MAT 351: Partial Differential Equations
Assignment 6 — October 20, 2017

We turn to inhomogeneous equations diffusion and wave equations. We formally write an inho-
mogeneous PDE as

ut:Lu+f(>t)7 U(,O):¢, (1)
where L is a linear differential operator that involves only the x variable, f is the inhomogeneity
or source term, and ¢ is the initial condition.

e To ground ourselves, let us first consider a linear ODE

dy

y = Ay + f(t) y(0) = o, 2)

where A is a n X n matrix f is a given function, y, € R" a given vector, and the unknown
function y(t) takes values in R”. Duhamel’s principle says that the solution is given by

t
y(t) = eAtyo +/ eA(t_s)f(s) ds .
0

Here, e denotes the solution operator for the homogeneous equation %y = Ay. By defini-
tion, y(t) = ey, solves the homogeneous equation with initial value y(0) = yo.

There are many equivalent ways to define and compute the matrix-valued function e, by
its power series, by diagonalizing A, or by special techniques such as contour integrals.
Duhamel’s formula is proved by the method of variation of constants.

e For the linear transport equation

u + bu, = f(x,t), u(z,0)=¢(x), 3)

we write L = —b0,. The solution of the homogeneous problem is e'*¢(z) = ¢(z — bt). By
Duhamel’s principle,

u(z,t) = ¢(x — bt) +/0 flx=b(t—s),s)ds.

e Let us now try to solve the heat equation with sources

up = kg, + f(z,t),  u(z,0) = ¢(x). 4)

Here, L = kO?2. Denote by e'L the solution operator for the heat equation, given by

(o) (@) = [ " S~y 0)6(y) dy.

[e.9]

where S(x,t) = (4mkt)~1/2e=%*/(4%) js the fundamental solution. By Duhamel’s principle,
the solution of the inhomogeneous equation is given by

u(x,t>=/_°° S<x—y,t>¢<y>dy+/ot/_°° Sz —y,t — 5) f(y, 5) dyds.



e Consider finally the initial-value problem for the wave equation with sources,

Uty = CZUmz + f(xvt) ) u(x,u) = ¢(l‘), ut<x7 0) = w(@ : (5)

Set v = wu;. Then the wave equation becomes the system

(1) (s £) () () = (2) o

We then use D’ Alembert’s formula to write the solution operator ' (¢, 1) for the homoge-
neous equation. Plugging this into Duhamel’s formula gives
T+ 1

ct t z4c(t—s)
(@atet) +ola—ct) + o [ vyt g [ [ flws)duds.
0 T

2¢ r—ct 2¢ —c(t—s)

N —

u(z, t) =

Duhamel’s formula is a recipe how to construct solutions of inhomogeneous evolution equations.
Our heuristic derivation does not constitute a proof. But once we guess the correct formulas, we
can check by direct computation that they indeed satisfies Egs. (3), (4), and (5).

Read: Chapter 3 of Strauss.

Hand-in (due Friday, October 27):

(HI) Let D be a connected open bounded set with smooth boundary in R", let 9D be its boundary,
and D its closure. Let u be a solution of Laplace’s equation Au = 0 on D that is continuous
on D.

(a) Prove that u satisfies the maximum principle: sup u(z) = max u(z).
zeD x€0D

(b) Why is it necessary to assume that D is bounded?

(c) Conclude that Poisson’s equation Au = f(z) on D, with boundary conditions u(z) =
g(x) for x € 0D can have at most one solution.

(H2) (a) Use the method of reflections to write the solution of the boundary-value problem

Up = Ugy , O<z<1,t>0,
uz(0,t) = u,(1,8) =0, t>0,u(z,0) = ¢(x)

as a series. Here, ¢ is a continuously differentiable function with ¢'(0) = ¢/(1) = 0.

(b) Does the series converge? In what sense?

For discussion and practice:

e Let & be a nonnegative real-valued smooth function on R with ®(0) = 0, and define

E(u):/R@(u(x))dx.

Under what conditions on ® does E(u(-,t)) decrease in time for every solution of the heat
equation u; = ku,,? (Assume that v is smooth and F(u(-,t)) is finite for all ¢ > 0.)



