MAT 137Y — Practice problems
Unit 2 : Limits and continuity

1. Below is the graph of the function f:

14
y=1(x)
21
31
Compute the following limits
(a) lim f(z) (c) lim f(f(x)) (e) lim (f(2))’
(b) iy £(f(x) (@) g f(25ec)

2. Given a real number z, we defined the floor of x, denoted by |z |, as the largest integer
smaller than or equal to z. For example, |7| =3, |[7] =7, and |—0.5] = —1.

(a) Sketch the graph of this function. At which points is the function f(z) =
|| continuous? Which discontinuities are removable and which ones are non-
removable?

(b) Consider the function h(z) = |sinz|. Show that h has exactly one removable
and one non-removable discontinuity inside the interval (0, 27).

3. Below is the graph of the function g:




For clarification, when —1 < z < 0, g(x) “oscillates” between 0 and 1; as x ap-
proaches 0 from the left, these oscillations become faster and faster. The behaviour
is similar to that of the function f(z) = sin(m/2z), which you can see on Video 2.2.
Find the following limits:

() Jim g(x) (@) Jim g(x) © tim [27)

(b) lim [g(z)]
z—0t+

(c) lim g(|z]) (e) lim [g(z)] (g) lim g([z])
z—0t+ z—0 z—0

. Compute the following limits

. oz+1 . sin(3x) Vit 42+ 14322 + 1
1 .

2) el 7 4 2 d glcl_r% sin(2x) () af;ll—)I& x?

2 + 3z — 10 22+ 222+ 1 3 —1

b) lim ———— im 1~ - m—_—

b) =g () im e rer WMo
. Vr+3-2 .+ 27+1 . .. sin'%(2sin'%(3x))

(c) ilgill x—1 ®) :vLIPOO 5x3 4 6z — 1 (i) }:1{)% 2100

. Write the formal definition of the following concepts:

(a) lim f(x) =L (d) lim f(z) doesn’t exist (g) lim f(z) = —o0
T—a r—a Tr—a—

(b) lim f(z) exists () lim f(x)=L (b) lim f(z) =L
li L -

(C) xl_Ig f(5(7> 7£ (f) lim f($) = 00 (1) ]_1>m f(g;) = 00

r—a T—>—00

. Prove the following claims directly from the formal definitions.

. . . 3 . x .
(a) 7151—%(433 +1)=9 (c) gl;_)rr{x =1 (e) i1_r)1(1) Tl does not exist
. 1 ) 1 1 i 1
(b) Jim 5 =0 R e R

. Let a, L, M € R. Let f be a function defined, at least, on an interval centered at a,
except maybe at a. Prove that

IF lim f(z) = L and lim g(z) = M THEN lim [f(z) — g(z)] = L — M.

r—a r—a T—ra

Write a proof directly from the formal definitions, without using any of the limit
laws.

. Let a € R. Let f be a function defined at least on an interval centered at a, except
possibly at a. Prove that

1
IF lim f(z) = o0 THEN lim —— = 0.

z—a z—a f(x)



10.

11.

12.

Write a proof directly from the formal definitions, without using any of the limit
laws.

Construct a function f with domain R such that lin% f(z) =0 but liII(l) f(f(x)) #0.
T— T—

Prove Theorem 3 on Video 2.16. More specifically:

Let a,L € R. Let f be a function defined, at least, on an interval centered at a,
except maybe at a. Let g be a function defined at least on an interval centered at
L. Prove that

IF lim f(x) = L and ¢ is continuous at L THEN lim g(f(z)) = g(L).

r—a r—a

Write a proof directly from the formal definitions, without using any of the limit
laws.

Use the Intermediate Value Theorem to prove that the equation
sinz = 2cos*z + 0.5
has at least one solution.

1 1
Use the Squeeze Theorem to explain why lim x cos — exists, even though lim cos —
x—0 €T x—0 €T

does not exist. Explain why the same argument does not work for hH(l) zell*”,
Tr—r



Bonus question:
Do you really understand the definition of limit?

13. Let f be a function. Let a, L € R. Assume that f is defined on some open interval
around a, except maybe at a. Below is a list of nine statements.
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Ve > 0,30 >0such that O0<|r—a|<d = |f(z)—L|<e.
Ve >0, 30 > 0 such that lt —al <0 = |f(z) - L| <e.
Ve>0,36 >0suchthat 0<|z—a|<d = 0<|f(zx)—L|<e.

Ve >0,30 >0suchthat 0< |z —a| <0 = |f(z)—L| <e.
Ve > 0,30 > 0suchthat 0< |z —a| <0 = |f(z)—L| <e.
Ve >0,30 >0suchthat 0<|r—a|<d = |f(z)—L| <e.

V9 >0, de > 0suchthat 0<|z—a|<d = |f(z)—L|<e.
V9 >0,de >0suchthat O0<|z—al<e = |f
30 > 0 such that Ve >0, O0<|z—a| <0 = |f

’§§
EE
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Match each of the statements above to one of the following (there may be repeats):

A.

=Y QW

e

Every function satisfies this statement.
There isn’t any function which satisfies this statement.

This statement is (equivalent to) the definition of lim f(x) = L.

r—a

This statement is (equivalent to) the definition of “f is continuous at a”.

This statement means that lim f(x) = L and that, in addition, f does not take
Tr—ra

the value L anywhere on some interval centered at a, except maybe at a.

This statement is equivalent to saying that f must be constantly equal to L on
an interval centered at a, except maybe at a.

. This statement means that f is bounded on every interval centered at a.



Some answers and hints

1.

(a) DNE (b) -2 (c) -1 (d) 2 (e) 4

(a) f is discontinuous at a when a € Z. f is continuous everywhere else. All the
discontinuities are non-removable.

(b) g has a removable discontinuity at 7 and a non-removable discontinuity at 7.

(a) 2 (b) 1 (c) 1.5 (d) DNE (e) DNE (f) 0 (g) 0.5
(a) 2/3 (d) 3/2 (g) 4

(b) 7/4 (e) 1/5 (h) DNE

(c) 1/4 (f) o (i) 21031

There are various equivalent ways to write each definition. The parts in blue (and
only the parts in blue) are often omitted and are considered implicit.
(a) Ve > 0,36 > 0 such that (Vz € R,) 0<|r—a|<d = |f(x)—L|<e
(b) 3L € R such that Ve > 0,35 > 0 such that (Vz € R,) 0<|z—a|<d = |f(x)—L|<e
(c) Je > 0 such that V6 > 0,3z € R such that [0 < |z —a| <0 and |f(z) — L| > ¢]
(d) VL € R, e > 0 such that V§ > 0,3z € R such that [0 < |r —a| <é and |f(z) — L| > €]
(e) Ve > 0,39 > 0such that (Vz €R,) a<zx<a+0 = |f(z)—L|<e
(f) VM € R,36 > 0 such that (Vx € R,) 0<|z—a|<d = f(z)>M
(g) VM € R,30 > O such that (Vx €eR,) a—d<zr<a = f(x) <M
(h) Ve > 0,3K € Rsuch that (Vx € R,) z>K = |[f(z)—L|<c¢
(i) VM € R, 3K € Rsuch that (Vx € R,) z< K = f(x)> M
)

(a) This is similar to the proof in Video 2.7.

C

1
(b) WTS: Ve > 0,dK € Rsuch that Vz € R, 2> K — ‘—2—0 <e
x
e Fixe>0
1
o Take K = ﬁ.
1
e Fix z € R. Assume z > K. [ need to verify that — <e.
x
1 1
PRI
(c) This is similar to the proof in Video 2.8
1 1
(d) WTS:Ve > 0,30 >0such that Ve e R, 0<|z—-1] <) = 71 3 <e
x

e Fixe>0



e Take 6 = min{1,2¢/3}. Thus 6 <1 and ¢ < 2¢/3.

1
e Fix z € R. Assume 0 < |z — 1| < 6. I need to verify that —-|<e.
2+1 2
By assumption, 0 <1 -0 <z <146 <2. Thus |1+ z| < 3.
In addition 5 < 1.
e+ 1
1 1 |z + 1||z — 1| 39
— == <e.
22+1 2 2(x2+1) ~2-1°
(e) This is somewhat similar to the proof in Video 2.9.
1
(f) WTS VM € R, 3 > 0 such that Vo € R, 1<x<1—|—5:>1 <M
—x
e Fix M eR
e Next we need to choose §. It is probably easiest to break this into two
cases.
— If M >0, take § = 1 for example.
1
- If M <0 take 6 = —
| M|
1
e Fix z € R. Assume 1 <z < 1+ 4. I need to verify that ] < M.
—x

(Pay careful attention to the signs. Sometimes you will be working with
negative numbers.)

7. This proof is very similar to the one in Video 2.11.

1
8 WTSVe>0,30 >0such that Vo e R, 0<|z—a|]<d = ’m‘<6

e Fix an arbitrary € > 0.

1
e Using — as the bound in the definition of lim f(x) = oo, we can conclude that
& r—a

1
36 > 0 such that Ve e R, 0<|z—a|<d§ = f(m)>g

This is the value of § I take.
1
_‘ -

/()

1
This follows immediately from knowing that f(x) > — > 0.
£

e Let x € R. Assume 0 < |z — a| < 0. I need to verify that

9. This is definitely possible. You will need a function that is not continuous at 0,
although being discontinuous at 0 is not enough.

10. I want to prove that
Ve > 0,30 >0such that Ve e R, 0<|z—a|]<d = |g9(f(x)) —g(L)| <e.



e Fix an arbitrary ¢ > 0.

e First I use this value of € in the definition of “g is continuous at L” to conclude
that

309 > 0 such that Vy e R, |y —L| <dy = |g(y) —g(L)| < e.

Second I use this value of §y “as the epsilon” in the definition of “lim f(x) = L”
r—a

to conclude that
30 >0such that Ve e R, 0< |z —a|<d = |f(z)— L] <.

This is the value of § I take.
e Fix z € R. Assume 0 < |z — a| < §. I need to verify that |g(f(z)) — g(L)| < e.

— Since 0 < |z — a| < 0, we conclude that |f(z) — L| < do.
— Since |f(z) — L] < dp, we conclude that |g(f(z)) —g(L)| < e.

11. Consider the function f defined by f(x) =sinz — 2cos*z. f has domain R and is
continuous everywhere.

F0)=-2<05  f(r/2)=1>05.
Therefore, by the Intermediate Value Theorem, 3z € (0,7/2) such that f(z) = 0.5.
12. This is similar to the argument in Video 2.12.

13. A e C. a, f h E. ¢ G. g
B. d D. b F. i



