
MAT 137Y - Practice problems
Unit 11 - Sequences

1. Let {an}∞n=0 be a sequence. Write down the formal definition of the following concepts. You
have already seen some of these in lecture.

(a) The sequence is convergent.

(b) The sequence is divergent.

(c) The sequence is divergent to ∞.

(d) The sequence is divergent to −∞.

(e) The sequence is increasing.

(f) The sequence is eventually increasing.

(g) The sequence is decreasing.

(h) The sequence is non-decreasing.

(i) The sequence isn’t decreasing.

(j) The sequence isn’t non-decreasing.

(k) The sequence isn’t eventually decreasing.

(l) The sequence is bounded above.

(m) The sequence is not bounded above.

(n) The sequence is bounded.

Hints:
Are all your variables introduced or properly quantified in Question 1a?
All of the statements are different. Figuring out exactly how they are different is part of your
job. Do not look at the solutions yet, or you will waste any possible learning opportunity.

2. Consider the sequence {an}∞n=1 defined by the recurrence relation:

a1 = 1

an+1 = 1− an for n ≥ 1

I am going to calculate its limit with a nifty trick. Let us call L the limit of the sequence. Then:

lim
n→∞

[an+1] = lim
n→∞

[1− an][
lim
n→∞

an+1

]
=

[
lim
n→∞

1
]
−

[
lim
n→∞

an

]
(1)

Since lim
n→∞

an+1 = lim
n→∞

an = L, Equation (1) becomes L = 1− L. Therefore L = 1/2.

The above argument is WRONG. Why?

3. Consider the sequence {an}∞n=1 defined by the recurrence relation:

a1 = 1

an+1 =
√

2 + an for n ≥ 1

(a) Compute a2, a3, and a4.

(b) Prove by induction that 0 < an < 2 for all n ≥ 1.

(c) Prove that the sequence is increasing.



(d) Find the limit of the sequence.

Hint: Do something similar to Question 2, but correct.

(e) Why was the argument in Question 2 incorrect, but the argument in Question 3d was
correct?

4. Prove that if a sequence is increasing and unbounded above, then it is divergent to ∞. Write a
formal proof directly from the definitions. (This is basically Theorem 3 in Video 11.4.)

5. Compute the following limits

(a) lim
n→∞

2n! + 3 lnn

5n! + 9 lnn
(b) lim

n→∞

n!

en + n100 (c) lim
n→∞

(2n+ 1)2 + 2n

(n+ 1)2 + 2n+3

6. In this problem we will only consider sequences that are POSITIVE AND DIVERGENT
TO ∞.

For each of the following statements, decide whether they are true or false. If true, prove it. If
false, give a counterexample.

(a) IF {xn}n, {yn}n, {zn}n are sequences such that xn << yn and yn << zn
THEN xn << zn.

(b) For every sequence {xn}n, there exists a sequence {yn}n such that yn << xn

(c) IF {xn}n and {yn}n are sequences such that xn << yn
THEN there exists a sequence {zn}n such that xn << zn << yn.

(d) For every sequence {xn}n, there exists a sequence {yn}n such that for every a > 0, (xn)a << yn

7. The following is a well-known result known as Stirling’s formula:

lim
n→∞

n!

nne−n
√

2πn
= 1

For this problem, you may assume we already know this identity to be true. Use it to calculate
the limits of the four sequences below.

(a) lim
n→∞

n!en

nn+1/2

(b) lim
n→∞

(2n)!

e−2n(2n)2n
√
n

(c) lim
n→∞

(2n)!
√
n

(n!)2 4n

(d) lim
n→∞

n
√
n!

n



Some answers and hints

1. (a) ∃L ∈ R, ∀ε > 0, ∃n0 ∈ N, ∀n ∈ N, n ≥ n0 =⇒ |an − L| < ε

(b) ∀L ∈ R, ∃ε > 0, ∀n0 ∈ N, ∃n ∈ N, (n ≥ n0 and |an − L| ≥ ε)

(c) ∀M ∈ R, ∃n0 ∈ N, ∀n ∈ N, n ≥ n0 =⇒ an > M

(d) ∀M ∈ R, ∃n0 ∈ N, ∀n ∈ N, n ≥ n0 =⇒ an < M

(e) ∀n ∈ N, an < an+1

Equivalently, ∀n,m ∈ N, n < m =⇒ an < am

(f) ∃n0 ∈ N, ∀n ∈ N, n ≥ n0 =⇒ an < an+1

(g) ∀n ∈ N, an > an+1

(h) ∀n ∈ N, an ≤ an+1

(i) ∃n ∈ N, an ≤ an+1

(j) ∃n ∈ N, an > an+1

(k) ∀n0 ∈ N, ∃n ∈ N, (n ≥ n0 and an ≤ an+1)

(l) ∃A ∈ R, ∀n ∈ N, an ≤ A

(m) ∀A ∈ R, ∃n ∈ N, an > A

(n) ∃A,B ∈ R, ∀n ∈ N, B ≤ an ≤ A

Equivalently, ∃C ∈ R, ∀n ∈ N, |an| ≤ C

2. In the “proof” we are assuming the limit exists. We have only proven that either the limit does
not exist (the sequence is divergent) or the limit is 1/2.

3. (c) There are various ways to do this. For example, we can prove by induction that for all
n ≥ 1, an+1 > an by noticing that

an+1 > an =⇒ . . . =⇒
√

2 + an+1 >
√

2 + an.

Alternatively, it can also be proven without induction by analyzing in which domain the
function f(x) =

√
2 + x− x is positive.

(d) The limit is 2.

If you imitate the proof in Question 2 without justifying that the sequence is convergent
first, then your proof is incorrect.

4. Assume {an}n is increasing and unbounded above. We want to prove that

∀M ∈ R, ∃n0 ∈ N such that ∀n ∈ N, n ≥ n0 =⇒ an > M.

• Fix M ∈ R.

• Since M is not an upper bound of {an}n, there exists n0 ∈ N such that an0 > M .

• Now verify that this same value of n0 works. Fix n ∈ N and assume n ≥ n0. Then...



5. (a) 2/5 (b) ∞ (c) 1/8

6. They are all TRUE.

(a) Make sure you prove this using the definition of “<<”.

(b) For your proof, fix {xn}n, then construct {yn}n depending on {xn}n, and verify that it
works. Remember that {yn}n must be positive and divergent to ∞. A common error is to
take something like yn = xn/2, which does not work.

(c) For your proof, fix {xn}n and {yn}n, then construct {zn}n depending on {xn}n and {yn}n,
and verify that it works. A common error is to take something like zn = (xn + yn)/2, which
does not work.

(d) For your proof, fix {xn}n, then construct {yn}n depending on {xn}n, and verify that it
works. You are not allowed to make {yn}n depend on a; the same {yn}n must work for all
values of a (why?)

7. (a)
√

2π (b) 2
√
π (c)

1√
π

(d)
1

e


