
MAT 137Y: Calculus with proofs
Assignment 8 - Sample Solutions

Notation: We will denote the set of positive integers by Z+.

1. Prove the following lemma:

Lemma A. Let {xn}∞n=1 be a sequence of real numbers. We define two new
sequences {En}∞n=1 and {On}∞n=1 as:

∀n ∈ Z+, En = x2n,

∀n ∈ Z+, On = x2n−1

• IF the sequences {En}∞n=1 and {On}∞n=1 are both convergent to the same limit,

• THEN the sequence {xn}∞n=1 is also convergent.

Suggestion: Use the definition of limit.

Solution:

• Let me call L = lim
n→∞

En = lim
n→∞

On. I can write this because we are assuming the

two sequences are convergent to the same limit.

• I am going to show that L = lim
n→∞

xn. In other words, I want to show that

∀ε > 0, ∃n0 ∈ Z+, ∀n ∈ Z+, n ≥ n0 =⇒ |xn − L| < ε. (1)

• Let ε > 0.

– From the definition of lim
n→∞

On = L (using this same ε),

I conclude ∃n1 ∈ Z+ such that

∀n ∈ Z+, n ≥ n1 =⇒ |On − L| < ε (2)

– From the definition of lim
n→∞

En = L (using this same ε),

I conclude ∃n2 ∈ Z+ such that

∀n ∈ Z+, n ≥ n2 =⇒ |En − L| < ε (3)

I take n0 = max{2n1 − 1, 2n2}. I will show this value of n0 works as in (1).

• Let n ∈ Z+. Assume n ≥ n0 . I need to show that |xn − L| < ε.

• I will break into two cases, depending on whether n is odd or even.



– Case 1: n is odd.
In this case, n = 2k − 1 for some k ∈ Z+ and xn = x2k−1 = Ok. Then

2k − 1 = n ≥ n0 ≥ 2n1 − 1

Therefore 2k − 1 ≥ 2n1 − 1 and hence k ≥ n1. It then follows from (2) that

|xn − L| = |Ok − L| < ε

– Case 2: n is even.
In this case, n = 2k for some k ∈ Z+ and xn = x2k = Ek. Then

2k = n ≥ n0 ≥ 2n2

Therefore 2k ≥ 2n2 and hence k ≥ n2. It then follows from (3) that

|xn − L| = |Ek − L| < ε

In both cases I have proven that |xn − L| < ε.

�



2. Let {an}∞n=1 be a decreasing sequence of positive numbers with limit 0. I define a new
sequence {xn}∞n=1 as follows:

x1 = a1

∀n ∈ Z+, xn+1 = xn + (−1)nan+1

(4)

Prove that the sequence {xn}∞n=1 satisfies the hypotheses of Lemma A, and hence is it con-
vergent.

This question is quite long and you will need to prove a few different things. Before you
start, make a strategy. Decide what the various things you need to prove are, and in which
order. Begin the proof by writing a summary of the steps you are going to take. Make sure
your reader understands where in your proof you are at each moment. Make your proof as
easy to read as you would like it to be if you were reading it for the first time yourself.

Suggestions: You do not need to write a single ε! Use the theorems you have learned in Unit
11 instead. Before you start, as rough work, write explicitly an equation for the first few x’s
in terms of the first few a’s to make sure you understand the definition. Draw the numbers
x1, x2, x3, x4, x5, x6, x7, and x8 in a real line and order them. You will notice that the
sequences {En}∞n=1 and {On}∞n=1 appear to satisfy certain properties which will be helpful in
your proof. Of course, anything you want to use in your proof needs to be proven first.

Solution:

Before starting notice that the recurrence relation in (4) means that, for every n ∈ Z+:

x2n = x2n−1 − a2n (5)

x2n+1 = x2n + a2n+1 (6)

I define the sequences {On}∞n=1 and {En}∞n=1 as in Lemma A. I need to prove that these two
sequences are both convergent and have the same limit. Before I begin, looking at the first
few terms and doing some algebra, it looks like the terms are ordered like this:

x2 < x4 < x6 < x8 < . . . < x7 < x5 < x3 < x1

This suggests the following plan:

• Claim 1: The sequence {En}∞n=1 is increasing.

• Claim 2: The sequence {On}∞n=1 is decreasing.

• Claim 3: For every n ∈ Z+, En < On

• Claim 4: The sequence {En}∞n=1 is bounded above (by O1).

• Claim 5: The sequence {On}∞n=1 is bounded below (by E1).

• Claim 6: The sequences {En}∞n=1 and {On}∞n=1 are both convergent.

• Claim 7: The sequences {En}∞n=1 and {On}∞n=1 have the same limit.



Note: The order of these claims matters. Specifically:

• I will use Claims 2 and 3 in the proof of Claim 4.

• I will use Claims 1 and 3 in the proof of Claim 5.

• I will use Claims 1, 2, 4, and 5 in the proof of Claim 6.

• I will use Claim 6 in the proof of Claim 7.

Of course, you may have a different plan for the proof, but make sure your plan makes sense
chronologically.

Claim 1: The sequence {En}∞n=1 is increasing

Proof: Let n ∈ Z+. I need to prove that En+1 − En > 0.

En+1 = x2n+2 = x2n+1 − a2n+2 (using (5))

= [x2n + a2n+1]− a2n+2 (using (6))

= En + a2n+1 − a2n+2

Therefore

En+1 − En = a2n+1 − a2n+2 > 0 (because the sequence {ak}∞k=1 is decreasing)

�

Claim 2: The sequence {On}∞n=1 is decreasing

Proof:

Let n ∈ Z+. I need to prove that On+1 −On < 0.

On+1 = x2n+1 = x2n + a2n+1 (using (6))

= [x2n−1 − a2n] + a2n+1 (using (5))

= On − a2n + a2n+1

Therefore

On+1 −On = a2n+1 − a2n < 0 (because the sequence {ak}∞k=1 is decreasing)

�



Claim 3: For every n ∈ Z+, En < On

Proof:

Let n ∈ Z+. I want to prove that On − En > 0. Using (5):

En = x2n = x2n−1 − an = On − an,

so that On − En = an, which we know is positive. �

Claim 4: The sequence {En}∞n=1 is bounded above (by O1).

Proof: Let n ∈ Z+. Then

• En < On from Claim 3

• On ≤ O1 from Claim 2

I have proven that for every n ∈ Z+, En ≤ O1. �

Claim 5: The sequence {On}∞n=1 is bounded below (by E1).

Proof: Let n ∈ Z+. Then

• On > En from Claim 3

• En ≥ E1 from Claim 1

I have proven that for every n ∈ Z+, On ≥ E1. �

Claim 6: The sequences {En}∞n=1 and {On}∞n=1 are both convergent.

Proof

• The sequence {En}∞n=1 is increasing (Claim 1) and bounded above (Claim 4). By the
Monotone Convergence Theorem, it is convergent.

• The sequence {On}∞n=1 is decreasing (Claim 2) and bounded below (Claim 5). By the
Monotone Convergence Theorem, it is convergent. �



Claim 7: The sequences {En}∞n=1 and {On}∞n=1 have the same limit.

Let us call
L1 = lim

n→∞
En, L2 = lim

n→∞
On

I can do this because I know both sequences converge (Claim 6.) I need to prove that L1 = L2.

From (5) we know that for every n ∈ Z+:

x2n = x2n−1 − a2n

Or, in other words:
En = On − a2n

Since all the terms have a limit, we can use a limit law:

lim
n→∞

En =
[

lim
n→∞

On

]
−

[
lim
n→∞

a2n

]
and finally

L1 = L2 + 0

because we knew the sequence {ak}∞k=1 was convergent to 0. I have proven that L1 = L2 as
needed. �



3. Let {xn}∞n=1 and {yn}∞n=1 be two sequences of positive numbers. Assume that xn << yn.
For each one of the following claims, decide whether they are always true, always false, or
sometimes true and sometimes false (depending on the specific sequences). Prove it.

(a) xn <<
xn + yn

2

(b)
xn + yn

2
<< yn

Solution:

(a) This is ALWAYS TRUE.

By definition of xn << yn, we know that lim
n→∞

xn

yn
= 0. Then

lim
n→∞

xn

xn + yn
2

= lim
n→∞

2xn

xn + yn
= lim

n→∞

2
xn

yn
xn

yn
+ 1

=
2 · 0
0 + 1

= 0

Therefore, by definition, xn <<
xn + yn

2
.

(b) This is ALWAYS FALSE.

By definition of xn << yn, we know that lim
n→∞

xn

yn
= 0.

The definition of
xn + yn

2
<< yn is

lim
n→∞

xn + yn
2
yn

= 0,

However, this limit is never 0:

lim
n→∞

xn + yn
2
yn

= lim
n→∞

xn + yn
2yn

= lim
n→∞

xn

yn
+ 1

2
=

0 + 1

2
=

1

2


