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STRAIGHTENING OF PARALLEL CURVES
uDC519.67s

A. c. HovANsKli

To each plane curve I we adjoin the two,parameter lamily of curves fq obtained byparalleltranslating I by all possible vectors 4 €Rz. For which curves I does ttrere exist,a
(ocal) diffeornorphjsm ,p of the plane wfuch maps all curves lq into straight lines? This or,".tion is answered in this paper. Moreover, all straightening diffeomorphisms ar" d"r.rib.d.t".,'
This gives a solution to a well-known problem of theoretical nomography (cf. tf], p. f:U)
Ia nomographic terminology, this problem consists in describing a[ transformations of noiro-
graphs made of aligned points into nomograms with oriented guidegricl, 

"u.rying " 
auruitinr*

scale,

lrt us formulate our results.

THEoREM l. A famib, of carves lo can be staightened tocally if and only if the cuneI is affinely equivalent to one of the fottowing five atves..

1)e'+2t=1'
2) ex coslt = 1'
3\ y=e';
4) v=x':
5)Y=0.

THEoREM 2. A local diffeomorphism straightens some family of affves lq, not conist.
ing of stro.ight lines, if and only if it can be transformed into one of the followig four formt
by means of a linear transformatian of the domain space (x, y) and a projection transforma.
tion of the domain space (u, u):

l)u=ex, u=d;
).) u = e' cosy, u = e'sin1;
3)u=e', v=ye';
4)u=x2 +y, u=y.
I-et us begin by proving Theorem 2. we shall classify the Iocal diffeomorphisms 9: Rl* Ri which straighten some famiJy of curves fo. Take the mapping in R? defined by

parallel transport by some yector /. In the plane R] there is a corresponding mappingll/,
defined by t ,t p1 - ql,t- | ( p\ + rl .

LEMMA 1. If the curve I is not a straight line segment, then the mapping nr: Rl-
Rl must be prcjective-

In fact, it is clear from the definitions that the mapping 7rl sends the two_parameter
family of liaes gfo into itself (more precisely, ?r, maps a line gfq onto the line glon,). We

saythatafamilyoflineslisrepresentativeinaregionUifforeachpointpcUthereisa
)ne l(p) e L and an angle a(p) > O, depending continuously on p, such that the lamily,
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contains all lines through p making an angle not exceeding e(p) with the line 1(p). We need

the following fact'

LEMMA 2. Let n be a lrcneomorphism of a connected regiott U, into a regiott LIr. If
r naps the lines of a family L which is rcpresentative fot IJ t itlto lines of the region Lt., then

1r is a proiective transformatiott

We sketch the prool of Lemma 2. It is well known that a homeomorphism which

sends all lines into lines is a projectjve transformation. The proof of this lact is based on con,

structing an everywhere flat Mobius net (cf. [2] , p. t34). The proof of Lemma 2 is based

on the same arguments. In the neighborhood of each point p € Ur we can construct a flat
Mobius net, all ofwhose lines lie in the family Z. This construction shows that the mapping

a is locally projective. The connectedness of the region U, now intplies that r is projective.
kmma I follows from Lemma 2. Indeed, it is easy to see that if the curve I is not a

straighl line, then the family of lines 9I-o is representative.

[€t us continue the proof ofTheorem 2. The transformations zr: R] *R3 corre_

sponding to translations ofRl lorm a romrnutative local group of transiormations of the
plane Rl. This group is locally transitive, j.e. it has a twodimensional orbit. Lemma I re-
duces the oiginal task to the problem of describing all commutative twodimensional groups
of projective lransformations of the plane.

To a iocal group of projective transformations of a plane there corresponds a local
goup of linear transformations of three'space with determinant onc. If we add the scalar na-
trices \tr to the algebra of this group, we arrive at the problcm of classifying the three-dimen-
sional commutative Ue aglebras which act on R 3.

Lzt nx 3. Each threedimensional conlmutatire subalgebra of the Lie algebra of all
linear transformations of R3 can be put itlto one of the fo owing six fonns b1, a suitable

' chanEe of basis
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In each of these fom1s, the paranleters a, b and c denote arbittary reql ttumbers.

The fulJ proof of this iemma is based on some straightforward computations and is not
Sven here. The proof uses one general argument. We say that an /1 x rr matrix is a S)rteJler
'r4ft.{ if each eigenvalue has exactly one Jordan block. It is easy to show that all matrices
anunuting with a sylvester matrix commule with each other ani form an rdimensional
c{mmutative algebra. Algebras 1.1 4) have the following types of Sylvester matrices:l) lhree distinct real eigenvalues; 2.1 one real and two conjugate complex eigenvalues; 3) a
one'dimensional 

Jordan cell-and they consist of all malrices commuting with these. re,spectiveiy. 
Algebras not having any Sylvester matrices are analyzed separately. We note thatconmutative 

algebras of transformations of higher<limensional space have continuous moduli
and tesist tractable classification.

285



LEMMA 4. A two-pstsmeter commutative group of ptojective transformations of the

plone cqn be transformed into one of the following six groups G by means of a linear coor4i-

nqte change in the parameter plane (x, y) and a projective coordinste change in the plane

(u, v). A mappins n(x, y) of the group G maps a point (u, D) into one of the folloreing
points, respectively:

ll ye'u. e) v1.

2) e'(ucos1, - usin/, asinl -ucosy);
3') ex(u, tu + v):
4) lu'xu -J +12l,1, u+xJ:
5) (r + x, u +y);
6) (u+xu+y,u).

To prove Lemma 4 it suffices to combine the algebras given in kmma 3 into groups of
linear transformations and to consider the conesponding groups of proj€ctive transformations,

l.et us now conclude the proof of Theorem 2. LEt ,p: ni --'l- A7 be a diffeomorphisrn

that straightens some family fq not consisting of lines. To each point r € R] there corre-

sponds a projective transformation r, of the plane Rl such that 9(r) :7Tr. ,p(0). These

groups of transformations ?T, are described in lpmma 4. Hence, in order to define the map-

ping I it is only necessary to fix the point 9(0) in a twodimensional orbit of one of the

groups 1) 6). For groups of form 1) 4), the mapping p does not depend on the choice of
the twodimensional orbit or of the fixed point 9(0), neglecting projective transformations of

the image space. Accordingly, the mappings g are the diffeomorphisms 1)-4) olTheorem 2,

A group of type 6) generally does not have a two-parameter orbit. For groups of type 5) the

mapping 9 is a translation. A translation sends lines into lines. The proof of Theorem 2 is

complete.

Theorem 1 follows from Theorem 2: nonlinear curves I- with straightenable families

I-q are preimages of straight lines under the mappings 1) 4) described in Theorem 2.

REMARK. In the hypotheses of Theorems I and 2 the smoothness requirements on the

curve I ald the mapping g were made only for convenience of presentation. Theorems I ald

2 arc true also for continuous curves I and homeomorphisrns g; the fact is that continuous

homomorphisms of Lie groups are automatically smooth mappings (cf. for example [3],
Chapter V, $3, Theorem 3.2).

I am grateful to G. S. Hovanskii for arousing my interest in nomography.
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