
MAT 351: Partial Differential Equations
Assignment 6 — October 20, 2017
We turn to inhomogeneous equations diffusion and wave equations. We formally write an inho-
mogeneous PDE as

ut = Lu+ f(·, t) , u(·, 0) = φ , (1)

where L is a linear differential operator that involves only the x variable, f is the inhomogeneity
or source term, and φ is the initial condition.

• To ground ourselves, let us first consider a linear ODE
dy

dt
= Ay + f(t) y(0) = y0 , (2)

where A is a n × n matrix f is a given function, y0 ∈ Rn a given vector, and the unknown
function y(t) takes values in Rn. Duhamel’s principle says that the solution is given by

y(t) = eAty0 +

∫ t

0

eA(t−s)f(s) ds .

Here, eAt denotes the solution operator for the homogeneous equation d
dt
y = Ay. By defini-

tion, y(t) = eAty0 solves the homogeneous equation with initial value y(0) = y0.

There are many equivalent ways to define and compute the matrix-valued function eAt, by
its power series, by diagonalizing A, or by special techniques such as contour integrals.
Duhamel’s formula is proved by the method of variation of constants.

• For the linear transport equation

ut + bux = f(x, t) , u(x, 0) = φ(x) , (3)

we write L = −b∂x. The solution of the homogeneous problem is etLφ(x) = φ(x− bt). By
Duhamel’s principle,

u(x, t) = φ(x− bt) +

∫ t

0

f(x− b(t− s), s) ds .

• Let us now try to solve the heat equation with sources

ut = kuxx + f(x, t) , u(x, 0) = φ(x) . (4)

Here, L = k∂2x. Denote by etL the solution operator for the heat equation, given by(
etLφ

)
(x) =

∫ ∞
−∞

S(x− y, t)φ(y) dy ,

where S(x, t) = (4πkt)−1/2e−x
2/(4t) is the fundamental solution. By Duhamel’s principle,

the solution of the inhomogeneous equation is given by

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y) dy +

∫ t

0

∫ ∞
−∞

S(x− y, t− s) f(y, s) dyds .

1



• Consider finally the initial-value problem for the wave equation with sources,

utt = c2uxx + f(x, t) , u(x, u) = φ(x), ut(x, 0) = ψ(x) . (5)

Set v = ut. Then the wave equation becomes the system

∂t

(
u
v

)
=

(
0 I

c2∂2x 0

)(
u
v

)
+

(
0

f(x, t)

)
=: L

(
u
v

)
+ F (x, t) .

We then use D’Alembert’s formula to write the solution operator etL(φ, ψ) for the homoge-
neous equation. Plugging this into Duhamel’s formula gives

u(x, t) =
1

2

(
φ(x+ct) + φ(x−ct)

)
+

1

2c

∫ x+ct

x−ct
ψ(y) dy +

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dyds .

Duhamel’s formula is a recipe how to construct solutions of inhomogeneous evolution equations.
Our heuristic derivation does not constitute a proof. But once we guess the correct formulas, we
can check by direct computation that they indeed satisfies Eqs. (3), (4), and (5).

Read: Chapter 3 of Strauss.

Hand-in (due Friday, October 27):

(H1) LetD be a connected open bounded set with smooth boundary in Rn, let ∂D be its boundary,
andD its closure. Let u be a solution of Laplace’s equation ∆u = 0 onD that is continuous
on D.

(a) Prove that u satisfies the maximum principle: sup
x∈D

u(x) = max
x∈∂D

u(x).

(b) Why is it necessary to assume that D is bounded?

(c) Conclude that Poisson’s equation ∆u = f(x) on D, with boundary conditions u(x) =
g(x) for x ∈ ∂D can have at most one solution.

(H2) (a) Use the method of reflections to write the solution of the boundary-value problem

ut = uxx , 0 < x < 1, t > 0 ,
ux(0, t) = ux(1, t) = 0 , t > 0 , u(x, 0) = φ(x)

as a series. Here, φ is a continuously differentiable function with φ′(0) = φ′(1) = 0.

(b) Does the series converge? In what sense?

For discussion and practice:

• Let Φ be a nonnegative real-valued smooth function on R with Φ(0) = 0, and define

E(u) =

∫
R

Φ(u(x)) dx .

Under what conditions on Φ does E(u(·, t)) decrease in time for every solution of the heat
equation ut = kuxx? (Assume that u is smooth and E(u(·, t)) is finite for all t ≥ 0.)
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