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In this article a number of estimates are given for the index of a polynomial vector 
field with components of fixed degrees. Examples are given showing that these estimates 
are best possible. 

The proof of the estimates in the nondegenerate case is closely related to the proof 
in Petrovskii and Oleinik [I], where the Euler characteristics of some algebraic sets are 
estimated. In addition, the proof is closely related to the proof in the recent article by 
Arnol'd [2] and clarifies the connection between these two methods of argument. As in [2], 
the index is associated with the signature of a certain quadratic form (see also [3, 4]). 
As in [i], a key factor in the proof is the use of the Euler-Jacobi formula. 

I am grateful to V. I. Arnol'd for informing me of his results prior to the publica- 
tion of [2] and for interesting me in this subject. Arnol'd posed the problem (see [2]) 
of whether the Petrovskii-Oleinik estimates are best possible. This question is answered 

affirmatively in this article. 

i. Notation and Statement of the Results 

i.i. Notation. Let V = P~, •., Pn be a vector field in R n with polynomial compo- 
nents Pi, and let Po be a polynomial. We denote by ind the sum of the indices of all singu- 
lar points of the field V in R n, and denote by ind + and ind- the sum of the indices of the 
singular points of the field V in the regions where Po > 0 and Po < 0. We will say that 
the pair V, Po has degree not exceeding (equal to) m, mo, where m = ml, ., mn, provided 
the degrees of all the polynomials Pi, i = 0, .., n, do not exceed (are equal to) mi. 
We will say that the pair V, Po is nondegenerate if, first of all, the real hypersurface 
Po = 0 .does not pass through the singular points of V and, second, the real singular points 
of the field V have multiplicity one and "lie in the finite part of the space Rn. '' (We 
write the last condition out inmore detail. ~ Let the Pi be homogeneous polynomials of de- 
gree m i in the variables xo, xl, ., Xn, such that ~i(i, xl ..... x~)------P~(xl ..... x~). The 
last condition means that the system ~ = • = ~n = xo = 0 has only the trivial solution 

Xo = x ~  = . . = x n = 0.) 

We introduce some notation. 

A(m) is the parallelepiped in R n defined by the inequalities 0~yl~ml--i .... , 0~y~ 
~<m~--i. 

p = mx... .m n is the number of integer points in the parallelepiped A(m). 

H(m) is the number of integer points in the central section y~ + . • + Yn = I/~(m~ + 

• + mn-- n) of A(m). 

~(m, mo) is the number of integer points of A(m) satisfying the inequalities 

+ + . . .  + . . .  + + 

O(m, mo) is the number of integer points Of ~(m) satisfying the inequalities 

t__ (m~ -1- q- m~ - -  n - -  too) < y~ "t-~. • -i- Y~ < i (m~ -i- • • • q- m~ - -  n). 

We n o t e  t h a t  0 (m, m0) = ~/~(H (m,mo) q- H (m)) and  t h a t  H ( m ) ~ - H ( m ,  m 0 ) - - - - - ~ m o d 2 .  

1.2. Statement of the Results• THEOREM i. If V, Po is a nondegenerate pair of de- 
gree m, mo, the numbers = = ind, ~ = ind+--ind - and c = ind +, satisfy the inequality !~i~ 
H (m), I b l ~ H  (m, m 0 ) ,  and  [cleOn(m, mo) and  t h e  c o n g r u e n c e s  a - - - - b - ~ - - ~ m o d 2 .  C o n v e r s e l y ,  

A l l - U n i o n  S c i e n t i f i c - R e s e a r c h  I n s t i t u t e  f o r  O p e r a t i o n s  R e s e a r c h . .  T r a n s l a t e d  f r o m  F u n k -  
tsional'nyi Analiz i Ego Prilozheniya, Vol. 13, No. i, -p. 49-58, January-March, 1979. Orig- 

inal article submitted June 14, 1978. 
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for every number a (number b, number c) satisfying these conditions, there exists a nonde- 
generate pair V, Po of degree m, mo for which ind = a (ind+--ind - = b, ind + =c). 

COROLLARY i. The index ind of an isolated singular point of the field V = PI, • . o, 
Pn with homogeneous components of degree m = ml, ., m n satisfies the inequality lindl~ 
H (m) and the congruence ind ~ ~ mod 2. The~number ind is not subject to any other restric- 
tions. :. 

The inequality IindI~H (m) figuring in Corollary i was proved by Arnol'd [2] and 
called by him the Petrovskii-Oleinik inequalitY. Corollary i also asserts that this inequal- 
ity is best possible. 

, 

The index for vector fields V with "singular points at infinity" can also be estimated° 
The number ind + is defined if the region Po > 0 contains only isolated singular points of 
the field V. The number ind is defined if all the singular points of V are isolated. 

THEOREM 2. Assume that the number ind+ilis defined for a pair V, Po of degree not ex- 
ceeding m, mo. Then if mo + • . + m n ~ n mod 2, the absolute value of ind + does not ex- 
ceed O(m, mo). In this case there exist no Other restrictions on the number ind +. If m~ + 
. . . - ~ m ~ n  mod 2 and mo is even, then the absolute value of ind + does not exceed O(m, mo + 
!). In this case there exist pairs V, Po for which ind + =_____ O (m, m 0 + I). 

COROLLARY 2. Let V be a vector field of degree not exceeding m = ml, . ., mn, with 
isolated singular points. Then if mo + . :. + m n ~ n mod 2, the estimate lindl<H (m) is 
valid, while if m o ~ ... ~ mn~nmod2 we have the estimate lindI~O (m, i). Both of these 
estimates are best possible. 

We give a few words concerning the organization of this material. In Sec. 3 examples 
are given of pairs V, Po. These examples prove Theorems 1 and 2 in one direction, as well 
as their corollaries. Projective transformations, which are discussed in Sec. 2 are useful 
in the construction of the examples. In Sec. 4 we discuss the relation between the index 
and the signature of a certain quadratic for m on the function algebra L~. The algebra L~ 
is described in Sec. 5. In Sec. 6 the proof of Theorem 1 is completed, and the proof of 
Theorem 2 is finished in Sec. 7. 

2. Proj ective Transformations 

Let F be a hyperplane in R n defined by a linear inhomogeneous equation l(x)~-11 (x)-~ 
l 0 = 0. We construct a projective transformation g: I~--~ l~ taking the hyperplane F into 
the hyperplane at infinity; g (x) = [i/l (x)]A (xl, where A(x) is an affine transformation. A 
projective transformation of a pair V, Po, where V is a vector fiel~d with components P~, 
t ., Pn of degrees m~, .l,~., m n and Po is a polynomial of degree mo, is a pair V, P0, where 
V =~I, .... P~ and P~ (x) = (x)P~ (~ (x)) for: i = 0, i, .~., n. If ~ is a singula~ point 
of the field V, then the point d ---- g-~ (a) is singular for V. The Jacobian det ~g/~x is de- 
fined outside the hyperplane F and vanishes nowhere. We say that a transformation x-+ g (x) 
=[i//(x)]A (x) is positive if its Jacobian is positive in the region l(x)~0. For odd n, the 
space I~P ~ is orientable and positive transformations coincide with orientation-preserving 
transformations. In the general case, positive transformations correspond precisely to lin- 
ear transformations of R ~+~ with positive determinant. 

We will be interested in how the global characteristics ind, ind +, and ind + -- ind- of 
the pair V, Po change under projective transformations. Each of these global characteris- 
tics is obtained by summing the corresponding local characteristics over the set X of singu- 

lar points of V. This can be written symbollically as F(V, P0)---- ~ IF(V, P0)~, where F is one 
i a~2f 

of ind, ind +, or ind+--ind-. 

Given a field V and a projective transf~ormation x ÷ g(x), we write X(g) for the set of 
singular points ~ of V for which ~----g-1 (a) 'is defined. The characteristic F of the pair V, 
Po is called projectively invariant if for every positive g----[I/l (x)]A (x) and a ~ X (g) the 

equality 7~ (V, P0)= = f (F, P0)g holds. The characteristic F is said to be projective!y anti- 
invariant if 7 ~ (V, P0)~ = sign I (~)F (F, /~o)~- ~ 

A simple verification proves the following assertion. 

Assertion i. The following characteris~tics are projectively invariant: ind, if rn~-~ 
o . .  -~ m ~ = / = n  rood  2; i n d  + -  i n d - ,  i f  m ,  ~ . . : ~- m n : d = n m o d 2 ;  a n d  i n d  +, i f  m o--~ , . .  + m ~ - n  × 
rood 2.  
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2. The following characteristics are projectively antiinvariant: ind, if m~ + . . . + 
mn = n mod 2; ind +- ind-, if mo + • • + mn = n mod 2; and ind +, if mo + • • • + m n = n × 
mod 2 and mo is even. 

We note that the characteristic ind + for odd mo is in general neither invariant nor 
antiinvariant. 

We write P~-for the image of the plane at infinity under a projective transformation. 
• For g (~) = [~/~ (~)]A (~), where A(x) is a linear transformation and ~ (z) = ~ (~) ~- ~0, the equa- 
tion of the hyperplane r~ has the form ~ (N-~ (z)) = i. We associate with the hyperplane 
~ (~) = ~, where p > O, the transformation ~-+(p.~)/(~ (~)~), for which this plane is r~. The 
invariant characteristics of the singular points of the field are preserved under a projec- 
tive transformation. The antiinvariant characteristics remain unchanged for the singular 
points lying in one of the halfspaces bounded by r~ and change sign for the singular points 
lying in the other halfspace. 

3. Examples 

3.1. In the construction of our examples, a principal role will be played by the sim- 

plest field V(m) of degree m=ml, ., m n with components P~= ~ (~--k),~ = 1,..o,n. 
o ~ - - 1  

We note that all the singular points of V(m) coincide with the integral points of the poly- 
hedron A(m) defined by the inequalities 0~x~m~--i, ~ = i .... ,n. The signs of the Jacobian 
at the singular points alternate in "chessboard order." Moreover, at the singular points 
lying on the single section Exi = k, the sign of the Jacobian is constant. Upon passing to 
to the next section Ex i = k + i, this sign is replaced by the opposite sign. In this sec- 
tion we often encounter the number I/21(mi -- I), which we denote by 0. 

3.2. We discuss the characteristic ind in detail. Consider the case m0~- -.. q- ~ × 
mod 2. In this case ~(m) = 0, and by Theorem i every nondegenerate field V has zero index. 
Thus, the field V(m) contains equal numbers of singular points on the sections Ex~=@q-~/~ - 
k and Ez~ = @--~/~--k, the signs of the Jacobians at the singular points in these sections 
being Opposite. The characteristic ind in this case is invariant. We construct a projec- 
tive transformation such that the plane P~ has the equation Ez~ = p---~/=. The absolute value 
of the index is equal-to O(m, i) for the degenerate field V so obtained: Indeed, the in- 
verse images of the singular points on the section E~ = p--~/~ "lie at infinity" and the 
inverse images of the singular points on the section ~z~ = p~-~/~ are not cancelled, and 
there are ~(m, i) of them. In order to construct an example of a field V with index of op- 
posite sign, it suffices tochange the sign of one of the components of the field V. 

We consider the case m~ + . . • + mn E n mod 2. In this case, the characteristic ind 
is antiinvariant. The central section Ez~ = @ of the rectangular box A(m) contains exactly 
~(m) singular points of the field V(m). The sections Ez~ = ~--~ and E~ = @ ~ ~ contain 
the same number of singular points with Jacobians of the same sign. We carry out a projec- 
tive transformation x ÷ g(x) for which the plane r= has the equation Ez~ = @--~/~, e.g., 
the transformation z-+(~--~/~)~/(Ez~-~ ~. The sections E~ = p ~ ~ and E~ = p--~ for k > 0 
lie in different half spaces bounded by P~. The indices of the inverse images of the singu- 
lar points of the field V(m) lying in the§e sections cancel one another. Therefore, the 
absolute value of the index of the field V is equal to the number of singular points of V(m) 
lying on the section Ez~ = @, i.e., it is equal to H(m). Here is an explicit formula for 

the component ~i of the field ~:~(z)= ~ [(p--~)x~ ~(~,z~-1)]. 
o ~ < m  i 

The index of the field ~ does not change if the position of the plane ~ is perturbed 
slightly. We define P= by the equation E~z~ = ~, where the ~i are scalars close to unity 
which are independent over the rationals, and t is close to 0 -- ~/2- We now begin to let t 
get bigger. This will not change the index of the field ~ until F= passes through a sinsu- 
far point of V(m) from the direction of the central section E~ = p. When this occurs, V 
becomes degenerate and its index changes by one. If the number t is increased a bit more, 
the field ~ again becomes nondegenerate and its index again changes~by one. Continuing the 
motion of the plane F=, we obtain examples of nondegenerate fields V of degree m with any 
index satisfying the conditions lindl~ H ~), ind---- ~ mod 2. The leading homogeneous compo- 
nents of the field ~ form a field with an isolated singular point at zero with the same in- 
dex. Moving the plane as above, we again obtain examples of degenerate vector fields with 
arbitrary index of absolute value not exceeding H(m). 
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3.3. We turn now to the characteristics ind + -- ind- and ind +. We first discuss the 
case when mo + • . + m n --- n mod 2. The characteristic ind + -- ind- in this case is anti- 
invariant. Assume in addition that mo is odd, mo = 2q + i. We consider the pair V(m), Po, 

where P0= ~ (~z~--P+ ~) and f---- {___ ~ .... ~4- ~, g~- i}. We carry out a projective transfor- 
~ 

mation such that F= has the equation ~z~ = p. The pair F, P0 obtained by means .of this 
transformation will have the extremal characteristics I ind+ -- ind- I = II (~, n~0) and I ind+ I = 
O (~, mo). By moving the plane ~ as above, we get examples of nondegenerate and degenerate 
pairs ~, Po, for which the characteristics ind + -- ind- and ind + take all values compatible 
with the assertions of Theorems 1 and 2. 

The situation is analogous in the case of even mo, mo = 2q, and mo + • • . + mn --- n mod 2. 

I ~) and Here it is necessary to begin with a pair V(m), Po, where Po= (--~)~ (~z~--p-~-- 

f ---- {zh ~,...,+ ~}, and the planes F~ have the equation Y.z~ = p -- ~/~. ~ 

We now turn to the case ~0 ~- • • • ~- m~n mod2. The case mo = 0 has already been an- 
alyzed, and we may assume that mo > 0. In this case the equalities II (nz, n~0) ----II (~ n~ 0 --i) 
and O (~, n~0) = O (n% m0 -- I) are valid. Therefore, in order to construct nondegenerate pairs 
V, Po with arbitrary characteristics ind +- ind- and ind + compatible with Theorem i, it is 
enough to make use of the examples already constructed of nondegenerate pairs V, Q, where 
the degree of Q is equal to mo -i. It suffices to consider pairs V, Po where P0--~ (~.z~ ~- 
~). For sufficiently large ~, the pairs V, Po and V, Q have the same characteristics ind + 
and ind-. 

We give an example of a degenerate pair V, Po with extremal characteristic ind + for 
even mo = 2q and ~0 ~- • • • ~- n%~mod 2. We take the field V(m) and the polynomial P0= 

(--i)~ H (~'~--P--~)' where f = {___ i, .... ___ q}. We carry out a projective transformation for 
~_; 

which the plane F~ has the equation Y.z~----p- ~/~. For the resulting pair ~, ~o the char- 
acteristic ind + has absolute value equal to O(m, mo + i). 

4. Signature and Index 

4.1. A Finite Set with Involution. Let A be a finite set containing ~ elements,T: 
A-~A an involution of A, and let X be the set of fixed points of 7. We consider the alge- 
bra L T over the field Rconsisting of all complex value functions on A for which /.T = f. 
Let 9 be a fixed function in Lr which is nowhere zero. The number of points of the set X 
at which 9 is positive is denoted by ~+, the number of points at which it is negative, by 9-° 

We consider the bilinear form ~ on L~ defined by ~,g)= ~ 9(~[(~g(~. The signature of 
a~A 

a quadratic form K is denoted by oK. 

LEMMA. The dimension of the algebra L~ is equal to ~. The quadratic form K~(/) = 
~(/,/) takes real values and is nondegenerate. The signature oK~ is equal to 9 + --9-. In 
particular, oK~ for 9 = i is equal to the number of fixed points of T. 

Proof. Under the action of 7, the set A decomposes into invariant sets A k consisting 

of one or two points. Let L ~ ~ denote the subalgebra of Ly consisting of functions with sup- 

port A ~, L~ = ~L~. The subspaces L~ are orthogonal with respect to the form ~. If A k con- 
sists of a single point a, a~X, then dim L$ = i and the signature of the restriction of 

the form K~ to L~ is equal to sign 9 (a). For two-point sets A ~ = {a, Ta} dim L$ = 2. In this 

case, the restriction of the form K~ to L~ is equal to ~ (a)] ~ (a) + 9 (va)/~ (~a) = 2~e 9 (a)] ~ (a). 

As is easily' seen, the signature of such a form is zero. The lemma is proved. 

COROLLARY. i. The congruence ~+-- 9-~ ~mod2 holds. 2. Let Lo be any linear sub- 
space of the algebra Ly on which the form Ke is identically equal to zero. Then the esti- 
mate I~+-- ~-I~ ~-- 2 dim L 0 is valid. If the null subspace is maximal, this estimate is 
best possible. 

Indeed, the signature of a nondegenerate form always has the same parity as the dimen- 
sion of the space. In addition, the estimate I oKI~ i~--2 dimL 0 holds for every nondegen- 
erate form K on R~ with nullspace Lo. For a maximal sub,pace Lo, this estimate is an equal- 
ity. 
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We will apply the lemma and corollary to the .case when A is the set of complex singular 
points of a real vector field and ~: N--~ is the involution given by complex conjugation. 

4.2. We consider a real vector field V in R n with polynomial components V = P~, ., 
Pn- Let ~ C  ~ be the set of complex solutions of the system 

Pl -- -. • = Pn = 0 (i) 

and let the involution x: A-+A be complex conjugation. The set X of fixed points under z 
coincides with the set of real solutions of system (i). We assume that all the complex solu- 
tions a~A of system (i) have multiplicity one. This means that the Jacobian j(x) = det 
DP/3x of (i) does not vanish at the points of A. Let Po be any polynomial with real coeffi- 
cients which does not vanish at the points of A. 

We obtain the following assertion by applying the preceding lemma. 

Assertion. The signature ~K~ of the quadratic form K~(f) = ~, ~(a)f~(a) is equal to the 
~ A  

number of real singular points of the field V if ~-- i . If ~ = I/j, where j is the Jacobian 
of system (i), then ~ -- ind, and if ~ -- Po/J, then oK~ = ind+--ind -. 

In order to estimate the numbers ind and ind + -- ind-, it is now necessary to describe 
the algebra L~ and exhibit a nullspace for the form K~ which is as large as possible for 

~-- I/] and ~=Po/]. The null subspace is obtained with the aid of the Euler--Jacobi formula, 
which we recall• 

Consider a system of n polynomial equations of degrees m~, ., m n in n complex un- 
knowns, 

Pt ..... P~ -- 0. 

We assume that the set of roots of the system contains exactly ~ = m~. "mn elements. 
In this case, the Jacobian of the system j = det ~P/~x does not vanish on the set A. Then 
for every polynomial Q of degree less than Em i -- n, we have the following Euler--Jacobi for- 

ula:~ Q(a) = O. 
i(~) 

A purely algebraic proof of this formula can be found in [5]. An analytic proof and a 
generalization to nondegenerate systems of equations with fixed Newton polyhedra is given 
in [6]. 

5. Convenient Systems of Equations 

A system of equations PI = • = Pn = 0 of degrees m~, ., m n will be called non- 
degenerate if it has exactly ~ = ml. . . .m n distinct roots. 

Consider the parallelepiped A(m) in R n defined by the inequalities 0~y1~m~--i,..., 
. 

0~g~m~--i. Let M(m) be the space of polynomials with Newton polyhedron A(m). A poly- 
nomial Q~IW(m), if and only if the degree of Q with respect to the variables x i is less 

than m i. The dimension of the space M(m) over the field C is equal to m~. . -m n = ~. 

A nondegenerate system is said to be convenient if every complex valued function f on 

the set A of roots of the system is the restriction of some polynomial in M(m). 

LEMMA i. The system of equations ~ (xl-- k) .... = ~ (x~-- ~) -- 0 - is convenient. 
O~<m~ 0~<~. 

Indeed, the set A of roots of this system contains precisely p = m~. . .mn elements. 

In addition, the equations of the system can be rewritten in the form of equalities .z~'-- 

~ , • • • , "~ (z~), . .~ z~ -- ~ (~), in which Q~, ., Qn are polynomials of degrees ml -- i 

m n -- i. Using these equations, it is not hard to show that every polynomial Q(x) coincides 

on the set A with some polynomial in the space M(m). This implies Lemma l, since every func- 

tion f on the finite set A is the restriction of some polynomial. 

LEMMA 2. The inconvenient systems form a hypersurface in the space of all systems of 

degree m. 

Indeed, as is well known, the degenerate systems form a hypersurface in the space of 
all systems of degree m. Take any nondegenerate system and enumerate its roots arbitrarily, 
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a~,...,a~. Then enumerate in some way the integer points in the Newton polyhedron A(m) o 
These numerations define bases in the ~-dimensional space C(A) of all complex-valued func- 
tions on A and in the ~-dimensional space M(m). Let det denote the determinant of the ma- 
trix of the restriction mapping ~: ~(~)--~C (N) with respect to these bases. The number 
det = does not depend on the choice of enumeration; it depends only on the coefficients of 
the system, this dependence being analytic. A nondegenerate system is convenient if and 
only if the number det = for it is distinct from zero. The function det = is not identically 
equal to zero. Indeed, by Lemma i, there exist convenient systems of degree m. Lemma 2 is 
proved. 

Let M(m, R) denote the space of polynomials with real coefficients with Newton polyhe- 
dron A ( m ) , M ( m , R )  = M ( m )  ~ R[x] .  

LEMMA 3. For a convenient system of equations of degree m with real coefficients, the 
restriction of polynomials in the space M(m, R) to the set A defines an isomorphism of M(m, 
R) with the algebra L~ onto A, where ~: N-+~ is the involution of complex conjugation. 

The restrictions of polynomials in M(m, R) clearly lie in the algebra L~. In addition, 
for convenient systems a nonzero polynomia~ in M(m) corresponds to a nonzero function on Ao 
Lemma 3 follows from the inclusion M (m, R)~M(m) and the fact that dim M(m, R) = ~ and 
dim L~ = ~. 

6. Inequalities for Nondegenerate Fields 

We conclude the proof of Theorem 1 (see Sec. i). Let V, Po be a nondegenerate pair of 
degree m, mo. Under a small change in the coefficients of the components P:, -, Pn of 
V and polynomial Po, the numbers ind, ind +, and ind- will not change. It can therefore be 
assumed, without loss of generality, that P~ = . • Pn = 0 is a convenient system of degree 
m (see Lemma 2, Sec. 5) and that the surface Po = 0 in C n does not intersect the set of roots 
A of the system. By Lemma 3 in Sec. 5, every function on A in L~, where the involution ~: 
N-+ A is complex conjugation, is the restriction of a unique polynomial in M(m, R). We 
consider the quadratic form K~ (f) on L~ with ~----Po/~ (here j = det ~P/~x). According to 
the assertion in Sec. 4, o~ = ind +- ind-. It follows from the Eule~Jacobi formula that 

] for all polynomials f of degree less than~ (m~--I)--m~ , the identity K~ (/)= 0 is valid. 
~>0 

In our case, the inequality ~ o ~  ~-- 2 dim~0~, takes the fo~ ~ind +- ind-~ N (~, 
mo). Indeed, ~ is equal to the number of integer points in the polyhedron A(m), and dim Lo 

is equal to the number of integer points in A(m) satisfying the inequality ~ ~/~[~ (m~-- 
>0 

i)-- ~0]~ The inequality ~ind + ~ ~nd- ~< ~ (~, ~0) has been proved. The inequality ~ind ~< 

[i (~) is a particular case of this inequality for mo = 0. Combining the inequalities 
~ind ~ = ~ind + + ind-~ [I (m) and~ind +-ind-~< ~ (m, ~0), we get ~ind +~<~/~ [~ (m, m0)+ ~ {m)] = 

O (~, toO). The congruences ind ~ ind +- ind- ~ ~ rood 2 are almost obvious (seeCorollary in 
Sec. 4). Theorem 1 is proved (the necessary examples of pairs V, Po are given in Sec. 3). 

7. Inequalities for Degenerate Vector Fields 

We conolude the proof of Theorem 2 (see Sec. i). 

LEMMA i. Assume that the characteristic ind + is defined for a pair V, Po of degree m, 
mo. Then: i) if the region Po > 0 is compact, lind+l< O (m, m0); 2) if 2k > mo, I,i~4+ I 
< o (~, 2k). 

Indeed, the first assertion of the lemma is easily reduced to Theorem i. We prove the 
second assertion. The domain U s defined by the inequality P0 -- ~r2~ ~ 0, where r ~ = Ex~ and 
s is small, contains the same singular points of the field V as the region Po > 0. The re- 
gion U s is already compact, and therefore the second assertion also reduces to Theorem i. 

COROLLARY i. i. Assume in hypothesis 2) of Lemma 1 that mo is odd and ~ mi~nmod2. 
i>0 

Then l ind  + ] < O (m, too). 

2. Under assumption 2) of Lemma i, let mo be even and ~, m~ ~ n mod 2. Then l ind+I~ 
i>_.0 . 

O(m, mo+t). 
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Indeed, in case i, O (n,n 0 q- i) = O (n, n0), and in case 2,~ O (n, n0 ~- 2) = O (n,n 0 ~- i). 
Corollary 1 therefore follows from Lemma i. The examples in Sec. 2 show that the inequali- 
ties in Corollary 1 are best possible. It remains for us to comsider the case of even mo 
with En~----mmod2. 

• 

Consider the strip Uo in R n contained between two parallel hyperplanes F~ and F~. 
- • 

LEMMA 2. Assume that.for every nondegenerate pair of degree m, mo the inequality 

I f (V,P0) I~ (n, n0) is valid and the characteristic F is antiinvariant. Then for every 

strip Uo the inequality I~ ~, ~ (V, Po)=I<~ (n,n~) is valid. 
~ 

Proof. The planes r~ and F~ divide R n into three regions Uo, U~ and U=. We put c~ = 

~, F(V, P0)= for i = 0, I, 2. It can be assumed that the planes r~ and F~ do not pass 
~U~ 

through the singular points of the field V (otherwise the strip Uo can be taken to be slight- 
ly smaller). We consider two projective transformations g~ and g~ for which the planes F= 
are P1 and r~. We obtain two nondegenerate pairs F~,i~0 and F ~, P~ of degree m, mo, for which 
the absolute values of the characteristic F are equal to I=o q- ~ --=~I and I~o--~ ~- =~I. By 
hypothesis, le0-~ ~-- c~I<~ (~,m0),le0-- ~-~ e~l< ~(n, n0), whence I Col<~ (n, n0). Lemma 2 
is proved. 

LEMMA 3. Under the hypotheses of Lemma 2, the inequality I f (g, P0) I~ Q(n, n0) is 
valid for any pair V, Po of degree m, mo for which the characteristic F is defined and such 
that the surface Po = 0 does not pass through singular points of the field V. 

Proof. We consider a family of pairs V t, P~ depending algebraically on the parameter 
g, 0 ~ i ,  such that the pairs V~, P~ are nondegenerate for t < i and such that when t = i 
the pair V x. P~ coincides with the pair V, Po. The singular points =t of the field V t move 
along algebraic curves as t varies, and at t = i certain of the curves ~t will tend to the 
singular points of~e field V. The remaining .curves will go off to infinity. For almost 
every linear function Z, the number ~(~t) for such curves will also tend to infinity. Let 
~ be such a linear function and let the number p be so large that the strip Uo defined by 
the inequality Ig(m) l<p contains all the singular points of the field V. Then for values 

of t close to unity, ~ ~(V ~, P~)= F (V, Po). Indeed, the singular points which go off to in- 
a t ~  

finity give no contribution to either the left or the right hand side of this equality. In 
addition, by virtue of the additivity of the index of a vector field F (V, P~a = ZF (V ~, Po)a~, 

where the summation is over the points at tending to a. In order to complete the proof, it 
remains to apply Lemma 2. 

COROLLARY 2. Under the hypothesis of Lemma i, assume that mo is even and En~mmod 2. 
Then lind+l~O (~, n0). In particular, for m~ = 0 we have the inequality lindl~H(ra). 

Indeed, in the case of even mo and ~n~-----mmod 2, the characteristic ind + is antiinvar- 
lent. It is easy to get rid of the extra assumption that the surface Po = 0 contains no 
singular points of the field V. It suffices to consider the smaller surface Po--~0 for 
small e. 

Corollaries i and 2 in conjunction with the examples of Sec. 3 completely prove Theo- 

rem 2. 

8. Remarks 

8.1. What values can the index take. for a polynomial vector field in the ball R ~- 
Ez~>0? The following assertion answers this question for half of the degrees. 

Assertion. Let V = P~, -, ~n be a polynomial field of degree m - m~, .., m n 
which h~so-~yisolated Singular points in the ball R~--Ex~>0. If ml ~ ...q-m~n mod 
2 then the total index summed over these singular points can be equal to any number from 

--O(n,i) to+O(n,~). 
Indeed, the ball'H ~ Ez~>0 is defined by an equation of second degree, and there- 

fore, by Lemma i in Sec. 7, [ind+l~O(n,~). For ~ n~mmod2, O(n,~)=O(n,~). We turn 
~>~ 

to some examples. The field V(m) (see Sec. 3) for ~,ni~mmod2 contains exactly O(m, i) 
4>a 

~ingular points on the plane. Ex~ =~--~ , and the indices of all these points have the same 
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sign. These points can be contained in an ellipsoid which contains no other singular points. 
By making the ellipsoid smaller, it is possible to have any number of singular points from 
this plane inside the ellipsoid. Since the ellipsoid can be taken into a sphere by means 
of an affine transformation, the assertion is completely proved. 

I do not know a precise estimate for the index of a polynomial field in a ball for 
m~ + . . + m n =- n mod 2. 

, 

8.2. Let V, Po be a pair of degree m, mo and V = P~, . . ., Pn. We consider a field 
-- __ 

F ~ ~0,. • ",~ in n + 1 variables Xo, . ., x n in which the Pi are homogeneous polynomials 
of degree m i such that ~ (~ x~ ..... ~) =~ (z~ ..... z~0. 

Assertion. The field ~ has an isolated singular point at zero in the space ]{~+~, if the 
pair V, Po is nondegenerate. If in addition ~ -~ . o . q- ~ ~ e mod 2~ then the index of this 
point is equal to the characteristic ind + -- ind- of the pair V, Po. 

We will not dwell on the proof, which is not complicated. We note that the above as- 
sertion explains the projective invariance of the characteristic ind +- ind- in the case 
mo + . . . + m n -= n mod 2. In this case, it also reduces Theorem i to the Petrovskii-Oleinik 
inequality for the index of a singular point of a homogeneous field. I do not know if there 
exists a similar reduction when ~0 ~- • • • ~- ~ m o d 2  and mo > 0. 

8.3. In their fundamental paper [i], Petrovskii and Oleinik estimate the Euler charac-. 
teristics of algebraic sets. Here is an example of such an estimate. 

Assertion. Let P: l~-+ I~ be a polynomial of degree k such that the surface P = 0 is 
nonsingular and the regions P < c are compact for every #, ~ ~ I~. Then the Euler character- 
istic X of the region P < 0 satisfies the inequality l l--2%I~II (~,~--i), where ~---- 
~ ~ i ..... l~ ~ i. 

" ~ tim~--~ 

Proof. We consider the pair consisting of the field V = grad P of degree m and the 
polynomial P of degree k. By Morse theory, X =ind÷ and i = % (R ~) =ind+~ind -. In addi- 
tion, the polynomials --P and Q =--P ~(I/k)ExiP~i coincide at the singular points of V, and 
therefore the pairs V, --P and V, Q have the same characteristics ind ±. By Euler's formula 
for homogeneous functions, the polynomial Q has degree k -- i. Making use now of Theorem i, 
we get I~nd÷--ind-l~H (~, k-- ~), and taking into account the equality ~nd + ~ ind- = ~ and 
X = ind+, we obtain the required inequality I~--2%1~H (~, ~-- ~). 

We note that this inequality for the Euler characteristic is only known to be best 
possible for n = 2 (see [7]). 
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