real number λn−1 such that, for every
x ∈ R:

Fn−1(x) = exPn−1(x) + λn−1. (5)

I want to prove that there exists a polynomial Pn and a real number λn such that,
for every x ∈ R:

Fn(x) = exPn(x) + λn. (6)

I can use the relation I obtained in the previous question, Equation (3), together
with the induction hypothesis, Equation (5), to conclude that for every x ∈ R:

Fn(x) = xnex − nFn−1(x)

= xnex − n [exPn−1(x) + λn−1]

= ex [xn − nPn−1(x)] − nλn−1

Notice that xn − nPn−1(x) is a polynomial in x (because it is a sum of polynomials)
and −nλn−1 is a real number. In other words, I have shown that Equation (6) is
true for the polynomial

Pn(x) = xn − nPn−1(x)

and for the real number
λn = −nλn−1.



(c) Find (and prove) an explicit formula for λn, as defined in Question 1b.

Hint: First find λ0 by direct calculation. Then use the previous questions.

Solution:

In the previous question I concluded that

λ0 = −1 (7)

∀n ≥ 1, λn = −nλn−1 (8)

As a consequence,

∀n ≥ 0, λn = (−1)n+1n! (9)

I will prove (9) by induction on n.

• The base case (n = 0) is already proven by (7):

λ0 = −1 = (−1)0+10!

• For the induction step, let us fix n ≥ 1. I assume that

λn−1 = (−1)n(n− 1)! (10)

I need to prove that
λn = (−1)n+1n!

This follows immediately from (8) and the induction hypothesis, (10):

λn = −nλn−1 = −n(−1)n(n− 1)! = (−1)n+1n(n− 1)! = (−1)n+1n!



2. Use substitutions to write the following integrals in terms of the functions Fn (as defined by
Equation (1)):

(a)

∫ x

1

tp eat dt

(b)

∫
x2p+1 e−x

2

dx

(c)

∫ x

1

tp (ln t)q dt, for x > 0

(d)

∫
(sinp x)

(
cos3 x

)
esinx dx

where p, q ∈ N, a ∈ R, a 6= 0.

Solution:

(a) I use the substitution u = at with du = adt. Notice that a 6= 0, so I can divide by a.∫ x

1

tpeat dt =

∫ ax

a

(u
a

)p
eu

1

a
du =

1

ap+1

∫ ax

a

upeudu =
Fp(ax)− Fp(a)

ap+1

(b) I use the substitution u = −x2 with du = −2xdx. Then∫
x2p+1 e−x

2

dx =

∫
x2p e−x

2

(xdx) =

∫
(−u)p eu

−du
2

=
(−1)p+1

2

∫
upeu du

=
(−1)p+1

2
Fp(u) + C =

(−1)p+1

2
Fp(−x2) + C

(c) First, I use the substitution u = ln t with du =
dt

t
. Therefore, t = eu∫ x

1

tp (ln t)q dt =

∫ x

1

tp+1 (ln t)q
dt

t
=

∫ lnx

0

e(p+1)u uq du = . . .

Next, I use the substitution y = (p+ 1)u with dy = (p+ 1)du. Notice that p ∈ N so
p+ 1 6= 0 and I can divide by (p+ 1).

. . . =

∫ (p+1) lnx

0

ey
(

y

p+ 1

)q
dy

p+ 1
=

1

(p+ 1)q+1

∫ (p+1) lnx

0

yqey dy

=
1

(p+ 1)q+1 Fq((p+ 1) lnx)

(d) I use the substitution u = sinx with du = cosx. I also use the identity cos2 x = 1− sin2 x.∫
(sinp x)

(
cos3 x

)
esinx dx =

∫
(sinp x)

(
cos2 x

)
esinx (cosx dx)

=

∫
(sinp x)

(
1− sin2 x

)
esinx (cosx dx)

=

∫
up(1− u2)eu du =

∫
upeu du −

∫
up+2eu du

= Fp(u)− Fp+2(u) + C = Fp(sinx)− Fp+2(sinx) + C



3. Before you attempt this question, work on the Practice Problems for Unit 10 (specifically the
sections on Mass Density and Center of Mass). Otherwise the question won’t make sense.

Every time we have two point masses in a closed space, they generate something called
“macguffin”. If we have a mass m1 at point P1 and a mass m2 at point P2, then they
generate a macguffin with value G given by

G = m1m2z
2

where z is the distance between P and Q.

If we have more than two masses, every pair of masses generates a macguffin. For example, if
we have three masses (call them 1, 2, and 3) at three different points, then the total macguffin
generated by them is the sum of

• the macguffin generated by masses 1 and 2,

• the macguffin generated by masses 1 and 3,

• the macguffin generated by masses 2 and 3.

(a) Assume we have N masses on N different positions on the x-axis: a mass m1 at x1, a
mass m2 at x2, ..., a mass mN at xN . Obtain a formula for the total macguffin generated
by the masses using sigma notation.

(b) Assume that instead of a collection of point masses we have continuous masses (which
is more realistic). Specifically, we have a bar on the x-axis, from x = a to x = b, whose
mass density at the point x is given by µ(x). Assume µ is a continuous function. Obtain
a formula for the total macguffin generated by the bar using integrals.

Solution:

(a) The macguffin created by masses mi and mj will be

Gi,j = mimj(xi − xj)2

I have to consider all possible pairs of masses. I have to consider all possible values of
i and j. This means I have to take a double sum. I may be tempted to write

G =
N∑
i=1

N∑
j=1

mimj(xi − xj)2 ??? (11)

but this equation is wrong. There are two issues. First, in this double sum I am
including the macguffin generated by a mass with itself, which I shouldn’t! On closer
inspection, this turns out not to be a problem because a term like

mimi(xi − xi)2

is always 0. So, it does not matter that I included this term in the sum. However, there
is a second problem that needs to be fixed. In the double sum (11), I am including the



macguffin generated by each pair of different masses twice. For example, I am including
the macguffin generated by masses m1 and m2 once when i = 1 and j = 2, and a second
time when i = 2 and j = 1. There are various ways to fix this. I can simply divide the
full sum by two

G =
1

2

N∑
i=1

N∑
j=1

mimj(xi − xj)2 (12)

Alternatively, to make sure I include each pair of masses only once, I can add, for each
mass mi only the contribution from masses mj with j ≥ i:

G =
N∑
i=1

N∑
j=i

mimj(xi − xj)2 (13)

or with j ≤ i:

G =
N∑
i=1

i∑
j=1

mimj(xi − xj)2 (14)

And of course, perhaps I prefer to explicitly exclude the cases j = i:

G =
N−1∑
i=1

N∑
j=i+1

mimj(xi − xj)2 (15)

or:

G =
N∑
i=2

i−1∑
j=1

mimj(xi − xj)2 (16)

Any of the Equations (12), (13), (14), (15), (16) is a valid answer.

(b) For simplicity, I will focus on Equation (12) as the macguffin generated by a finite
collection of masses. To obtain an equation for the macguffin generated by a continuous
mass, I can take the Riemann sums approach, or the infinitesimals approach.

Using Riemann sums

Let P = {x0, x1, . . . , xN} be a partition of the interval [a, b]. For each i, I pick a point
x?i on each subinterval [xi−1, xi], and I define ∆xi = xi − xi−1. I can approximate the
mass in the subinterval [xi−1, xi] by a single point-mass with value µ(x?i ) ·∆xi at the
point x?i . From (12), the macguffin generated by these point masses will be

1

2

N∑
i=1

N∑
j=1

[µ(x?i )∆xi] ·
[
µ(x?j)∆xj

]
· (x?i − x?j)2

This is an approximation. If we now take a limit as the norm of the partitions approaches
0, we will get an integral (well, a double integral). Notice that all the involved functions



are continuous, and hence integrable.

G = lim
||P ||→0

1

2

N∑
i=1

N∑
j=1

[µ(x?i )∆xi] ·
[
µ(x?j)∆xj

]
· (x?i − x?j)2

= lim
||P ||→0

1

2

N∑
i=1

(
N∑
j=1

[
µ(x?i )µ(x?j)(x

?
i − x?j)2

]
∆xj

)
∆xi

=
1

2

∫ b

a

(∫ b

a

µ(x)µ(y)(x− y)2dy

)
dx

It is important to use two different variables of integration in the double integral. I
used “dx” and “dy” but you could have used any other variables (as long as they are
different).

To be fair, the last step is more an intuitive leap than a rigorous deduction. It can be
made more rigorous (in particular, you will study iterated integrals in detail in MAT235,
MAT237, or MAT257) but for now this will suffice.

Using infinitesimals

If I cut down an infinitesimally thin slice of the bar, at x, with width dx, then it has a
mass of

µ(x)dx

If I cut down a second infinitesimally thin slice of the bar, at y, with width dy, then it
has a mass of

µ(y)dy

and together they generate a macguffin with value

µ(x)dxµ(y)dy (x− y)2

Now I need to add over all possible values of x and y. Since these are infinitesimal pieces,
the “sum” is actually an integral (well, a double integral). Using the same arguments I
used in Question 3a, I get

G =
1

2

∫ b

a

(∫ b

a

µ(x)µ(y)(x− y)2dy

)
dx

Alternative answers

If I use (13) or (15) instead of (12) I get

G =

∫ b

a

(∫ b

x

µ(x)µ(y)(x− y)2dy

)
dx

And if I use (14) or (16) I get

G =

∫ b

a

(∫ x

a

µ(x)µ(y)(x− y)2dy

)
dx



which are also correct. Notice that once I am down to integrals, the problem of the
contribution of the macguffin generated by a single infinitesimal mass with itself (x = y)
becomes even more irrelevant: an integral is unaffected if we change the value of a
function at a single point.


