MAT 351: Partial Differential Equations
February 16, 2018

We are considering eigenvalue problems of the form —Awu + V (z)u = Au for x € R". Here, the linear
operator —A + V' (z) is called a Schrodinger operator with potential /. In all examples that we
consider, V' takes its minimum at x = 0 and increases radially from there.

e Harmonic oscillator —Au + |z|?u = \u.

In dimension n = 1, the eigenfunctions and eigenvalues are given by
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T

up(x) = Hi(x)em =, M =2k+1 (k=0,1,...),

where Hj, is a polynomial of degree k. These are the Hermite polynomials. The family {uy }
forms an orthogonal basis for L?(R). Although the Hermite polynomials do not have an explicit
formula, they can be computed in many different ways, using recursion relations, Gram-Schmidt
orthogonalization, or generating functions.

The eigenfunctions and eigenvalues of the harmonic oscillator in dimension n > 1 are given by

n |I|2 n
U= H Hy (zj)e” 2, A= Z(ij +1)
j=1 j=1
(this follows by separation of variables).
e Hydrogen atom —Au — 2u = \u, where z € R3.
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We split the eigenvalue problem into a radial and an angular part, using separation of variables.
We will later see that the eigenfunctions of the full problem are given by u(x) = v(r)Y (¢, 0),
where Y is a spherical harmonic. In the special case where the eigenfunction is radial (i.e.,
if Y is constant) then we have —v” — 20/ — 20 = Ao, and obtain for the eigenfunctions and

eigenvalues
1
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where wy, is a polynomial of degree k. The coefficients of these polynomials are determined by
a recursion.

vp(r) = wr(r)e k, A\ =

>3

(k=1,2,...),

It turns out that these eigenfunctions do not form an orthogonal basis for L? — eigenfunctions
for distinct eigenvalues are orthogonal, but their span is a subspace that fails to be dense in L>.

¢ Dirichlet eigenvalue problem —Awu = Au on the unit ball {|x| < 1}, with boundary conditions
u(z) = 0 for |x| = 1. We again separate variables.

In two dimensions, the angular part of an eigenfunction is sin(nf) or cos(nf) for some integer

n, and the radial part satisfies
1 2
v+ =0+ ()\—n—z)v,
T r

where 7y is an eigenvalue of the angular part. If we rescale the problem so that A\ = 1, this
becomes Bessel’s equation of order n, and its solution is given by the corresponding Bessel
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function J,,. This is again a special function that does not have an explicit formula. But there
are recursion formulas for its Taylor series, and precise asymptotic expansions as 7 — 0o. The
eigenvalue is determined by the requirement that .J,,(v/A) = 0, i.e., \ is the square of a zero of a
Bessel function.

In dimension three and above, the angular part of an eigenfunction is a spherical harmonic. The

basic strategy is the same but the radial equation becomes (after some change of variables) a
. . . . . . 1

Bessel equation of non-integer order. Specifically, in three dimensions, we set v(r) = r~2w(r)

and obtain )
1 + =
w’ + =+ ()\—7 24)w:0.
T T

Read: Sections 9.4, 9.5 and 10.1.

Hand-in (due March 2):

(H1) Starting from the zeroth Hermite polynomial Hy(xz) = 1, derive the first four Hermite polyno-
mials from the recursion formula for the coefficients.

(H2) (a) Verify that the Hermite polynomials have the orthogonality property
/Hk(x)Hg(x) el dr =0, k#£¢.

Hint: Start from Hermite’s differential equation v” + (A — z%)v = 0.

(b) Explain how to use the Gram-Schmidt method to determine the Hermite polynomials recur-
sively. (The integrals arising from the orthogonal projections can be computed explicitly,
but you’re not asked to do that here.)

(H3) Consider the eigenvalue problem w” — 2zw’ + (A — 1)w = 0 that determines the Hermite
polynomials.
(a) Show that every solution with A\ # 2k + 1 is a power series but not a polynomial.
(b) Deduce that for every such solution, v(x) = w(x)e™"z grows rapidly as |z| — oo.

(Hint: Use the recursion relation for the Taylor coefficients a; of w as k — oo, and compare
with the power series expansion for ¢*”. )
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(H4) Show that all Hermite polynomials are given by Hy(z) = (—1)*e*” ;i—kke_”; .

For discussion and practice:

1. Use Kirchhoff’s formula to find the solution of the three-dimensional wave equation with initial
data u(z,u) = 0,us(x,0) = xa.

2. Use the Euler-Poisson-Darboux equation to solve the three-dimensional wave equation with
initial data u(x,0) = 0, u(z, u) = |z|>.



