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Chapter 2 

LP- Spaces 

This and the next two chapters contain basic facts about functions , the 
objects of principal interest in the rest of the book. The main topic is the 
definition and properties of pth_power summable functions . 

This topic does not utilize any metric properties of the domain, e .g . , the 
Euclidean structure of JRn, and therefore can be stated in greater generality 
than we shall actually need later . This generality is sometimes useful in 
other contexts, however . On a first reading it may be simplest to replace 
the measure J.-L( dx) on the space 0 by Lebesgue measure dx on JRn and to 
regard 0 as a Lebesgue measurable subset of JRn. 

2.1 DEFINITION OF LP-SPACES 

Let 0 be a measure space with a (positive) measure J-l and let 1 < p < oo .  

We define LP (O, dJ.-L) to be the following class of measurable functions : 

£P(O, dJ.-L) == {! : f :  n ---+ c, f is J.-L-measurable and I J IP is J.-L-Summable} . 
( 1 )  

Usually we omit J-l in the notation and write instead £P (O) if there is no am­
biguity. Most of the time we have in mind that 0 is a Lebesgue measurable 
subset of ]Rn and J-l is Lebesgue measure. 

The reason we exclude p < 1 is that 3(c) below fails when p < 1 .  

On account of the inequality I a  + J3 IP < 2P-1 ( I a iP + IJ3 1P) we see that 
for arbitrary complex numbers a and b, af + b g is in £P (O) if f and g are . 
Thus LP (O) is a vector space . 

-
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42 LP-Spaces 

For each f E LP ( 0) we define the norm to be 

I I J I IP = (in l f (x) IPJ-L(dx)) l/p · (2) 

Sometimes we shall write this as I I  f I I  LP (O) if there is possibility of confusion. 
This norm has the following three crucial properties that make it truly a 
norm: 

(a) 1 1 ,\f l lp == 1 ,\ 1 1 1 / l lp for ,\ E C . 

(b) I I ! l i P == 0 if and only if f (x) == 0 for J-L-almost every point x . (3) 

(c) I I ! + 9 l lp < I I ! l iP + I IY I I p · 

(Technically, (2 )  only defines a semi-norm because of the 'almost every' 
caveat in 3 (b) , i .e . , 1 1 / l lp can be zero without f 0 .  Later on, when we 
define equivalence classes , (2) will be an honest norm on these classes . )  
Property (a) is obvious and (b) follows from the definition of the integral . 
Less trivial is property (c) which is called the triangle inequality. It will 
follow immediately from Theorem 2 .4 (Minkowski's inequality) . The triangle 
inequality is the same thing as convexity of the norm, i .e . , if 0 < ,\ < 1 ,  
then 

We can also define £00 (0, dJ-L) by 

L00 (0, dJ-L) == {f : f :  0 ---+ C , f is J-L-measurable and there exists 
a finite constant K such that I f (X) I < K for J-L-a.e . X E 0} . 

For f E L00 (0) we define the norm 

(4) 

l l f l loo == inf{K : l f (x) l < K for J-L-almost every x E 0} .  (5) 

Note that the norm depends on 1-l · This quantity is also called the essen­
tial supremum of 1 ! 1 and is denoted by ess supx lf (x) l . (Do not confuse 
this with ess supp-which has one more p . )  Unlike the usual supremum, 
ess sup ignores sets of J-L-measure zero. E .g . , if 0 == JR and f(x) == 1 if x is 
rational and f (x) == 0 otherwise, then (with respect to Lebesgue measure) 
ess supx lf (x) l == 0 ,  while supx lf (x) l == 1 .  

One can easily verify that the L00 norm has the same properties (a) , (b) 
and (c) as above. Note that property (b) would fail if ess sup is replaced by 
sup . Also note that l f (x) l < 1 1 / l loo for almost every x . 
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We leave it as an exercise to the reader to prove that when f E £00 (0) n 
Lq (O) for some q then f E £P (O) for all p > q and 

I I  ! I I  oo == lim I I  ! I I  p • p---+00 
(6) 

This equation is the reason for denoting the space defined in (4) by £00 (0) . 
An important concept , whose meaning will become clear later , is the 

dual index to p (for 1 < p < oo, of course) . This is often denoted by p' , 

but we shall often use q , and it is given by 
1 1 - + - == 1 .  
p p' 

Thus, 1 and oo are dual, while the dual of 2 is 2 .  

(7) 

Unfortunately, the norms we have defined do not serve to distinguish all 
different measurable functions , i .e . , if I I /  - g l iP == 0 we can only conclude 
that f(x) == g (x) J-L-almost everywhere . To deal with this nuisance we can 
redefine LP (O, dJ-L) so that its elements are not functions but equivalence 
classes of functions . That is to say, if we pick an f E £P (O) we can define ,...._, 
f to be the set of all those functions that differ from f only on a set of 
J-L-measure zero. If h is such a function we write f rv h;,...._,moreo�er if f rv h 
and h rv g ,  then j rv g.  Consequently, two such sets j and k are either 
identical or disjoint . We can now define 

,...._, 
l l f l lp :== l l f l lp 

,...._, 
for some f E j. The point is that this definition does not depend on the 
choice of f E f.  

Thus we have two vector spaces . The first consists of functions while the 
second consists of equivalence classes of functions . (It is left to the reader to 
understand how to make the set of equivalence classes into a vector space . )  
For the first , I I ! - 9 l lp == 0 does not imply f == g ,  but for the second space 
it does . Some authors distinguish these spaces by different symbols , but all 
agree that it is the second space that should be called £P (O) . Nevertheless 
most authors will eventually slip into the tempting trap of saying ' let f be a 
function in £P ( 0) ' which is technically nonsense in the context of the second 
definition. Let the reader be warned that we will generally commit this sin. 
Thus when we are talking about £P-functions and we write f == g we really 
have in mind that f and g are two functions that agree J-L-almost everywhere. 
If the context is changed to, say, continuous functions , then f == g means 
f (x ) == g (x) for all x .  In particular , we note that it makes no sense to ask 
for the value f(O) , say, if f is an £P-function. 
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e A convex set K c ffi.n is one for which .Ax+ ( 1 - ,\)y E K for all x, y E K 
and all 0 < ,\ < 1 .  A convex function, f, on a convex set K c ffi.n is a 
real-valued function satisfying 

f(,\x + ( 1 - .A)y) < .Af (x) + ( 1 - .A)f (y) (8) 

for all x, y E K and all 0 < ,\ < 1 .  If equality never holds in (8) when y =/= x 
and 0 < ,\ < 1 ,  then f is strictly convex. More generally, we say that f 
is strictly convex at a point x E K if f(x) < ,\f (y) + ( 1 - ,\)f(z) whenever 
x == ,\y + ( 1 - ,\) z for 0 < ,\ < 1 and y =/=- z . If the inequality (8) is reversed, f 
is said to be concave (alternatively, f is concave {:::::=> -f is convex) . It is 
easy to prove that if K is an open set , then a convex function is continuous . 

A support plane to a graph of a function f : K ---+ JR at a point x E K 
is a plane ( in ffi.n+ 1 ) that touches the graph at ( x ,  f ( x) ) and that nowhere 
lies above the graph. In general, a support plane might not exist at x, but 
if f is convex on K, its graph has at least one support plane at each point 
of the interior of K. Thus there exists a vector V E ffi.n (which depends on 
x) such that 

f(y) > f(x) + V · (y - x) (9) 
for all y E K. If the support plane at x is unique it is called a tangent 
plane. If f is convex, the existence of a tangent plane at x is equivalent to 
differentiability at x .  

If n == 1 and if f is convex, f need not be differentiable at x .  However, 
when x is in the interior of the interval K, f always has a right derivative, 
f� (x) , and a left derivative , J!_ (x) , at x ,  e .g . , 

f� (x) :== lim [f (x + c) - f(x) ] /c . c:�O 

See [Hardy-Littlewood-P6lya] and Exercise 18 .  

2 . 2  THEOREM (Jensen's inequality) 

Let J : JR ---+ JR be a convex function. Let f be a real-valued function on 
some set 0 that is measurable with respect to some �-algebra, and let J-l 
be a measure on � .  Since J is convex, it is continuous and therefore ( J o 

f) (x) : ==  J(f(x) ) is also a �-measurable function on 0. We assume that 
J.-L(O) == fn J.-L( dx) is finite . 

Suppose now that f E £1 (0) and let (f) be the average of j, i . e . ,  
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Then 
(i) [J o f] - , the negative part of [J o f] , is in £1 (0) , whence 

(ii) 

f0 (J o f) (x)J.-L(dx) is well defined although it might be +oo . 

( J 0 f) > J ( (f) ) . 
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( 1 )  

If J is strictly convex at (f) there is equality in ( 1 )  if and only if f is a 
constant function. 

PROOF. Since J is convex its graph has at least one support line at each 
point . Thus , there is a constant V E JR such that 

J(t) > J( (f) ) + V(t - (f) ) (2) 

for all t E JR. From this we conclude that 

[J(f)] - (x) < I J( (f) ) l  + I V I I (f) l + I V I I f (x) l , 

and hence, recalling that J.-L(O) < oo ,  ( i) is proved. 
If we now substitute f(x) for t in (2) and integrate over 0 we arrive at 

( 1 ) . 

Assume now that J is strictly convex at (f) . Then (2)  is a strict in­
equality either for all t > (f) or for all t < (f) . If f is not a constant , then 
f(x) - (f) takes on both positive and negative values on sets of positive 
measure . This implies the last assertion of the theorem. II 

e The importance of the next inequality can hardly be overrated. There 
are many proofs of it and the one we give is not necessarily the simplest ; we 
give it in order to show how the inequality is related to Jensen's inequality. 
Another proof is outlined in the exercises . 

2.3 THEOREM (Holder's inequality) 

Let p and q be dual indices, i . e . ,  1/p + 1/q == 1 with 1 < p < oo.  Let 
f E LP(O) and g E Lq (O) . Then the pointwise product, given by (fg) (x) == 
f(x)g (x) , is in £1 (0) and 

( 1 )  
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The first inequality in ( 1 )  is an equality if and only if 

( i) f (x)g (x) == ei0 1f (x) l lg (x) l for some real constant (} and for J-L­
almost every x .  

If f "# 0 the second inequality in ( 1 )  is an equality if and only if there is a 
constant ,\ E JR such that: 

( iia) If 1 < p < oo ,  j g (x) l == .A i f (x) I P-I for J-L-almost every x .  

( iib) If p == 1 ,  j g (x) l < ,\ for J-L-almost every x and j g (x) l == ,\ when 
f(x) =1- 0 .  

( iic) If p == oo ,  l f (x) l < ,\ for J-L-almost every x and l f (x) l == ,\ when 
g (x) =/= 0 .  

REMARKS. ( 1 )  The special case p == q == 2 is the Schwarz inequality 

(2) 

( 2) If /I , . . .  , fm are functions on 0 with fi E £P� (O) and �j I 1/p2 == 1 
then 

m m 1 II fi df1 < II I I  fi l l v. · n j=I j=I 
(3) 

This generalization is a simple consequence of ( 1 )  with f :== !I and g :== 
llj 2 fi · Then use induction on In j g jP . 

PROOF . The left inequality in ( 1 )  is a triviality, so we may as well suppose 
f > 0 and g > 0 (note that condition (i) is what is needed for equality here) . 
The cases p == oo and q == oo are trivial so we suppose that 1 < p, q < oo .  

Set A ==  {x : g (x) > 0} c 0 and let B == 0 rv A ==  {x : g (x) == 0} . Since 

In jP df1 = L jP df1 + L jP df1, 

since In gP dJ-L == I A gP dJ-L, and since In f g dJ-L == I A f g dJ-L, we see that it 
suffices-in order to prove ( 1 )-to assume that 0 == A. (Why is I f g dJ-L 
defined?) Introduce a new measure on 0 == A  by v (dx) == g (x)qJ-L(dx) . Also, 
set F(x) == f (x)g (x) -qfp (which makes sense since g (x) > 0 a.e . ) . Then, 
with respect to the measure v ,  we have that (F) == In fg dJ-L/ In gq dJ-L. On 
the other hand, with J(t) == ! t iP ,  In J o F  dv == In fP dJ-L. Our conclusion ( 1 )  
is then an immediate consequence of Jensen's inequality-as is the condition 
b e��� • 
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2.4 THEOREM (Minkowski's inequality) 

Suppose that n and r are any two spaces with sigma-finite measures J-l and 
l/ respectively. Let f be a nonnegative function on n X r which is J-l X 1/­
measurable . Let 1 < p < oo. Then 

[ (In f (x , y)PJ-L(dx)) 1/P v(dy) 

> (In ([ f(x , y )v (dy)) P J-L(dx)) 1/P 
( 1 )  

in the sense that the finiteness of the left side implies the finiteness of the 
right side . 

Equality and finiteness in ( 1 ) for 1 < p < oo imply the existence of a 
J-L-measurable function Q : n ---+ JR+ and a v-measurable function {3 : r ---+ JR+ 
such that 

f(x ,  y) == a(x ){3 (y) for J-l x v-almost every (x, y) . 

A special case of this is the triangle inequality . For j, g E £P(O, dJ.-L) 
(possibly complex functions) 

(2) 

If f ¢ 0 and if 1 < p < oo, there is equality in (2) if and only if g == Aj for 
some A > 0 .  

PROOF. First we note that the two functions 

In f(x , y)PJ-L(dx) and H(x) : = [ f(x ,  y) v(dy) 

are measurable functions . This follows from Theorem 1 . 12 (Fubini 's theo­
rem) and the assumption that f is J-l x v-measurable . We can assume that 
f > 0 on a set of positive J-l x v measure , for otherwise there is nothing to 
prove . We can also assume that the right side of ( 1 )  is finite; if not we can 
truncate f so that it is finite and then use a monotone convergence argument 
to remove the truncation. Sigma-finiteness is again used in this step. 
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The right side of ( 1 )  can be written as follows: 

In H(x)PJ-L(dx) = In (fr f(x , y)v (dy)) H(x)P-1J.-L(dx) 

= fr (in f(x , y)H(x)p-lJ-L(dx)) v(dy) .  

LP-Spaces 

The last equation follows by Fubini 's theorem. Using Theorem 2 .3  (Holder's 
inequality) on the right side we obtain 

In H(x)PJ-L(dx) < fr (in f(x , y)PJ-L(dx)) l/P 
E.=! 

x (in H(x)PJ-L(dx)) v v(dy) .  

Dividing both sides of ( 3) by 

( r ) (p-1) /P 
Jn H(x)PJ-L (dx) , 

(3) 

which is neither zero nor infinity (by our assumptions about f) , yields ( 1 ) . 
The equality sign in the use of Holder's inequality implies that for v­

almost every y there exists a number A (y) ( i .e . , independent of x) such that 

A(y)H(x) == f(x , y) for J-L-almost every x . (4) 

As mentioned above, H is J-L-measurable . To see that A is v-measurable we 
note that 

A(y) In H(x)PJ-L(dx) = In f(x , y)PJ-L(dx) ,  

and this yields the desired result since the right side is v-measurable (by 
Fubini 's theorem) . 

It remains to prove (2) . First , by observing that 

l f (x) + g (x) l < l f (x) l + j g (x) l , (5) 

the problem is reduced to proving (2) for nonnegative functions. Evidently, 
( 5) implies (2 )  when p == 1 or oo ,  so we can assume 1 < p < oo .  We set 
F(x , 1 )  == l f (x) l , F(x , 2) == j g (x) l and let v be the counting measure of the 
set r == { 1 ,  2} ,  namely v (  { 1 } )  == v (  {2})  == 1 .  Then the inequality (2) is seen 
to be a special case of ( 1 ) .  (Note the use of Fubini's theorem here. )  
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Equality in (2) entails the existence of constants ..\1 and ..\2 (independent 
of x) such that 

I f ( x) I == .A 1 ( I f ( x) I + I g ( x) I ) and I g ( x) I == .A 2 ( I f ( x) I + I g ( x) I ) · ( 6) 

Thus, l g (x) l == .A i f (x) l almost everywhere for some constant ..\ .  However, 
equality in (5) means that g (x) == ..\f (x) with ,\ real and nonnegative. • 

e If 1 < p < oo, then £P (fl) possesses another geometric structure that 
has many consequences, among them the characterization of the dual of 
LP(fl) (2 . 14) and, in connection with weak convergence , Mazur's theorem 
(2 . 13) .  This structure is called uniform convexity and will be described 
next . The version we give is optimal and is due to [Hanner] ; the proof is in 
[Ball-Carlen-Lieb] . It improves the triangle (or convexity) inequality 

2 .5  THEOREM (Hanner's inequality) 

Let f and g be functions in LP(fl) . If 1 < p < 2, we have 

I I ! + g i l� + I I ! - g i l� > ( l l f l l p + l l g l l p )P + l l l f l l p - l l g l l p l p , ( 1 )  

( I I ! + g l lp + I I ! - g l lp )P + I l l ! + g l l p - I I ! - g l lp lp < 2P ( I I f l l � + l l g l l � ) .  (2) 
If 2 < p < oo, the inequalities are reversed. 

REMARK. When l l f l l p == l l g l lp , (2) improves the triangle inequality 
I I ! + g l lp < I I J I I P + l l g l lp because , by convexity of t �----+ l t iP ,  the left side 
of (2) is not smaller than 2 1 1 / + g i l� · To be more precise , it is easy to prove 
(Exercise 4) that the left side of (2) is bounded below for 1 < p < 2 and for 
I I  f - g I I  p < I I  f + g I I p by 

2 I I  f + g I I� + P (p - 1 )  I I  f + g I I �-2 I I  f - g I I; . 

The geometric meaning of Theorem 2 . 5  is explored in Exercise 5 .  

PROOF. ( 1 )  and (2) are identities when p == 2 ( ( 1 )  is then called the 
parallelogram identity) and reduce to the triangle inequality if p == 1 .  
(2) is derived from ( 1 )  by the replacements f ---+ f + g and g ---+ f - g . Thus, 
we concentrate on proving ( 1 ) for p =/=- 2 .  We can obviously assume that 
R :== l l g l lp/ l l f l lp < 1 and that l l f l l p == 1 .  For 0 < r < 1 define 

a(r) == ( 1  + r)p-l + ( 1 - r )P-1 



50 LP-Spaces 

and 
{3(r) == [ ( 1  + r)P-l - ( 1 - r)P-1 ] r1-P , 

with {3(0) == 0 for p < 2 and {3(0) == oo for p > 2 .  We first claim that the 
function FR(r) == a(r) + {3(r)RP has its maximum at r == R (if p < 2) and 
its minimum at r == R ( if p > 2) . In both cases FR(R) == ( 1 +R)P + ( 1 - R)P . 
To prove this assertion we can use the calculus to compute 

dFR(r) /dr == a' (r) + {3' (r)RP 
== (p - 1 ) [( 1  + r)P-2 - ( 1 - r)P-2] ( 1 - (R/r)P) ,  

which shows that the derivative of FR(r) vanishes only at r == R and that the 
sign of the derivative for r =/=- R is such that the point r == R is a maximum 
or minimum as stated above . Furthermore, for all 0 < r < 1 we have that 
{3(r) < a(r) ( if p < 2) and {3(r) > a(r) ( if p > 2) and thus, when R > 1 ,  

a(r) + {3(r)RP < a(r)RP + {3(r) ( if p < 2) 

and 
a(r) + {3(r)RP > a(r)RP + {3(r) ( if p > 2) . 

Thus, in all cases we have for all 0 < r < 1 and all nonnegative numbers A 
and B 

a(r) IA IP + {3(r) IB IP < l A + B IP + lA - B IP , p < 2 ,  (3) 

and the reverse if p > 2 .  It is important to note that equality holds if 
r == B/A < 1 . 

In fact , (3) and its reverse for p > 2 hold for complex A and B (that 
is why we wrote (3) with IA I , IB I , etc . ) . To see this note that it suffices to 
prove it when A == a and B == bei0 with a, b > 0 .  It then suffices to show 
that ( a2 + b2 + 2ab cos 0)�12 + ( a2 + b2 - 2ab cos ())P/2 has its minimum when 
() == 0 ( if p < 2) or its maximum when () == 0 ( if p > 2) . But this follows 
from the fact that the function x �----+ xr is concave ( if 0 < r < 1 )  or convex 
( if r > 1 ) . 

To prove ( 1 )  it suffices, then, to prove that when 1 < p < 2 

J { l f + g iP + I f - g iP } dJ.L > a(r) j i J IP dJ.L + f3(r) f i g iP dJ.L (4) 

for every 0 < r < 1 ,  and the reverse inequality when p > 2. But to prove 
(4) it suffices to prove it pointwise, i .e . , for complex numbers f and g . That 
is , we have to prove 

I f + g iP + I f - g iP > a(r) l f iP + {3(r) l g iP for p < 2 

(and the reverse for p > 2) . But this follows from (3) . • 
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e Differentiability of I I ! +tg l l� == J I f +tg iP with respect to t E JR will prove 
to be useful . Note that this function of t is convex and hence always has a 
left and right derivative. In case p == 1 it may not be truly differentiable, 
however, but it is so for p > 1 ,  as we show next . 

2 .6 THEOREM (Differentiability of norms) 

Suppose f and g are functions in LP(fl) with 1 < p < oo .  The function 
defined on JR by 

N(t) = In l f (x) + tg (x) IPJ.L (dx) 

is differentiable and its derivative at t == 0 is given by 

d
d N == 

p
2 { i f (x) IP-2 { f (x)g (x) + f (x)g(x) }J.L(dx) . ( 1 )  t t=o ln 

REMARKS. ( 1 ) Note that I J IP-2 f is well defined for 1 < p, even when 
f == 0, in which case it equals 0 .  This convention will occur frequently in 
the sequel. Note also that I J IP-2 f and I J IP-2 f are functions in LP' (0) . 

(2) This notion of derivative of the norm is called the Gateaux- or 
directional derivative. 

PROOF . It is an elementary fact from calculus that for complex numbers 
f and g we have 

i .e . , I f + tg iP is differentiable . Our problem, then, is to interchange differen­
tiation and integration. To do so we use the inequality (for l t l < 1 )  

which follows from the convexity of x ---+ xP (e .g . , I f +  tg iP < ( 1 - t) I J IP + 
t l f + g iP) . Since I J IP ,  I f + g iP and I f - g iP are fixed, summable functions, 
we can do the necessary interchange thanks to the dominated convergence 
theorem. • 
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2 .  7 THEOREM (Completeness of LP-spaces) 

Let 1 < p < oo and let fi , for i == 1 ,  2 , 3, . . .  , be a Cauchy sequence in 
LP (O) , i . e . ,  l l fi - fi i i P ---+ 0 as i , j ---+ oo .  ( This means that for each c > 0 
there is an N such that I I  fi - fi l i P < c when i > N and j > N. ) Then there 
exists a unique function f E £P(O) such that l l fi - f l i P ---+ 0 as i ---+ oo .  We 
denote this latter fact by 

fi ---+ f as 'l ---+ oo '  

and we say that fi converges strongly to f in £P (O) . 
Moreover, there exists a subsequence fi1 ,  fi2 , • • • (with i1 < i2 < · · · , of 

course) and a nonnegative function F in LP (O) such that 

( i) Domination : l fik (x) l < F(x) for all k and J-L-almost every x .  ( 1 )  
( ii) Pointwise convergence: lim fik (x) == f(x) for J-L-almost every x. (2) k--+oo 

REMARK. 'Convergence' and 'strong convergence ' are used interchange­
ably. The phrase norm convergence is also used. 

PROOF .  The first , and most important remark, concerns a strategy that 
is frequently very useful . Namely, it suffices to show the strong convergence 
for some subsequence . To prove this sufficiency, let fik be a subsequence 
that converges strongly to f in LP(O) as k ---+ oo .  Since , by the triangle 
inequality, 

we see that for any c > 0 we can make the last term on the right side less 
than c/2 by choosing k large . The first term on the right can be made smaller 
than c /2 by choosing i and k large enough, since fi is a Cauchy sequence. 
Thus, I I  fi - f l iP < c for i large enough and we can conclude convergence 
for the whole sequence, i .e . , fi ---+ f .  This also proves, incidentally, that the 
limit-if it exists-is unique. 

To obtain such a convergent subsequence pick a number i 1 such that 
l l fi 1 - fn i iP < 1/2 for all n > i 1 . That this is possible is precisely the 
definition of a Cauchy sequence . Now choose i2 such that l l fi2 - fn i iP < 1/4 
for all n > i2 and so on. Thus we have obtained a subsequence of the 
integers, ik , with the property that I I  fik - fik+1 l iP < 2-

k for k == 1 ,  2 ,  . . . .  
Consider the monotone sequence of positive functions 

l 
Fz (x) : = l fi1 (x) l + L l fik (x) - fik+l (x) l . (3) 

k= l 
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By the triangle inequality 
l 

I ! Fd lv < l l fi 1 1 1 v + L 2-k < l l fi1 1 1v + 1 .  
k=l 

Thus, by the monotone convergence theorem, Fz converges pointwise J.-L­
a.e . to a positive function F which is in LP(O) and hence is finite almost 
everywhere . The sequence 

thus converges absolutely for almost every x ,  and hence it also converges for 
the same x 's to some number f (x) . Since l fik (x) l < F(x) and F E  LP(O) , 
we know by dominated convergence that f is in £P (f2) . Again by dominated 
convergence l l fik _ f l iP ---+ 0 as k ---+ oo since l fik (x) - f (x) l < F(x) + l f (x) l E 
LP(O) . Thus , the subsequence Jik converges strongly in LP(O) to f .  • 

e An example of the use of uniform convexity, Theorem 2 .5 ,  is provided 
by the following projection lemma, which will be useful later. 

2.8 LEMMA (Projection on convex sets)  

Let 1 < p < oo and let K be a convex set in LP (f2) ( i. e . , j, g E K ==> 
tj + ( 1  - t)g E K for all 0 < t < 1)  which is also a norm closed set 
( i . e. , if {gi } is a Cauchy sequence in K, then its limit, g ,  is also in K) . Let 
f E LP(O) be any function that is not in K and define the distance as 

D == dist (f, K) == inf I I  f - g l ip · 
gEK 

Then there is a function h E K such that D == I I ! - h l lp · 
Every function g E K satisfies 

( 1 )  

(2) 

PROOF. We shall prove this for p < 2 using the uniform convexity result 
2. 5 (2) and shall assume f == 0 .  We leave the rest to the reader. Let hi ,  j == 
1 ,  2 , . . .  be a minimizing sequence in K, i .e . , I I  hi l iP ---+ D. We shall show that 
this is a Cauchy sequence. First note that l l hi + hk i iP ---+ 2D as j, k ---+ oo 
(because I I  hi +hk l iP < I I  hi l iP+ I I  hk l ip , which converges to 2D, but I I  hi +hk l iP > 
2D since ! (hi + hk ) E K) . From 2 .5 (2) we have that 

( I I  hi + hk l iP + I I  hi - hk l iP )P + I I I  hi + hk l iP - I I  hi - hk l i P l
p 

< 2P { I I  hi I I � + I I  hk I I � } . 
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The right side converges as j , k -t oo  to 2P+1DP . Suppose that l l hi - hk i iP 
does not tend to zero, but instead (for infinitely many j 's and k's) stays 
bounded below by some number b > 0 .  Then we would have 

I 2D + b iP + I 2D - biP < 2p+l DP , 

which implies that b = 0 (by the strict convexity of x ---+ j 2D + x iP ,  which 
implies that I 2D+x iP+ I 2D-x iP > 2 j 2D IP unless x = 0) . Thus, our sequence 
is Cauchy and, since K is closed, it has a limit h E K. 

To verify ( 2) we fix g E K and set gt = ( 1  - t)h  + tg E K for 0 < t < 1 .  
Then (with f = 0 as before) N (t) := I I ! - gt l l� > DP while N(O) = DP. 
Since N(t) is differentiable (Theorem 2 .6) we have that N' (O) > 0,  and this 
is exactly (2) (using 2 . 6 ( 1 ) ) .  • 

2 .9  DEFINITION (Continuous linear functionals and 
weak convergence) 

The notion of strong convergence just mentioned in Theorem 2 .  7 (complete­
ness of £P-spaces) is not the only useful notion of convergence in £P (O) . The 
second notion, weak convergence, requires continuous linear functionals­
which we now define. (Incidentally, what is said here applies to any normed 
vector space-not just LP (O) . )  Weak convergence is often more useful than 
strong convergence for the following reason. We know that a closed, bounded 
set , A, in JRn is compact , i .e . , every sequence x1 , x2 , • • • in A has a subse­
quence with a limit in A. The analogous compactness assertion in £P (JRn) , 
or even LP (O) for 0 a compact set in JRn , is false. Below, we show how to 
construct a sequence of functions , bounded in LP (JRn) for every p, but for 
which there is no convergent subsequence in any LP (JRn) .  

If weak convergence is substituted for strong convergence, the situa­
tion improves . The main theorem here, toward which we are headed, is the 
Banach-Alaoglu Theorem 2 . 18 which shows that the bounded sets are com­
pact, with this notion of weak convergence, when 1 < p < oo .  

A map, L, from £P (O) to the complex numbers is a linear functional 
if 

( 1 )  
for all /1 , /2 E LP (O) and a ,  b E  C .  It is a continuous linear functional 
if, for every strongly convergent sequence, fi , 

(2) 

It is a bounded linear functional if 

I L (f) l < K l l f l lp (3) 
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for some finite number K. We leave it as a very easy exercise for the reader 
to prove that 

bounded � continuous (4) 

for linear maps . 
The set of continuous linear functionals (continuity is crucial) on LP (O) 

is called the dual of LP (O) and is denoted by LP (O) * .  It is also a vector 
space over the complex numbers (since sums and scalar multiples of elements 
of LP (O) * are in LP (O) * ) .  This new space has a norm defined by 

I l L I I  = sup{ jL(f) l : l l f i i P < 1 } . (5 )  

The reader is asked to check that this definition (5)  has the three crucial 
properties of a norm given in 2. 1 (a,b ,c) : I I  .AL I I  = I .A I I l L I I , I l L I I  = 0 � L = 0, 
and the triangle inequality. 

It is important to know all the elements of the dual of LP (O) (or any other 
vector space) . The reason is that an element f E LP (O) can be uniquely 
identified (as we shall see in Theorem 2. 10 (linear functionals separate) ) if 
we know how all the elements of the dual act on f ,  i .e . , if we know L(f) for 
all L E LP (O) * .  

Weak convergence. 

If f, f1 , f2 , f3 , . . .  is a sequence of functions in LP (O) , we say that fi con­
verges weakly to f (and write fi � f) if 

.lim L(fi ) = L(f) (6) 't�OO 
for every L E LP (O)* . 

An obvious but important remark is that strong convergence implies 
weak convergence, i .e . , if l l fi - f l iP ---+ 0 as i ---+ oo ,  then limi�oo L(f"' ) = L(f) 
for all continuous linear functionals L. In particular , strong limits and weak 
limits have to agree, if they both exist (cf. Theorem 2 . 10) . 

Two questions that immediately present themselves are (a) what is 
LP (O)*  and (b) how is it possible for fi to converge weakly, but not strongly, 
to f? For the former, Holder 's inequality (Theorem 2 . 3) immediately implies 
that LP' (0) is a subset of V(O) * when ;, + � = 1 .  A function g E LP' (0) 
acts on arbitrary functions f E £P (O) by 

L9 (f) = In g(x)f (x)J-L(dx) . (7) 

It is easy to check that L9 is linear and continuous . A deeper question is 
whether (7) gives us all of LP (O) * .  The answer will turn out to be 'yes ' for 
1 < p < oo, and 'no' for p = oo .  
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If we accept this conclusion for the moment we can answer question (b) 
above in the following heuristic way when 0 = JRn and 1 < p < oo. There 
are three basic mechanisms by which fk � f but fk f+ f and we illustrate 
each for n = 1 .  

( i) fk 'oscillates to death' : An example is fk (x) = sin kx for 0 < x < 1 
and zero otherwise. 

( ii) fk 'goes up the spout ' : An example is fk (x) = k11Pg (kx) , where g is 
any fixed function in LP (JR 1 ) .  This sequence becomes very large near 
X =  0 .  

(iii) fk 'wanders off to infinity' : An example is fk (x) = g (x + k) for some 
fixed function g in LP (JR 1 ) .  

In each case fk � 0 weakly but fk does not converge strongly to zero 
(or to anything else) . We leave it to the reader to prove this assertion; some 
of the theorems proved later in this section will be helpful . 

We begin our study of weak convergence by showing that there are 
enough elements of LP (O) *  to identify all elements of LP (O) . Much of what 
we prove here is normally proved with the Hahn-Banach theorem. We 
do not use it for several reasons . One is that the interested reader can eas­
ily find it in many texts. Another reason is that it is not necessary in the 
case of £P (O) spaces and we prefer a direct 'hands on' approach to an ab­
stract approach-wherever the abstract approach does not add significant 
enlightenment . 

2 . 10 THEOREM (Linear functionals separate) 

Suppose that f E £P (O) satisfies 

L(f) = 0 for all L E £P (O) * . ( 1 )  

( In the case p = oo we also assume that our measure space is sigma-finite, 
but this restriction can be lifted by invoking transfinite induction. ) Then 

f = 0 .  

Consequently, if fi � k and Ji � h weakly in LP(O) ,  then k = h .  

PROOF .  If 1 < p < oo define 

g (x) = l f (x) IP-2f(x) 

when f(x) =/=- 0, and set g(x) = 0 otherwise. The fact that f E LP (O) 
immediately implies that g E v' (0) .  We also have that J gf = I I I I I� · 
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But, as we said in 2 .9 (7) , the functional h ---+ J gh is a continuous linear 
functional . Hence, J gf = l l f l l p = 0 by our hypothesis ( 1 ) , which implies 
f = 0. 

If p = 1 we take 
g (x) = f(x) / l f (x) l 

if f(x) =/=- 0, and g(x) = 0 otherwise. Then g E L00 (0) and the above 
argument applies . If p = oo set A = {x : l f (x) l > 0} . If f "# 0, then 
J-L(A) > 0 . Take any measurable subset B c A such that 0 < J-L(B) < oo; 
such a set exists by sigma-finiteness . Set g(x) = f(x) / l f (x) l for x E B 
and zero otherwise. Clearly, g E L1 (0) and the previous argument can be 
applied. • 

2.11 THEOREM (Lower sernicontinuity of norms) 

For 1 < p < oo the LP-norm is weakly lower semicontinuous, z . e . ,  if 
fi � f weakly in LP(O) , then 

( 1 ) 

If p = oo we make the extra technical assumption that the measure J-L is 
sigma finite . 

Moreover, if 1 < p < oo and if limj�oo l l fi l iP = I I  f l iP , then fi ---+ f 
strongly as j ---+ oo .  

REMARK. The second part of this theorem is very useful in practice be­
cause it often provides a way to identify strongly convergent sequences . For 
the connection with semicontinuity as in Sect . 1 . 5 ,  cf. Exercise 1 . 2 .  Com­
pare, also, Remark (2) after Theorem 1 . 9 .  

PROOF. For 1 < p < oo consider the functional 

L(h) = j gh with g(x) = l f (x) IP-2 f (x) 

as in the proof of the separation theorem, Theorem 2 . 10 .  Since L(f) = I I  f I I� , 
we have, by Holder's inequality with 1/p + 1/q = 1 ,  

which, since l l 9 l l q = l l f l l �-1 , gives ( 1 ) .  
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For p == oo assume 1 1 / l loo  == : a > 0 and consider the set 

Ac: == {X E n : I f (X ) I > a - c} . 

LP-Spaces 

Since the space (0 ,  J.-L) is sigma-finite, there is a sequence of sets Bk of finite 
measure such that Ac: n Bk increases to Ac: . Set 9k ,c: == f(x) / l f (x) l if x E 
Ac: n Bk and zero otherwise. Now by Holder 's inequality 

where the last equation follows from the weak convergence of jJ to f. But 

and hence lim infj�oo 1 1 /j l l oo > 1 1 / l l oo - c for all c > 0 .  

Thus far we have proved ( 1 ) . To prove the second assertion for 1 < p < 
oo we first note that lim I I JJ I IP == 1 1 / l lp implies that lim l l fj + f l iP == 2 1 1 / l l p 
(clearly jJ + f � 2/ and, by ( 1 ) ,  lim inf l l fj + f l iP > 2 1 1 / l l p , but l l fj + f l iP < 
I I  jJ l iP + I I  f l iP by the triangle inequality) . For p < 2 we use the uniform 
convexity 2 .5 (2) (we leave p > 2 to the reader) with g == jJ . Taking limits 
we have (with Aj == I I ! + fj i iP and Bj == I I ! - fj l lp ) 

lim sup { (AJ + Bj )
P + IAJ - BJ IP } < 2P+1 I I f l l� · j�oo 

Since x �----+ l A + x iP is strictly convex for 1 < p < oo ,  and since Aj ---+ 2 1 1 / I IP , 
Bj must tend to zero. • 

e The next theorem shows that weakly convergent sequences are , at least , 
norm bounded. 

2 . 1 2  THEOREM (Uniform boundedness principle) 

Let f1 , f2 , • • .  be a sequence in LP (O) with the following property: For each 
functional L E £P(O) *  the sequence of numbers L(f1 ) ,  L(/2 ) ,  • • •  is bounded. 
Then the norms l l fj i i P are bounded, i . e . ,  I I JJ I IP < C for some finite C > 0 .  

PROOF .  We suppose the theorem is false and will derive a contradiction. 
We do this for 1 < p < oo ,  and leave the easy modifications for p == 1 and 
p == oo to the reader. 
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First , for the following reason, we can assume that I I Ji l iP 4J . By 
choosing a subsequence (which we continue to denote by j = 1 ,  2 , 3, . . .  ) we 
can certainly arrange that I I Ji i iP > 4i . Then we replace the sequence Ji by 
the sequence 

pi = 4jfj/ l l fj l l p , 
which satisfies the hypothesis of the theorem since 

which is certainly bounded. Clearly I I Fi l i P = 4i and our next step is to 
derive a contradiction from this fact by constructing an L for which the 
sequence L(Fi ) is not bounded. 

Set Tj (x) = 1Fi (x) IP-2Fi (x) / 1 1Fi l l�-l and define complex numbers an of modulus 1 as follows: pick a1 = 1 and choose an recursively by requiring 
an J TnFn to have the same argument as 

Thus, 

n 
L 3-jO"j J TjFn > 3-n J TnFn = 3-n i iFn l lp = (4/3)n . 
J=l 

Now define the linear functional L by setting 
00 

L(h) = L 3-jO"j J Tjh, 
j=l 

which is obviously continuous by Holder 's inequality and the fact that 
I ITj l i p' = 1 .  

We can bound IL(Fk) l from below as follows . 

k 00 
I L(Fk ) l > L 3-jO"j J TjFk - L 3-3 4k 

j=l j=k+l 

which tends to oo as k ---+ oo. 
L(Fk ) .  

This contradicts the boundedness of 
• 
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e The next theorem, [Mazur] , shows how to build strongly convergent 
sequences out of weakly convergent ones . It can be very useful for proving 
existence of minimizers for variational problems. In fact , we shall employ 
it in the capacitor problem in Chapter 1 1 .  The theorem holds in greater 
generality than the version we give here, e .g . , it also holds for £1 (0) and 
£00 (0) . In fact it holds for any normed space (see [Rudin 1991] , Theorem 
3. 13) .  We prove it for 1 < p < oo by using Lemma 2 .8 (projection on convex 
sets) . For full generality it is necessary to use the Hahn-Banach theorem, 
which involves the axiom of choice and which the reader can find in many 
texts . The proof here is somewhat more constructive and intuitive . 

2 . 13 THEOREM (Strongly convergent convex 
combinations) 

Let 1 < p < oo and let f1 , f2 , .  . . be a sequence in LP (O) that converges 
weakly to F E LP(O) . Then we can form a sequence F1 , F2 , . . .  in LP(O) 
that converges strongly to F, and such that each Fi is a convex combination 
of the functions f1 , . . .  , fi . I. e . ,  for each j there are nonnegative numbers 
c{ ,  . . .  , cj such that �{=1 <{ = 1 and such that the functions 

j 
pi == L CL!k 

k=1 
converge strongly to F .  

PROOF. First , consider the set K c £P (O) which consists of all the fi 's 
together with all finite convex combinations of them, i .e. , all functions of 
the form �� 1 dkf

k with m arbitrary and with �� 1 dk = 1 where dk > 0. 
,...._, ,...._, ,...._, 

This set K is clearly convex, i .e .  f, g E K ==> Af + ( 1  - A)g E K for all 
0 < A <  1 .  - - ,...._, 

�ext , let K denote the union of K and all its limit points, i .e. we add 
to K all functions in £P (O) that are limits of Cauchy sequences of elements 

,...._, 
of K. We claim that (a) K is convex and (b) K is closed. To prove (a) we 
note that if fi ---+ f and gi ---+ g (with fi , gi E k) then Afi + ( 1 - A)gi E K 
and converges to Af + ( 1 - A)g .  To prove (b) , the reader can use the triangle 
inequality to prove that 'Cauchy sequences of Cauchy sequences are Cauchy 
sequences ' . (Our construction here imitates the construction of the reals 
from the rationals . )  

Our theorem amounts to the assertion that the weak limit F is in K. 
Suppose otherwise. By Lemma 2 .8 (projection on convex sets) there is a 
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function h E K such that D = dist (F, K) = I IF - h l lp > 0 . In 2 . 8 (2) we 
considered the function 

f(x) = [F(x) - h(x)] IF(x) - h(x) IP-2 

which is in LP' (0) and showed that the continuous linear function L(g) := 
J £ g satisfies 

Re L(g) - Re L(h) < 0 ( 1 )  

for all g E K. However , L(F - h) = I I F - h l l� , and hence 

Re L(F) - Re L(h) > 0 (2) 

because F - h is not the zero function. (2) contradicts ( 1 ) because L(fi ) ---+ 
L(F) by assumption, and the fi 's are in K. • 

e At last we come to the identification of £P (O) * ' the dual of £P (O) , for 
1 < p < oo. This is F .  Riesz's representation theorem. The dual of 
£00 (0) is not given because it is a huge, less useful space that requires the 
axiom of choice for its construction. 

2 . 14 THEOREM (The dual of LP (f!) ) 

When 1 < p < oo the dual of LP (O) is Lq (O) , with 1/p + 1/q = 1 ,  in the 
sense that every L E LP (O) * has the form 

L(g) = In v (x)g (x)J.L(dx) ( 1 )  

for some unique v E Lq (O) . (In case p = 1 we make the additional technical 
assumption that (0, JL) is sigma-finite . )  In all cases, even p = oo, L given 
by ( 1) is in LP (O) * and its norm ( defined in 2 .9 (5) ) is 

(2) 

PROOF. 1 1  < p < oo :  I With L E £P (O)* given, define the set K = {g E 
LP (O) : L(g) = 0} c LP (O) . Clearly K is convex and K is closed (here is 
where the continuity of L enters) . Assume L =/=- 0, whence there is f E £P (O) 
such that L(f) =/=- 0, i .e . , f tJ_ K. By Lemma 2 .8 (projection on convex sets) 



62 LP-Spaces 

there is an h E K such that 

Re j uk < 0 (3) 

for all k E K. Here u(x) == l f (x) - h(x) IP-2 [f (x) - h(x)] , which is evidently 
in Lq (O) . However , K is a linear space and hence -k E K and ik E K 
whenever k E K. The first fact tells us that Re J uk == 0 and the second 
fact implies J uk == 0 for all k E K. 

Now let 9 be an arbitrary element of £P (O) and write 9 == 91 + 92 with 
L(9) 91 = L (f _ h) (f - h) and 92 = 9 - 91 · 

(Note that L(f - h) == L(f) =!=- 0 . )  One easily checks that £(92 ) == 0, i .e. , 
92 E K, whence 

J u9 = J u91 + J u92 = J u91 = L(9)A, 

where A == J u(f - h)/ L(f - h) =/=- 0, since J u(f - h) == J If - h jP . Thus, 
the v in ( 1 )  equals u /A. The uniqueness of v follows from the fact that if 
J (v - w)9 == 0 for all 9 E £P (O) , and with w E  Lq (O) , then we could obtain 
a contradiction by choosing 9 == (v - w) l v - w l q-2 E £P (O) . The easy proof 
of ( 2) is left to the reader . 

IP == 1 : I Let us assume for the moment that 0 has finite measure. In 
this case, Holder 's inequality implies that a continuous linear functional L 
on £1 (0) has a restriction to LP (O) which is again continuous since 

(4) 
for all p > 1 .  By the previous proof for p > 1 ,  we have the existence 
of a unique Vp E Lq (O) such that L(f) == J vp (x)f(x)JL(dx) for all f E 
LP (O) . Moreover , since Lr (O) c LP (O) for r > p (by Holder 's inequality) the 
uniqueness of Vp for each p implies that Vp is , in fact , independent of p, i .e . , 
this function (which we now call v) is in every Lr (O)-space for 1 < r < oo. 

If we now pick some dual pair q and p with p > 1 and choose f == lv l q-2v 
in ( 4) we obtain 

J l v l q = L(f) < C(J.L(0) ) 1fq (! l v l (q- 1)p) 1/p = C(J.L(0) ) 1/q l l v l lr\ 

and hence l l v l l q < C(JL(0) ) 1fq for all q < oo. We claim that v E £00 (0) ; 
in fact l l v l l oo < C. Suppose that JL( {x E 0 : jv (x) l > C + c}) == M > 0 . 
Then l l v l l q > (C + c)M1fq ,  which exceeds CJL(0) 1fq if q is big enough. 
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Thus v E L00 (0) and L(f) == I v (x)f (x) dJ-L for all f E £P (O) for any 
p > 1 .  If f E £1 (0) is given, then I l v (x) l l f (x) l dJ-L < oo. Replacing 
f (x) by fk (x) == f (x) whenever lf (x) l < k and by zero otherwise, we note 
that lfk (x) l < l f (x) l and fk (x) � f (x) pointwise as k � oo; hence, by 
dominated convergence, fk � f in £1 (0) and vfk � vf in £1 (0) . Thus 

The previous conclusion can be extended to the case that J-L(O) == oo but 
0 is sigma-finite. Then 

00 

with J-L(Oj ) finite and with Oj n Ok empty whenever j =/=- k. Any £1 (0) 
function f can be written as 

00 
f(x) = L fi (x) 

j=1 

where f1 == Xi f and Xi is the characteristic function of Oj . fi � L(fi ) 
is then an element of L1 (0j ) * ,  and hence there is a function Vj E L00 (0j ) 
such that L(/j ) == In vifi == In vif · The important point is that each Vj 

J J 

is bounded in L00 (0j ) by the same C == I l L I I . Moreover , the function v ,  
defined on all of 0 by v (x) == Vj (x) for X E Oj , is clearly measurable and 
bounded by C. Thus, we have L(f) == In vf by the countable additivity of 
the measure 1-l· Uniqueness is left to the reader . • 

e Our next goal is the Banach-Alaoglu Theorem, 2 . 18 , and, although 
it can be presented in a much more general setting, we restrict ourselves 
to the particular case in which 0 is a subset of JRn and J-L( dx) is Lebesgue 
measure. To reach it we need the separability of LP (O) for 1 < p < oo and 
to achieve that we need the density of continuous functions in £P (O) . The 
next theorem establishes this fact , and it is one of the most fundamental ; 
its importance cannot be overstressed. It permits us to approximate LP (O) , 
functions by ego-functions (Lemma 2 . 19) . Why then, the reader might 
ask, did we introduce the £P-spaces? Why not restrict ourselves to the 
C00-functions from the outset? The answer is that the set of continuous 
functions is not complete in LP ( 0) ' i .e . ' the analogue of Theorem 2 .  7 does 
not hold for them because limits of continuous functions are not necessarily 
continuous. As preparation we need 2 . 15-2 . 17. 
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2 . 15 CONVOLUTION 

When f and g are two (complex-valued) functions on JRn we define their 
convolution to be the function f * g given by 

f * g (x) = r f(x - y)g (y) dy . }JRn ( 1 )  

Note that f * g == g * f by changing variables .  One has to be careful 
to make sure that ( 1 )  makes sense. One way is to require f E £P(JRn ) 
and g E v' (JRn ) , in which case the integral in ( 1 ) is well defined for all 
x by Holder's inequality. More is true, as Lemma 2 . 20 and Theorem 4 .2 
(Young's inequality) show. In case f and g are in L1 (JRn ) , ( 1 ) makes sense 
for almost every x E JRn and defines a measurable function that is in L1 (JRn ) 
(see Exercise 7) . Indeed, Theorem 4 .2  shows that when f E LP (JRn) and 
g E Lq (JRn) with 1 I p+ 1 I q > 1 ,  then ( 1 )  is finite a.e . and defines a measurable 
function that is in Lr (JRn) with 1 + 1 I r == 1 I p + 1 I q.  In the following theorem 
we prove this for q == 1 .  

2 . 16 THEOREM (Approximation by C00-functions) 

Let j be in L1 (JRn ) with fJRn j == 1 .  For c > 0, define Jc: (x) :==  E-nj (xlc) , so 
that fJRn Jc: == 1 and I IJc: I I 1 == l lj I I  1 · Let f E LP (JRn) for some 1 < p < oo and 
define the convolution 

Then 

fc: :==  Jc: * f. 

fc: E LP (JRn ) and I I  fc: l iP < l lj I I  1 I I  f l i p · 
fc: ---+ f strongly in £P (JRn ) as c ---+ 0 .  

If j E Cgo (JRn ) , then fc: E C00 (JRn ) and (see Remark (3) below) 

Da fc: == ( Da Jc: ) * f. 

( 1 )  
(2) 

(3) 

REMARKS.  ( 1 ) The above theorem is stated for JRn but it applies equally -
well to any measurable set 0 c JRn . Given f E LP (O) we can define f E - -
LP (JRn ) by f (x) == f(x) for X E n and f(x) == 0 for X tJ_ n. Then define 

-
fc: (x) == (jc: * f) (x) for X E 0. 

Equation ( 1 )  holds in £P (O) since 
-

I I  fc: I I  LP (0) < I I  fc: I I  LP (JRn) < I IJ I I  1 I I  f I I  LP (JRn) == I IJ I I  1 I I  f I I  LP (0) • 
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Likewise , (2) is correct in LP(O) . If 0 is open (so that coo (0) can be defined) , 
then the third statement o�viously holds as well with coo (JRn) replaced by 
coo ( n) and f replaced by f. 

(2 ) We shall see in Lemma 2 . 19 that Theorem 2 . 16 can be extended in 
another way: The C00(JRn) approximants, Jc: * j, can be modified so that 
they are in Cgo (JRn) without spoiling conclusions ( 1 ) and (2 ) . The proof of 
Lemma 2 . 19 is an easy exercise , but the lemma is stated separately because 
of its importance. 

(3) In Chapter 6 we shall define the distributional derivative of an LP 
function, j , denoted by Da f .  It is then true that (D0jc: ) * f = Jc: * Da f .  

(4) In Theorem 1 . 19 (approximation by coo functions) we proved that 
any f E L1 (JRn) can be approximated (in the L1 (JRn) norm) by C00(JRn) 
functions. One of our purposes here is to be more explicit by showing that 
C00(JRn) can be generated by convolution. This is not our only concern, 
however; statement (2 ) will also be important later . Theorem 1 . 18 (approx­
imation by really simple functions) will play a key role in our proof. 

PROOF. Statement ( 1 ) is Young's inequality, which will be proved in 
Sect 4. 2 .  Only the "simple version" proved in part (A) of the proof, is 
needed, i .e . , 4 .2 (4) , but with Cp' ,q,r;n replaced by 1 .  This version is only a 
simple exercise using Holder 's inequality. We shall use it freely in our proof 
here and ask the readers 's indulgence for this forward leap to Chapter 4 . 

To prove (2) we have to show that for every 6 > 0 we can find an c > 0 
such that l i fe: - f l iP < 106 .  

Step 1 .  We claim that we may assume that j and f have compact support 
and that l f l is bounded, i .e . , f E L00(JRn) .  If j does not have compact 
support we can (by dominated convergence) find 0 < R < oo and C > 1 such 
that jR(x) := CX{ Ix i <R} (x)j (x) satisfies fJRn jR = 1 and 1 1 / l l p l lj - JR I I 1 < 6 .  
Define j{i = E-njR (x/c) (which has support in {x : l x l < Rc}) , and note 
that the number I IJc: - J[i l l l is independent of c. By Young's inequality, 
I IJc: * f - j{i * f l iP = I I (Jc: - j{i) * f l iP < 6 .  By the triangle inequality, if 
we can prove that I IJ[i * f - f l iP < 6 for small enough c we will have that 
I IJc: * f - f l iP < 26 . Henceforth, we shall omit the R and just assume that j 
has support in a ball of radius R. 

In a similar fashion, to within an error 26 we can replace f ( x) by 
X{ lx i <R'} (x)f(x) for some sufficiently large R' . The compact support of 
f implies that f E L1 (JRn) ;  in fact , l l f l l 1 < ( l§n-1 1 /n) (R')nfp' I I  f l ip · 

Using Young's inequality and dominated convergence once again we can 
also replace f(x) by the cut off function X{ l f l <h} (x)f (x) for some sufficiently 



66 LP-Spaces 

large h at the cost of an additional error 6 .  The fact that now 1 1 / l l oo < h 
implies that I IJc: * f l loo  < h and that 

I I  j c * f - f I I  p < ( 2 h) 1 I p' I I  j c * f - f I I  1 · 

Our conclusion in tl_js first step is the following: To prove (2) it suffices 
to assume that j has support in a ball of radius R and to assume that p == 1 .  
We shall now prove ( 2) under these conditions . 

Step 2. By Theorem 1 . 18 there is a really simple function F (using the 
algebra of half open rectangles in 1 . 17 ( 1 ) )  such that I I  F - f I I  1 < 6 ,  and hence 
(by Young's inequality) I IJc: * F - Jc: * f l l 1 < 6 .  By the triangle inequality, 
it suffices to prove that I I Jc: * F - F l l  < 6 for sufficiently small c, but since 
F is just a finite linear combination of characteristic functions of rectangles 
(say, N of them) it suffices to show that for every rectangle H 

lim I IJc: * XH - XH I I 1 == 0 ,  
c�o 

(4) 

where XH is the characteristic function of H. (As far as (4) is concerned it 
does not matter whether H is closed or open. )  

Recall that Jc: has support in a ball of radius r == Rc and this r can be 
made as small as we please. We choose r so small that the sets A_ == { x E 
H : distance( x, He) < r} and A+ == { x tJ_ H : distance( x, H) < r} satisfy 
.cn (A_ U A+ ) < 6/ I IJ I I I · Clearly, if x tJ_ A_ U A+ , then Jc: * XH (x) == XH (x) 
since fJRn j == 1 .  If x E A_ U A+ , then 

IJc: * XH(x) - XH (x) l = r j (y) [H(x - y) - H(x) ]dy < r IH }JRn }JRn 
Since .cn (A_ U A+ ) < 6/ I IJ I I I , this proves (2) . 

Step 3. To prove (3) we shall prove that 

(5) 

and that this function is continuous. This will imply that fc: E C1 (JRn) and, 
by induction (since 8jc:/8xi E C00 (JRn) ) ,  that fc: E C00 (JRn) . The continuity 
is an elementary consequence of the dominated convergence theorem. Since 
the support of Jc: is compact , the difference quotient 

�£ ,8 (X) : == [j c ( . . .  ' Xi + 6' . . .  ) - j c ( . . .  ' Xi ' . . .  ) ] I 6 
is uniformly bounded in 6 and of compact support and it is obviously 
bounded by some fixed LP' -function. The desired conclusion follows again 
by dominated convergence . • 
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2 . 17  LEMMA (Separability of LP (ffi.n) ) 

There exists a fixed, countable set of functions F == { ¢1 , c/J2 , . . .  } (which will 
be constructed explicitly) with the following property: For each 1 < p < oo 
and for each measurable set 0 C JRn, for each function f E £P (O) and for 
each c > 0 we have I I ! - cPj l iP < c for some function cPj in F. 

REMARK. The separability of £1 (0) is an immediate consequence of The­
orem 1 . 18 , using the algebra generated by the half open rectangles 1 . 17( 1 ) . 
This can be easily extended to £P (O) for general p. The proof below, how­
ever , yields a useful and fairly explicit construction of the family F. 

PROOF. It suffices to prove this for 0 == JRn since we always can extend 
f E LP ( n) to a function in LP (JRn) by setting f (X ) == 0 for X tf_ n. 

To define F we first define a countable family, r, of sets in JRn as the 
collection of cubes rj,m , for j == 1 ,  2 , 3 , . . .  and for m E  zn , given by 

For each j , the rj,m 's obviously cover the whole of JRn as m ranges over 
zn , the points in JRn with integer coordinates . The family r is a countable 
family (here we use the fact that a countable family of countable families is 
countable) .  

Next , we define the family of functions Fj to consist of all functions f 
on ]Rn with the property that j(x) == Cj,m == constant for X E rj,m and, 
moreover, the numbers Cj,m are restricted to be rational complex numbers . 
Again this family Fj is countable. F is defined to be Uj 1 Fj , which is again 
countable. 

Given f E £P (JRn) ,  we first use Theorem 2 . 16 to replace f by a continuous 
function f E £P(JRn) such that J I f - J IP < c/3 .  Thus, it suffices to find 

,...._, 
fi E F such that J I f - fi iP < 2c/3 . We can also assume (as in the proof of 
2 . 16) that f(x) == 0 for x outside some large cube 1 of the form {x : -2J < 
Xi < 2J} for some integer J. 

For each integer j we define 

,...._, ,...._, ,...._, 
i .e . , /j is the average of f over r j,m · Since f is continuous , it is uniformly 
continuous on 1.  This means that for each E1 > 0 there is a 6 > 0 such that ,...._, ,...._, 

l f (y) - f(x) l < E1 whenever l x - Y l < 6 .  Therefore , if j is large enough so 
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that 6 > fo2-j , we have 

,...._, 
We can choose E1 to satisfy ( 2c' )P volume('Y) < c/3 . Thus, J I f - fi iP < c/3 . 

,...._, -
The final step is to replace fj by a function fi that assumes only rational 

,...._, -complex values in such a way that J l fi - fi iP < c/3 .  This is easy to do 
,...._, 

since only finitely many cubes (and hence only finitely many values of fi ) -are involved. Since fi E F, our goal has been accomplished. • 

e The next theorem is the Banach-Alaoglu theorem, but for the special 
case of LP-spaces . As such, it predates Banach-Alaoglu (although we shall 
continue to use that appellation) .  For the case at hand, i .e . , LP-spaces , the 
axiom of choice in the realm of the uncountable is not needed in the proof. 

2 . 18 THEOREM (Bounded sequences have weak limits) 

Let 0 E JRn be a measurable set and consider LP (O) with 1 < p < oo. Let 
f1 , f2 , . .  . be a sequence of functions, bounded in LP(O) . Then there exist a 
subsequence fn1 ,  fn2 , • • •  (with n1 < n2 < · · · ) and an f E LP(O) such that 
fn2 � f weakly in LP (O) as i ---1- oo, i . e . , for every bounded linear functional 
L E £P (O) *  

PROOF. We know from Riesz 's representation theorem, Theorem 2 . 14, 
that the dual of £P (O) is Lq (O) with 1/p + 1/q == 1 .  Therefore, our first 
task is to find a subsequence fnJ such that J fnJ (x)g (x) dJ-L is a convergent 
sequence of numbers for every g E Lq (O) . In view of Lemma 2 . 17 (sepa­
rability of LP (JRn) ) ,  it suffices to show this convergence only for the special 
countable sequence of functions ¢) given there. 

Cantor's diagonal argument will be used. First , consider the se­
quence of numbers cf == f fi ¢1 , which is bounded (by Holder 's inequality 
and the boundedness of I I Ji l ip ) · There is then a subsequence (which we de-. . 
note by f{ ) such that Ci converges to some number C1 as j ---1- oo. Second, 
starting with this new sequence fl , f[ , . . .  , a parallel argument shows that 
we can pass to a further subsequence such that cg == J fi ¢2 also converges 
to some number C2 . This second subsequence is denoted by fi , f? , f� , . . . .  
Proceeding inductively we generate a countable family of subsequences so 
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that for the kth subsequence (and all further subsequences) J fi¢k converges 
as j ---1- oo. Moreover , Jff is somewhere in the sequence Ji; ,  j'f , . . .  if k < f. 

Cantor told us how to construct one convergent subsequence from all 
these . The kth function in this new sequence fnk (which will henceforth 
be called Fk) is defined to be the kth function in the kth sequence , i .e . , 
pk : ==  f� . It is a simple exercise to show that J Fk¢£ ---1- Ct as j ---1- oo. 

Our second and final task is to use the knowledge that J pig converges 
to some number (call it L(g) ) as j ---1- oo for all g E Lq (JRn) in order to show 
the existence of an f E £P to which pi converges weakly. To do so we note 
that L(g) is clearly a linear functional on Lq (JRn) and it is also bounded (and 
hence continuous) since I I Pi i i P is bounded. But Theorem 2 . 14 tells us that 
the dual of Lq (JRn ) is precisely LP (JRn ) ,  and hence there is some f E £P (JRn) 
such that J pig ---1- L(g) == J f g .  • 

REMARK. What was really used here was the fact that the 'double dual' 
(or the 'dual of the dual ' ) of LP (JRn ) is LP (JRn ) . For other spaces , such 
as £1 (JRn ) or L00 (JRn ) , the double dual is larger than the starting space , 
and then the analogue of Theorem 2 . 18 fails . Here is a counterexample in 
L1 (JR1 ) . Let Ji (x) == j for 0 < x < 1 /j and zero otherwise . This sequence 
is certainly bounded: J I Ji I == 1 .  If some subsequence had a weak limit , 
f , then f would have to be zero (because f would have to be zero on all 
intervals of the form ( - oo , 0) or ( 1 /n, oo) for any n. But J Ji · 1 == 1 f+ 0 ,  
which is a contradiction since the function f (x ) 1 is in the dual space 
£00 (JR1 ) .  

2.19 LEMMA (Approximation by C�-functions) 

Let 0 c JRn be an open set and let K c 0 be compact. Then there is a 
junction JK E Cgo (O) such that 0 < JK (x) < 1 for all X E 0 and JK(x) == 1 
for x E K. 

As a consequence, there is a sequence of functions g1 , 92 ,  . . .  in Cgo (O) 
that take values in [0 , 1] and such that limi�oo 9i (x) == 1 for every x E 0. 

As a second consequence, given any sequence of functions !1 , /2 , • • • in 
C00 (0) that converges strongly to some f in LP (O) with 1 < p < oo, the 
sequence given by hi (x) == gi (x)fi (x) is in Cgo (O) and also converges to f 
in the same strong sense .  If, on the other hand, fi � f weakly in LP (JRn ) 
for some 1 < p < oo, then hi � f weakly in LP (JRn ) . 

PROOF. The first part of Lemma 2 . 19  is Urysohn's Lemma (Exercise 1 . 15) 
but we shall give a short proof using the Lebesgue integral instead of the 
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Riemann integral. Since K is compact , there is a d > 0 such that { x : 
l x - Y l < 2d for some y E K} c 0. Define K+ == {x : lx - y j < d for some 
y E K} ::> K and note that K+ c 0 is also compact . Fix some j E Cgo (JRn) 
with support in {x : lx l < 1 }  and such that 0 < j (x) < 1 for all x and 
J j == 1 (see 1 . 1 ( 2) for an example) . Then, with c == d, we set JK == ]c: * X , 
where X is the characteristic function of K+ . It is evident that JK has the 
correct properties . 

It is an easy exercise to show that there is an increasing sequence of 
compact sets Kl c K2 c . . .  c 0 such that each X E 0 is in Km(x) for some 
integer m ( x) . Define 9i : == J K2 • 

The strong convergence of hi to f is a consequence of dominated con­
vergence. The weak convergence is also a consequence of dominated conver­
gence provided we recall that the dual of £P (O) is LP

' (0) , with 1 < p' < oo ,  

and that the functions of compact support are dense in LP
' (0) . • 

2 .20 LEMMA (Convolutions of functions in dual 
LP (ffi.n )-spaces are continuous) 

Let f be a function in £P (JRn) and let g be in LP
' (JRn) with p and p' > 1 and 

1/p + 1/p' == 1 .  Then the convolution f * g is a continuous function on JRn 
that tends to zero at infinity in the strong sense that for any c > 0 there is 
Rc: such that 

sup I (/ * g) (x) l < c.  
l x i >Rc: 

PROOF . Note that (/ * g) (x) is finite and defined by J f(x - y)g (y) dy 
for every x .  This follows from Holder 's inequality since f E £P (JRn) and 
g E LP

' (JRn) .  For any 6 > 0 we can find, by Lemma 2 . 19 (approximation by 
Cgo (O)-functions) ,  /8 and 98 , both in Cgo (JRn) ,  such that 1 1 !8 - f l iP < 6 and 
I I  g 8 - g I I  p' < 6 .  If we write 

f * g - /8 * 98 == (! - !8) * g + !8 * (g - 98) , 

we see , by the triangle and Holder 's inequalities , that 

I I  f * g - f 8 * g 8 I I  oo < I I  f - f 8 I I  p I I  g I I  p' + I I  f 8 I I  p I I  g - g 8 I I  p' , 

which is bounded by ( l l g i i P' + l l / l l p)6 .  Since /8 * 98 is in cgo (JRn) ,  j * g is 
uniformly approximated by smooth functions . Hence f * g is continuous 
and the last statement is a trivial consequence of the fact that !8 * 98 has 
compact support . • 
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2.21 HILBERT-SPACES 

The space £2 (0) has the special property, not shared by the other £P_ 
spaces , that its norm is given by an inner product-a concept familiar from 
elementary linear algebra. The inner product of two £2 (0) functions is 

(!, g) : = In f(x)g (x)J-L(dx) 

in terms of which the norm is given by 1 1 / 1 1 2 == vTJ:l). Note that the 
complex conjugate is on the left ; often it is on the right , especially in math­
ematical writing . Note also that the function fg is integrable , by Schwarz 's 
inequality. 

Hilbert-spaces can be defined abstractly in terms of the inner product , 
without mentioning functions , similar to the way a vector space can be 
defined without any specific representation of the vectors . In this section we 
shall outline the beginning of that theory. 

Generally speaking, an inner product space V is a vector space that 
carries an inner product ( · , · ) : V x V ---1- C having the properties 

( i) (X , y + Z) == (X , y) + (X , Z) for all X , y , Z E V; 
(ii) (x, ay) == a(x, y) for all x, y E V, a E C ;  
( iii) ( y, X) == (X , y) ; 
(iv) (x, x) > 0 for all x, and (x , x) == 0 only if x == 0 .  

Clearly, J f g dJ-L satisfies all these conditions . 
The Schwarz inequality l (x , y) l < yf(x,X)J{Y:Y) can now be deduced 

from (i)-(iv) alone. If one of the vectors , say y , is not the zero vector , then 
there is equality if and only if x == Ay for some A E C .  As an exercise the 
reader is asked to prove this . If we set l l x l l  == yf(x,X), then, by the Schwarz 
inequality, 

and hence the triangle inequality l l x + Y l l  < l l x l l  + I I Y I I  holds . With the help 
of (ii) and (iv) the function x �----+ l l x l l  is seen to be a norm. 

We say that x, y E V are orthogonal if (x , y) == 0. Keeping with the 
tradition that every deep theorem becomes trivial with the right definition, 
we can state Pythagoras' theorem in the following way: When x and y 
are orthogonal, l l x + y l l 2 == l l x l l 2 + I I Y I I 2 . 

An important property of £2 (0) is its completeness . A Hilbert-space 
'H is by definition a complete inner product space , i .e . , for every Cauchy 
sequence xi E 'H (meaning that l l xi - xk l l  ---1- 0 as j ,  k ---1- oo) there is some 
x E 'H such that l l x - xi I I  ---1- 0 as j ---1- oo .  
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With these preparations , we invite the reader to prove , as an exercise , 
the analogue of Lemma 2 .8 (projection on convex sets) for Hilbert-spaces : 
Let C be a closed convex set in 'H .  Then there exists an element y of smallest 
norm in C ,  i .e . , such that I I Y I I  == inf{ l l x l l  : x E C} .  

The uniform convexity, which is needed for the projection lemma, is 
provided by the parallelogram identity 

As in Theorem 2 . 14, the projection lemma implies that the dual of 'H, i .e . , 
the continuous linear functionals on 'H ,  is 'H itself. 

A special case of a convex set is a subspace of a Hilbert-space 'H, i .e . , a 
set M c 'H that is closed under finite linear combinations . Let M j_ be the 
orthogonal complement of M, i .e . , 

Mj_ :== {x E 'H :  (x , y) == O, y E M} . 
It is easy to see that Mj_ is a closed subspace, i .e . , if xi E Mj_ and 
xi ---1- x E 'H ,  then x E M j_ . If M denotes the smallest closed subspace that 
contains M, then we have from the projection lemma that 

( 1 )  
This notation, E9 (called the orthogonal sum ) , means that for every x E 'H 
there exist Yl E M  and Y2 E Mj_ such that x == Yl +Y2 · Obviously, Yl and Y2 
are unique. y2 is called the normal vector to M through x . The geometric 
intuition behind ( 1 )  is that if x E 'H and M is a closed subspace, then the 
best least squares fit to x in M is given by x - y2 . 

To prove ( 1 ) , pick any x E 'H and consider C == { z E 'H : z == x - y, y E 
M} .  Clearly, C is a closed convex set and hence there is z0 E C such that 
l l zo l l  == inf{ l l z l l  : z E C} . Similar to the proof in Sect . 2 .8 ,  we find that zo is 
orthogonal to M, Yo :== x - zo E M and thus ( 1 )  is proved. It is easy to see 
that Mj_ == M j_ . 

The reader is invited to prove the principle of uniform boundedness . 
That is , whenever {li } is a collection of bounded linear functionals on 'H 
such that for every x E 'H supi l li (x) l < oo, then supi l l li l l  < oo. 

Up to this point our comments concerned analogies with £P-spaces ; with 
the exception of ( 1 ) , Hilbert-spaces have not seemed to be much different 
from LP-spaces . The essential differences will be discussed next . 

An orthonormal basis is a key notion in Euclidean spaces (which them­
selves are special examples of Hilbert-spaces) and this can be carried over 
to all Hilbert-spaces . Call a set S == { w1 , w2 , . . .  } of vectors in 'H an or­
thonormal set if (wi , wi ) == 6i ,i for all Wi , wi E S. Here 6i ,i == 1 if i == j 



Section 2.21 73 

and bi ,j == 0 if i =/=- j .  If x E 'H is given, one may ask for the best quadratic 
fit to x by linear combinations of vectors in S.  If S is a finite set , then the 
answer is XN = �f 1 (wj , x)wj as is easily shown. Clearly, 

N 
0 < l l x - XN I I 2 = l l x l l 2 - 2 Re(x , xN) + l l xN I I 2 = l l x l l 2 - L i (wj , xW 

j=I 

and we obtain the important inequality of Bessel 

N 
L i (wj , xW < l l x l l 2 • 
j=I 

From now on we shall assume that 'H is a separable Hilbert-space, 
i .e . , there exists a countable , dense set C == { ui , u2 , . . .  } c 'H. (Nonseparable 
Hilbert-spaces are unpleasant , used rarely and best avoided. ) Thus , for every 
element x E 'H and for c > 0,  there exists N such that l l x - uN I I  < c. From 
C we can construct a countable set B == {WI , w2 , . . .  } as follows . Define 
WI : ==  UI / l lui I I , and then recursively define wk : ==  vk/ l l vk I I , where 

k-I 
Vk := uk - L(wj , uk )wj . 

j=I 

If vk == 0,  then throw out uk from C and continue on. The set B is easily seen 
to be orthonormal and this constructive procedure for obtaining orthonormal 
sets is called the Gram-Schmidt procedure. 

Suppose there is an x E 'H such that (x , wk ) == 0 for all k. We claim that 
then x == 0 .  Recalling that C c 'H is dense , pick c > 0 and then find UN E C 
such that l l x - uN I I  < c. By the Gram-Schmidt procedure we know that 

N-I 
UN = VN + L (wj , uN)Wj for any N. 

j=I 

Since VN is proportional to WN , the condition (x , wk ) == 0 for all k implies 
that (x, UN) == 0 .  Since c2 > l l x - UN 1 1 2 == l l x l l 2 + l l uN 1 1 2 , we find that 
l l x l l  < c. But c is arbitrary, so x == 0 ,  as claimed. 

By Bessel 's inequality, the sequence 

M 
XM := L(wj , x)wj 

j=I 
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is a Cauchy sequence and hence there is an element y E 'H such that 
I I Y - XM I I  � 0 as M � oo .  Clearly, (x - y , wj )  == 0 for all j ,  and hence 
x == y. Thus we have arrived at the important fact that the set B is an 
orthonormal basis for our Hilbert-space , i .e . , every element x E 'H can be 
expanded as a Fourier series 

D 

x = ,L)wj , x)wj ,  
j=l 

(2) 

where D ,  the dimension of 'H , is finite or infinite (we shall always write 
oo for brevity) . The numbers ( Wj , x) are called the Fourier coefficients 
of the element x (with respect to the basis B, of course) . It is important to 
note that 

00 

2)wj , X)Wj 
j=l 

stands for the limit of the sequence 

in 'H as M � oo .  

M 
XM = 2)wj , X)Wj 

j=l 

It is now very simple to show the analogue of Theorem 2. 18 ,  that every 
ball in a separable Hilbert-space is weakly sequentially compact . To be 
precise , let Xi be a bounded sequence in 'H . Then there exists a subsequence 
Xik and a point x E H such that 

lim (X k , y) == (X , y) 
k--+oo 

for every y E 'H . Again, we leave the easy details to the reader . 
There are many more fundamental points to be made about Hilbert­

spaces , such as linear operators , self-adjoint operators and the spectral the­
orem. All these notions are not only fairly deep mathematically, but they 
are also the key to the interpretation of quantum mechanics ; indeed, many 
concepts in Hilbert-space theory were developed under the stimulus of quan­
tum mechanics in the first half of the twentieth century. There are many 
excellent texts that cover these topics . 



Section 2.21-Exercises 

Exercises for 
Chapter 2 

1 .  Show that for any two nonnegative numbers a and b 
1 1 ab < -aP + -bq - p q 
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where 1 < p, q < oo and � + � == 1 .  Use this to give another proof of 
Theorem 2 .3 (Holder 's inequality) . 

2 .  Prove 2 . 1 (6) and the statement that when oo > r > q > 1 ,  f E Lr (n) n 
Lq (fl) ==? f E £P (fl) for all r > p > q .  

3 . [Banach-Saks] proved that after passing to a subsequence the c{ in The­
orem 2 . 13 can be taken to be c{ == 1/j . Prove this for £2 (0) , i .e . , for 
Hilbert spaces . 

4 . The penultimate sentence in the remark in Sect . 2 . 5  is really a statement 
about nonnegative numbers . Prove it , i .e . , for 1 < p < 2 and for 0 < b < a 

5 . Referring to Theorem 2 .5 ,  assume that 1 < p < 2 and that f and g lie on 
the unit sphere in LP, i .e . , I I  f l iP == I I  g l i P == 1 .  Assume also that I I  f - g l i P is small . Draw a picture of this situation. Then, using Exercise 4, explain 
why 2 .5 (2) shows that the unit sphere is 'uniformly convex' . Explain also 
why 2 . 5 ( 1 ) shows that the unit sphere is 'uniformly smooth' , i .e . , it has 
no corners . 

6 . As needed in the proof of Theorem 2 . 13 (strongly convergent convex 
combinations) ,  prove that 'Cauchy sequences of Cauchy sequences are 
Cauchy sequences ' . (In particular, state clearly what this means . )  

7. Assume that f and g are in L1 (JRn) .  Prove that the convolution f * g in 
2 . 15 ( 1 )  is a measurable function and that this function is in L1 (JRn) .  

8. Prove that a strongly convergent sequence in LP (JRn) is also a Cauchy 
sequence . 

9 . In Sect . 2 . 9 three ways are shown for which an LP (JRn) sequence Jk can 
converge weakly to zero but fk does not convergence to anything strongly. 
Verify this for the three examples given in 2 .9 .  
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10 . Let f be a real-valued, measurable function on JR that satisfies the equa­
tion 

f(x + y) == f(x) + f(y) 
for all x , y in JR. Prove that f (x) == Ax for some number A . 
...., Hint. Prove this when f is continuous by examining f on the 

rationals . Next , convolve exp [if (x) ] with a Jc: of compact support . 
The convolution is continuous ! 

1 1 .  With the usual Jc: E C� ,  show that if f is continuous then Jc: * f(x) 
converges to f (x) for all x ,  and it does so uniformly on each compact 
subset of JRn . 

12 .  Deduce Schwarz 's inequality l (x , y) j < V(X:X)v'{ii:Y) from 2 .21 (i)-(iv) 
alone. Determine all the cases of equality. 

13 .  Prove the analogue of Lemma 2 .8 (Projection on convex sets) for Hilbert­
spaces . 

14 . For any (not necessarily closed) subspace M show that Mj_ is closed and 
that Mj_ == M j_ . 

15 .  Prove Riesz 's representation theorem, Theorem 2. 14, for Hilbert-spaces . 
16 .  Prove the principle of uniform boundedness for Hilbert-spaces by imitat­

ing the proof in Sect . 2 . 12 .  
17. Prove that every bounded sequence in a separable Hilbert-space has a 

weakly convergent subsequence . 
18 . Prove that every convex function has a support plane at every x in the 

interior of its domain, as claimed in Sect . 2 . 1 .  See also Exercise 3 . 1 .  
19 .  Prove 2 .9 (4) . 
20. Find a sequence of bounded , measurable sets in JR whose characteristic 

functions converge weakly in £2 (JR) to a function f with the property 
that 2/ is a characteristic function. How about the possibility that f /2 
is a characteristic function? 

21 . At the end of the proof of Theorem 2 .6 (Differentiability of norms) there 
is a displayed pair of inequalities , valid for l t l < 1 :  

Write out a complete proof of these two inequalities . 
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22 . Prove the p, q, r theorem: Suppose that 1 < p < q < r < oo and that 
f is a function in LP (O, dJ-L) n Lr (o, dJ-L) with l l f l lp < Cp < oo, l l f l l r < 
Cr < oo, and l l f l l q > Cq > 0 .  Then there are constants c > 0 and M > 
0, depending only on p, q , r, Cp , Cq , Cr , such that J-L( {x : l f (x) l > c} ) > 
M. 

In fact , if we define S, T by q CCsq-p == (q - p)C3 /4 and q c;rq-r == 

(r - q)C3 /4, then we may take c == s and M == ITq - Sq i - 1Cqj2 . (See 
[Frohlich-Lieb-Loss] . )  

Show, conversely, that without knowledge of Cq , J-L( {x : lf (x) l > c} )  
can be arbitrarily small for any fixed number c > 0 . 
...., Hint. Use the layer cake principle to evaluate the various norms . 

23 . Find a sequence of functions with the property that Ji converges to 0 
in £2 (0) weakly, to 0 in £312 (0) strongly, but it does not converge to 0 
strongly in £2 (0) . 
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