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REAL ANALYTIC VARIETIES WITH THE FINITENESS PROPERTY AND COMPLEX 

ABELIAN INTEGRALS 

A. G. Khovanskii UDC 513.836+517.919 

It is known from algebra that the number of components of a level surface of a poly- 
nomial is finite and can be explicitly estimated in terms of its degree. A similar situa- 
tion is known in analysis [I]: The number of components in a cube of a level surface of a real 
real analytic function is finite. There is no explicit estimate in this case; however, there 
is uniform boundedness with respect to a parameter: For a function which depends analytically 
on a parameter running through another cube, the number of components of a level surface is 
uniformly bounded [2]. 

One is able to find an explicit estimate for the number of components for certain inte- 
gral manifolds (called separating solutions) of algebraic distributions of hyperplanes. A 
separating solution of a Pfaffian equation (cf. [3, 7] and Sec. I) is a bounding domain of 
an integral manifold of a distribution of cooriented hyperplanes, whose coorientation coin- 
cides with the coorientation of the boundary of the domain. The properties of separating 
solutions recall the properties of level surfaces. Thus, the number of components of a 
separating solution of a Pfaffian equation with polynomial coefficients is finite and can be 
estimated in terms of the degrees of the coefficients. One can read about theorems of this 
kind and their applications to algebra and the theory of elementary functions in [3-7] (cf. 
also Sec. I). 

Separating solutions can also be considered for Pfaffian equations with analytic coef- 
ficients. With the help of such solutions we construct a class of real analytic varieties 
in Secs. 2 and 3. For the varieties constructed, finiteness theorems are valid (cf. Sec. 4). 
There are no explicit estimates here, but on the other hand there is uniform boundedness with 
respect to parameters. 

Example. We consider in an open cube of the space C n a single-valued branch I of an 
Abelian integral. It follows from the finiteness theorems of Sec. 4 that the number of com- 
ponents of the complex level surface I = c of this function is finite and bounded by one 
constant, independent of the choice of level c. The theorem on complex Abelian integrals 
is given in Sec. 5. This theorem arose as a result of thinking about the analogous result 
of Varchenko on real Abelian integrals [8]. Reference [8] impelled me to repeat the construc- 
tion of Pfaffian varieties, using Pfaffian equations not only with polynomial but also with 
analytic coefficients. 

I am grateful to V. I. Arnol'd, A. N. Varchenko, A. M. Gabri&lov, and E. I. Korkinaya 
for many helpful discussions. 

I. Separating Solutions of Pfaffian Equations 

Let M be a smooth manifold (possibly not connected and nonorientable) and ~ be a l-form 
on it. The following definition plays an important role in what follows. 
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Definition. A submanifold of codimension one in M will be called a separating solution 
of the Pfaffian equation a = 0, if: a) the restriction of the form ~ to the submanifold is 

identically equal to zero; b) the submanifold does not pass through singular points of the 
equation (i.e., at each point of the submanifold the form a does not vanish in the tangent 
space to M); c) the submanifold is the boundary of a domain in M, while the coorientation 
defined by the form coincides with the coorientation of the boundary of the domain (i.e., 

on vectors, applied at points of the submanifold and emanating from the domain, the form 
is positive). 

Example. A nonsingular level surface H = c of the function H is a separating solution 
of the Pfaffian equation dH = 0 (it bounds the domain H < c). 

For separating solutions the following version of Rolle's theorem holds. 

Assertion I. Between two points of intersection of a connected smooth curve with a 
separating solution of a Pfaffian equation, there is a point of contact, i.e., a point at 
which the tangent vector to the curve lies in-the hyperplane a = 0. 

We do not need the full extent of this assertion. We shall prove only the following 
lemma. 

LEMMA I. Assertion I is valid if the curve intersects the separating solution trans- 
versely. 

Proof. At neighboring points of intersection the values of the form a on the tangent 
vectors to the curve, directed according to its orientation, have different signs. Hence the 
form e vanishes at some intermediate point. 

Remark. If under the hypotheses of Assertion I the Pfaffian equation is completely 
integrable, then one can eliminate the requirement of smoothness of the curve. It suffices 
merely to require that the curve have a tangent vector at each point. Rolle's, Lagrange's 
and Cauchy's theorems are obtained from this assertion if the manifold is the plane and the 
Pfaffian equation defines a family of parallel lines on it. 

COROLLARY I. Under the hypotheses of Lemma I, let the curve have B noncompact connected 
components and N points of contact with the distribution ~ = 0. Then the number of points of 
intersection of the curve with a separating solution does not exceed N + B. 

(Under the hypotheses of Corollary I the number of compact components of the curve is in 
no way restricted and can be infinite.) 

Corollary I is basic for all the estimates of this section. The condition of contact of 
the curve with the distribution can turn out to be very degenerate. Assertion 2, formulated 
below, allows us to perturb the contact condition. It furnishes a version of Corollary I 
which is more convenient for applications. 

First some definitions and lemmas. Let f:M n ÷ N n be a smooth map of manifolds of the 
same dimension. By the upper number of preimages (u.n.p.) of a point a ~  ~ is meant the 
smallest number C, for which one can find a neighborhood of the point a, in which all regular 
values of the map f have no more than C preimages. 

LEMMA 2. At the point a~N n let there exist an u.n.p, equal to C; then: I) at all 
points sufficiently close to a there exists a u.n.p, and it is ~C; 2) the number of nonde- 
generate preimages of the point a does not exceed C. 

Proof. I) is obvious. 2) Let there be C + I nondegenerate preimages among the pre- 
images of a. Then by the implicit function theorem, points close to a have at least C + I 
preimages. 

We call a smooth positive function 0 on M covering, if it tends to zero at "infinity" 
in M, i.e., if the map p-l:M ÷ R l is proper. We associate with a smooth map F of an n-di- 
mensional manifold M n into an (n -- 1)-dimensional manifold N n-1 the map F~:M n ÷ N n-1 × R I, 
defined by the formula F~ = (F, p). 

LEMMA 3. Let the u.n.p, of the point (a, 0)~N n-1X R I for the map F~ exist and not 

exceed 2B. Then the preimage of any regular value of the map F, sufficiently close to a, is 
a smooth curve, which has no more than B noncompact components. 

Proof. On each noncompact component of the curve the function p -- ~, where ~ is a suffi- 
ciently small positive number, has not less than two zeros. One finishes the rest of the 
proof just as in Lemma 2. 
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On the manifolds M n and N n-1 let there be fixed volume forms v n and w n-l. We denote by 

* the map of n-forms on M into functions which is defined by the relation (*Tn)v n = ~n. Let 

= 0 be a Pfaffian equation on M n and let F be a separating solution of it. We associate 

with a smooth map F:M n ÷ N n-1 two mappings of M n into N n-1 × RI: the first map is F~ = (F, p) 

and the second map is F~ = ( f ,  * (~ /k, F*wn-1)). 

Assertion 2. Let the u.n.p, of the point (a, 0)~N n-~ X R 1 for the maps F~ and F~ exist 

and not exceed 2B and N, respectively. Then the u.n.p, of the point a ~:_ N ~-I for the re- 
striction of the map F to the separating solution F exists and does not exceed N + B. 

Proof. Let the point b be a regular value both for the map F and for its restriction 
to the separating solution F. Then at two successive points of intersection of the curve 
F-l(b) with the separating solution F the function , (~ /~F*w~- l )  assumes values of different 
signs. On the part of the curve lying between two successive intersections, it assumes all 

intermediate values. To complete the proof it remains to use Lemma 3 and Lemma 2. 

Remark. Assertion 2 gives an estimate of the u.n.p, of a point a~N n-1 for the map 
FIF , which is independent of the choice of separating solution F of the equation e = O. 

Definition. Let ~l,-..,~k be an ordered collection of l-forms on the manifold M. We 
shall say that the submanifold F C~f is a separating solution of the ordered system of 
Pfaffian equations ~l = ... = ~k = O, if there exists a chain of submanifolds M:F0~ • • o~ 
F k = F, in which each successive manifold F i is a separating solution of the Pfaffian equa- 
tion F i = 0 on the preceding manifold Fi_l, where the first manifold coincides with M and the 
last with F. 

Let there be fixed on the manifold M n a covering function p and a volume form v n to- 
gether with the corresponding operation *. Suppose there is given on the manifold M an 
ordered system of k Pfaffian equations ~l = ... = ~k = 0. We consider a smooth map F of the 
manifold M n into a smooth (n -- k)-dimensional manifold N n-k with volume form w n-k. Below 
we describe a construction which associates with each map F of M n into N n-k a collection of 
2 k maps of M n into Nn-kR k. The construction depends on the following data: form ~i,..-,~k, 
giving a system of Pfaffian equations; the volume forms on M n and Nn-k; the map F; and the 
covering function p. The following theorem holds here. 

THEOREM I. For any separating solution F of a Pfaffian system of equations, and for 
any point a=~--_N ~-~ , the u.n.p, of the point ~ for the restriction of the map F to F can be 
estimated explicitly in terms of the collection of 2k u.n.p, of the point (a, 0) C=-_N ~-~ X R ~ 
for the 2 k mappings constructed below from M n to N n-k × Rk. The estimate is meaningful if 
all 2 k u.n.p, exist. It does not depend on the choice of the separating solution F of the 
system of Pfaffian equations. 

The proof of the theorem consists of producing the collection of mappings and reference 
to Assertion 2. Both are done in steps. At each step the number of Pfaffian equations is 
decreased by one. By hypothesis, the manifold F is a separating solution of the equation 

ek = 0 on the manifold Fk_ I. On this manifold the restriction of the function p is a cover- 
ing function, and the form v~/~i/~.../~_i is a volume form. The operation "Z ~ for this 

form is defined by the relation "~Tn-~+1 = . (~i/~.../~-~/~Tn-~+l)It. According to Assertion 
2, the u.n.p, of the point a for the map FIF:F + N n-k can be estimated in terms of the u.n.p. 
of the point (a, 0) in N n-k × R l of the following two maps: the restriction to Fk- l of the 
map (F, 0) and the restriction to Fk_ I of the map (f,. (~i /~..- /\ ~-i/~ f*wn-~)). It is neces- 

sary to continue this process. To estimate the u.n.p, of the point (a, 0)~N ~-~ X R~ for each 
of the two maps constructed of Fk-~ into N n-k × R ~, it is necessary to construct two maps for 
each of Fk_ 2 into N n-k × R z and use Assertion 2, etc. 

COROLLARY 2. Under the hypotheses of Theorem ] let the manifolds M n and N n-k be R n and 

R n-k, the forms ~l,--.,~k have polynomial coefficients (i.e., ~i = EPijdxj, where Pij are 
polynomials) and the map F be polynomial. Then the upper number of preimages which figures 
in Theorem ~ exists and can be estimated explicitly in terms of the degree of the polynomials 
which are the coefficients of the form ~i and the components of the map F. 

For the proof it suffices to use Theorem I, taking the standard volume forms in R n and 
R n-k and the covering function ~ = ~/(] + Ex~). Theorem I reduces the estimation of the num- 
ber of solutions of a transcendental system of equations to the estimation of the number of 
solutions of 2 k polynomial equations, which, in its own right can be obtained from Bezout's 
theorem. 
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Applications of Corollary 2 can be found in [3-7]. In the next section we describe 
another situation in which Theorem ] proves only the existence of estimates but cannot give 
their explicit form. 

2. Separating Solutions on Nonsingular Semianalytic Sets 

With an analytic variety M which is a semianalytic set in a real projective space,_we 
associate the ring ~M of functions, analytic on M and meromorphically extendable to M 
(i.e., f ~  , if for each point of M one can find a neighborhood in projective space and a 
meromorphic function in this neighborhood, whose restriction to M coincides with f). With 
the ring 91M we associate the algebra ~M of exterior forms, generated by functions from the 
ring ~M and their differentials. 

Definition. We call the analytic variety M cRPN simple, if: I) M is a semianalytic 
set in RpN; 2) the ring 91M contains a covering function, i.e., a positive function on M, 
which tends to zero as one tends to the boundary; 3) there exists on M a volume form such that 
the ratio of any form of highest degree from ~M to this volume form is a function of ~M. 

Example. I) The space R N, imbedded in the standard way in RP N, is the simplest example of 
of a simple manifold. The ring ~nN contains all rational functions on R N. 2) The product 

of two simple manifolds is a simple manifold (for any algebraic imbedding of the product of 
projective spaces in projective space). 

THEOREM 2. Suppose given on the simple n-dimensional analytic manifold M a system of 
Pfaffian equations ~i = ... = ~k = 0, where ~i are ]-forms from ~M. In addition, let there be 
fixed n -- k functions fl,..-,fn-k from the ring ~M. Then there exists a number C such that 
for any separating solution F of the system of Pfaffian equations and for any parameters 

al,...,an_k, the system of equations fl = al,...,fn-k = an- k has no more than C nondegenerate 
solutions on F. 

Proof. If the Pfaffian is not general (i.e,, if k = 0), then Theorem 2 follows from 
Gabri61ov's theorem [2]. Theorem ] of Sec. ] reduces the general case to the one considered. 

Remark. Gabri~lov's theorem in its own right can be proved by the method of Sec. ]. 
Only an insignificant modification of it is needed. In Sec. I we eliminated singularities 
by small perturbations. Instead of this it is necessary to consider singular analytic sets 
and their stratification. I expect to return to this question in a forthcoming publication. 

COROLLARY ~. Under the hypotheses of Theorem 2 suppose the functions fi depend poly- 
nomially on parameters. Then there exists an estimate for the number of solutions of the 
system, independent of the choice of parameters. 

For the proof it suffices to apply Theorem I to,the product,of the manifold by the space 
of parameters R N, the system of Pfaffian equations ~i~i = . . .  = ~i~ k = O, and the collection 
of functlons ~ifl, . . . .  ,~b N. Here 71, 72 ,~ifn-k, ~2bl, .. are the projections of the Cartesian 
product onto the first and second factors, bj are the coordinate functions in R N. 

Theorem 2 is sufficient for most applications. For example, the central technical asser- 
tion of [8] (Lemma ] of Sec. 3) follows from it. Our further goal is to construct the cate- 
gory of manifolds in which this theorem works. 

We dwell on certain properties of simple manifolds. 

We call a finite set of N functions on a manifold separating, if these functions give 
an imbedding (without self-intersections or singularities) of the manifold into R N. 

Assertion ]. The ring ~M of any simple manifold contains a separating set. 

Proof. Real projective space can be imbedded in R N. 

By an affine domain in a simple manifold is meant a domain defined by a condition f ~ 0, 
where f~M. 

Assertion 2. ]) The union and intersection of a finite number of affine domains are an 
affine domain. 2) The complement of the zeros of a form from ~M is an affine domain. 3) 
Each affine domain U~M~RP ~ is a simple submanifold of RpN. 

Proof. The sum of the squares of functions vanishes precisely at those points where all 
the functions are equal to zero. This proves that the union of affine domains is an affine 
domain. The rest of the assertions are proved just as simply. 
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3. Pfaffian Manifolds 

Definition. An analytic submanifold X of codimension k in a simple analytic manifold M 
is called a simple Pfaffian manifold if there exist a finite collection of affine domains U i 
and a finite collection of l-forms ~ii,..., ~ i ~  such that: 

I) in the domain U i there exists a separating solution X i of the system of Pfaffian 
equations ~il = -.. = aik = 0 such that the intersection of the submanifold X with 
the domain U i consists of connected components of the manifold Xi; 

2) the domains U i cover X. 

Definition. A system of equations defines a submanifold indivisibly, if: I) it defines 
the submanifold; 2) any covector which vanishes on the tangent space of the submanifold is a 
linear combination of the differentials of the equations. 

Assertion I. A submanifold Y of codimension m, indivisibly defined by a finite system 
of equations /i ~ .-- =/N = 0, / i ~  in a Pfaffian submanifold X c~, is a Pfaffian sub- 
manifold of M. 

Proof. Let Ui be the covering which figures in the definition of the Pfaffian submani- 
fold X. With an index i and an increasing collection of indices J = {jl, .... jm }, I ~ j~ ... 

Jm ~ N, we associate the domain Ui, J in which the form a~i/\. °./~i~/~d/]~/~.../~d/j~ does 

not vanish. In this domain, the manifold defined in X by the equations fJl = "'" = fjm = 0 

is a separating solution of the system ail = ... = aik = dfjl = ... = dfjm = 0 (under the con- 

dition that m > 0), and the manifold Y N Ui, J consists of connected components of it. 

In the same way one verifies 

Assertion 2. The product of simple Pfaffian submanifolds of simple manifolds Ml and M2 
is a simple Pfaffian submanifold of M1 × M2. 

Definition. I) We call an analytic manifold X with ring of analytic functions ~x a 
simple Pfaffian manifold, and the functions of the ring ~x simple functions, if there exists 
an imbedding v of the manifold X in a simple analytic manifold M, such that ~(X) is a simple 
Pfaffian submanifold of M, and the ring ~x is induced from the ring ~ by the imbedding 
~. 2) We call a map of one simple Pfaffian manifold into another a simple map, if it induces 
a homomorphism of the rings of simple functions. 

A composition of simple mappings is a simple mapping. However, a map which is inverse 
to a simple one is not simple in general. Our next goal is the extension of rings of func- 
tions on simple Pfaffian manifolds with the help of the addition of inverse maps. 

Definition. I) Let MI and M2 be two simple Pfaffian manifolds. We call the map f:Ml ÷ 
M2 admissible, if there exist a simple Pfaffian manifold M and simple maps of it ~l:M ÷ Ml 
and n2:M + M2 such that the projection ~i is an analytic diffeomorphism between M and MI, 
and f = ~2~ I. 

2) We call a function /:d~1~R I on a simple Pfaffian manifold admissible, if there 
exist a simple Pfaffian manifold M, a simple map of it ~l:M ÷ MI, and a simple function 
g:M ÷ R I such that ~i is an analytic diffeomorphism and f = g~7 i. 

3) The manifold M with projection ~I:M ÷ Ml, which figures in |), 2), is called a resolu- 
tion of the corresponding mapping or function. 

Assertion 3. A finite number of admissible functions and maps have a common resolution 
(i.e., there exists one manifold M with projection ~l:M ÷ MI, on which the fixed finite num- 
ber of admissible functions and maps of the manifold become simple). 

COROLLARY I. On a simple Pfaffian manifold the admissible functions form a ring. 

Proof of the Corollary. Any two admissible functions can be considered on a common 
resolution. On this resolution one can carry out arithmetic operations on the functions. 

The proof of Assertion 3, and also all the other assertions of the present section, is 
based on Assertion 4 which is formulated below and is easily verified. 

Let MI, M2, M3 be smooth manifolds and ~l:Ml + M3, ~2:M2 + M3 be smooth maps, whose 
images intersect transversely in Ms [i.e., if ~l(a) = ~l(b) = c, then the images of the tan- 
gent spaces at the points a and b to M1 and M2 generate the tangent space to MB at the point c]. 
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Assertion 4. The set of points (a.b)~M I × M 2 for which ~1(a) = ~2(b) is a smooth 
submanifold. Further, for any finite separating set of functions {fi } on M~ the system of 

equations ~fi(a) = ~fi(b) in M I x M2 defines this submanifold somehow. 

To prove Assertion 3 it is necessary to consider with two resolutions ~I:MI ÷ M and ~2: 
M2 + M the resolution ~:F ÷ M, where F is the submanifold in Ml × M2, defined by the condi- 
tion ~l(a) = ~2(b), and s is the projection defined by the condition ~ = ~Ipl = ~ep2, where 
Pi are the projections of the product M1 x M2 on the factors. Assertions I and 4 guarantee 
that ~ is a resolution. 

Assertion 5. Let {fi } be a finite separating set of admissible functions on the simple 
Pfaffian manifold M. The map g of the simple Pfaffian manifold K into M is admissible if and 
only if all the functions {g*fi } are admissible. 

Proof. Let ~:M ÷ M be a resolution for the functions {fi} and p:K ÷ K be a resolution 
for the functions {g*fi}- The submanifold of K x M, defined by the condition gp(a) = ~(b), 
together with its projection onto K gives a resolution for the map g:K ÷ M. 

Assertion 6. A map of one simple Pfaffian manifold into another is admissible if and 
only if it induces a homomorphism of the rings of admissible functions. 

Proof. If one adds another function to a separating set of functions, then the set re- 
mains separating. Hence Assertion 5 follows from Assertion 4. 

COROLLARY 2. The composition of admissible maps is an admissible map. 

Definition. A domain on a simple Pfaffian manifold is called admissible, if it is the 
diffeomorphic image under an admissible map of some simple Pfaffian manifold. This manifold 
together with the diffeomorphism is called a resolution of the admissible domain. A map or a 
function on an admissible domain is called admissible, if it becomes admissible on a resolu- 
tion of the domain. 

Assertion 7. The intersection of a finite number of admissible domains in an admissible 
domain. 

The proof of Assertion 7 is a repetition of the proof of Assertion 3. 

Definition. By a Pfaffian atlas on a smooth manifold M is meant a finite open covering 

of it #f = UU~ together with diffeomorphisms ~i of the domains U i into simple Pfaffian 
manifolds, such that for all i, j the domain of definition of the diffeomorphism ~i~71 is 
an admissible domain, and the diffeomorphism is an admissible map. Two atlases are called 
equivalent if their union is an atlas. A Pfaffian manifold structure is a collection of 

equivalent atlases. 

A Pfaffian domain is a domain on a Pfaffian manifold, which in each chart of some atlas 
is admissible. One defines Pfaffian maps and functions analogously. A Pfaffian form is a 
form which in each chart of some atlas lies in the exterior algebra generated by the Pfaffian 
functions and their differentials. A Pfaffian vector field is a differentiation on the ring 
of Pfaffian functions (which does not leave this ring). 

We list some properties of Pfaffian manifolds. 

I. A real algebraic manifold has a unique structure as a Pfaffian manifold, compatible 
with the algebraic structure (i.e., such that all semialgebraic domains are Pfaffian 
domains and all algebraic functions are Pfaffian functions). 

2. The manifold of nonsingular points of a semianalytic set has a unique structure as a 
Pfaffian manifold, compatible with the analytic structure (i.e., such that all semi- 
analytic domains are Pfaffian domains and all analytic functions which can be mero- 
morphically extended to the boundary of the domain are Pfaffian functions). 

3. The tangent and cotangent bundles over a Pfaffian manifold and their tensor prod- 
ucts, the Cartesian products of several Pfaffian manifolds, and spaces of jets of 
mappings of one Pfaffian manifold into another have natural Pfaffian manifold struc- 
tures. 

4. The complement of the set of zeros of some Pfaffian function or Pfaffian form and 
the complement of the preimage of a point under a Pfaffian map are Pfaffian domains. 
The union and intersection of a finite number of Pfaffian domains and one or several 
connected components of a Pfaffian domain are Pfaffian domains. 
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5. The preimage of a regular value under a Pfaffian map, a submanifold indivisibly de- 
fined as the intersection of zero level surfaces of a finite number of Pfaffian func- 

tions, are Pfaffian submanifolds. 

6. A submanifold which is a separating solution of el = ... = ~k = 0 in which ~i are 
Pfaffian forms, one or several components of such a submanifold, and also a submani- 
fold which admits a representation of the sort described in each chart of some Pfaff- 

ian atlas are Pfaffian submanifolds. 

7. Compositions of Pfaffian maps and their jet extensions are Pfaffian maps. If the 
graph of some map of one Pfaffian manifold into another is a Pfaffian submanifold 

of their Cartesian product, then the map is a Pfaffian map. If there exists an 
analytic inverse of a Pfaffian map, then it is a Pfaffian map. 

Remark. The construction of Pfaffian manifolds from simple Pfaffian manifolds is done 
in two steps. At the first step one extends the supply of admissible functions on simple 
manifolds with the help of inverse maps which are diffeomorphisms. At the second step one 
performs ordinary gluings (one glues simple manifolds with the help of the extended supply 
of functions). Both steps of the construction can be applied to another initial supply of 
manifolds. For example, if one starts with real affine algebraic manifolds, then among the 
glued objects one will find, for example, all real algebraic manifolds, and among the ad- 
missible maps, single-valued branches over real manifolds of multivalued algebraic maps. Here 
is another example. Instead of simple analytic manifolds one can take the manifold R n with 

the ring of polynomials; instead of simple Pfaffian manifolds, separating solutions of Pfaffian 
equations with polynomial l-forms in R n. As a result of applying the two steps of the con- 
struction one gets another category of Pfaffian manifolds. In this category one can prove 
not only the finiteness of the connected components of a manifold, etc. (cf. the following 
section), but give explicit upper estimates of the number of connected components, etc. More 
details about this category can be found in [3, 7]. 

4. Finiteness Theorems 

By a realization of a distribution of linear subspaces in the tangent bundle ofa Pfaffian 
manifold is meant a choice of a finite covering of the manifold by Pfaffian domains together 
with a distribution in each domain given by a system of equations el = ... = ek = 0, where e i 
are Pfaffian l-forms (one for each domain). We call an integral manifold of the distribution 
a leaf compatible with a realization if in each domain of the covering it consists of con- 
nected components of some separating solution of the corresponding system of equations 

el = ... = ek = 0. 

Example. Let g be a Pfaffian map of a manifold into a k-dimensional manifold. With 
the map there is associated a distribution which assigns to each point the kernel of the dif- 
ferential of the map. Below we describe a realization of this distribution with which all 
leaves which are preimages of regular values of the map are compatible. We cover the mani- 
fold by a finite number of simple Pfaffian manifolds and in each of them we choose a finite 
separating set of functions {fi}. We cover each simple manifold in its own right by domains 
UI, where I = {il,...,i k} is a set of k indices, UI is the complement of the zeros of the 
form ~I=d/%/~ .../~d]~. One covers the manifold-preimage by the domains g-IUl, in each of 

which one fixes the system dfil = ... = dfik = 0 and gives the necessary realization of the dis- 

tribution of kernels of the differential of the map g. 

THEOREM 3. Suppose given on a Pfaffian manifold which has some proper Pfaffian im- 
bedding in R N a distribution with a fixed realization. Then there exists a number C such 
that each leaf of the distribution which is compatible with the realization has the homotopy 
type of a cell complex, in which the number of cells is ~C. 

COROLLARY 1. Let a Pfaffian manifold admit a proper Pfaffian imbedding in R N. Then the 
sum of the Betti numbers is finite. Further, for any Pfaffian map of this manifold, the sum 
of the Betti numbers of the preimage of any regular value of the map is uniformly bounded 
(outside the dependence on the choice of regular value). 

Proof of Theorem 3. We consider the function ~a :~ (/i--ai) ~, where fi are coordinate 

functions defining a proper imbedding of the manifold in R N, and a = (~l,...,~N) is a point 
in R N. According to Morse theory [9], it suffices for us to find a uniform estimate of the 
number of nondegenerate critical points of the restriction of the function ~a to a leaf of 
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the distribution, independent of the choice of the parameter a and the leaf. 

For this, it suffices to estimate the number of critical points on the part of the leaf 
which lies in a Pfaffian domain in which: I) there exists a volume form equal to dgl/~... ~\ 

dgm, where m is the dimension of the manifold and gi are certain Pfaffian functions in the 
domain; 2) there exists a covering Pfaffian function; 3) the distribution is defined by a 

system of equations ~i = ... = ~k = 0. At a critical point the restriction of ~a to a leaf 
of the form ~a = d~a /~i/~.../~ vanishes. Let I = {il,...,ip} be a set of p positive 

increasing indices, where p is the dimension of the leaf (i.e., p + k = m) and ip ~ m. With 
the set I we associate the system of equations hl = ... = hp = 0 on a separating solution of 

the system ~l = ... = ~k = 0, where hj =. (~a/~ d/{i/~ • • . /~ ~ij/~. • . /~ df~p). Here the map * 

is constructed with respect to the volume form in the domain and the symbol over the dif- 
ferential of a function dfi= indicates that this differential does not appear in the product. 
A Morsean crltical polnt of the restriction of a function to a fiber is a nondegenerate solu- 
tion of one of the equations of the system constructed. Now Theorem 3 follows from Corollary 
I of Sec. 2. 

THEOREM 4. The number of connected components of the preimage of any point under a 
Pfaffian map is finite and admits a uniform estimate independent of the choice of points in 
the preimage. 

Proof. It suffices to estimate uniformly in a simple Pfaffian manifold M the number of 
connected components of the set of solutions of the system of equations fl = al,...,fk = ak, 
where fi are Pfaffian functions, a i are parameters. For this we consider in the manifold 
M × R I the set defined by the system u(p -- sl) = r, E(fi -- ai )2 = c2, where u is a coordi- 
nate function in R l, ~I, ge, r are nonnegative numbers, p is a covering function on M. For 
almost all r, s2 the system defines a smooth manifold. According to Theorem 3, the sum of 
the Betti numbers of this manifold is bounded independently of the choice of parameters ai, 
gj? r by some number C. Using the compactness of the subset of M defined by the inequality 
P ~ cl > 0, and simple arguments of general topology, it is easy to show that the number of 
connected components being estimated does not exceed C. 

5. Abelian Integrals 

Let X and A be nonsingular complex quasiprojective algebraic varieties, ~:X ÷ A be a 
rational map which is regular on X and is a topological locally trivial bundle. We fix a 
regular rational r-form on X, which is closed on any fiber of the bundle. The integral of 
such a form over an r-dimensional cycle lying in a fiber and varying continuously under pas- 
sage from One fiber to another is a multivalued analytic function on the base A, para- 
metrizing the fibers. Such complex analytic functions on A are called multivalued Abelian 
functions. An algebraic function is an example of an Abelian function (X and A can have the 
same dimension, the cycle can be a point, and the form a function). A single-valued Abelian 
function means a branch of a multivalued Abelian function over some fixed domain U C A , 
which is a real-semialgebraic set (under consideration of the complex manifold A as a real 
manifold of double the dimension). We stress that in the definition of a single-valued 
Abelian function one fixes the domain on which it is considered. By an Abelian map into 
C N of a real semialgebraic domain U of a complex manifold is meant a map, all of whose com- 
ponents are single-valued Abeiian functions. Let the image of the domain U under the Abelian 
map f lie in an algebraic variety (this variety can coincide with cN), in some domain V of 
which there is given an Abelian map g. Then in the domain /-I(V)NU there is defined the 
composition of the Abelian maps. Continuing this process one can construct compositions of 
Abelian maps together with their domains of definition. 

THEOREM 5. The preimage of any point under a composition of Abelian maps has a finite 
number of connected components (in the domain of definition of the composition). This number 
is bounded by a constant, independent of the choice of point in the image manifold. 

Proof. It follows from the local description of Abelian functions given in [8] that the 
realification of an Abelian map is a Pfaffian map. Hence Theorem 5 follows from Theorem 4. 
We note that the fact that an Abelian map is Pfaffian is derived from its local description. 
We consider the plane of a complex variable z, slit, for example, along the ray of negative 
real numbers. The realification of a branch of the function Inz in the slit plane is a 
Pfaffian map. In fact, Re In z = in~x 2 + y2 and Imlnz = arctany/x + 2k~, where z = x + iy. 
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The logarithm, root, and arctangent are the simplest Pfaffian functions. The realifization 
of a branch of the function z ~ is a Pfaffian map if and only if ~ is a real number (for real 

the real and imaginary parts of the function z ~ can be expressed in terms of a real power 
function and the arctangent, for complex ~ one adds functions of the type of sin inx, which 

oscillate near zero). 

According to [8], a locally Abelian function on some resolution can be expressed in 
terms of analytic functions, logarithms and functions z ~ for rational e. Hence its reali- 
fication is a Pfaffian map. 

Remark I. We consider a one-dimensional complex disk which intersects a manifold which 
is a branch of a multivalued Abelian function in one point. A monodromy operator is asso- 
ciated with circuit about this point in the disk. That the exponent ~ is real is equivalent 
with the fact that all eigenvalues of the monodromy operator lie on the unit circle. Pre- 
cisely this property of Abelian functions [10, 11] corresponds to their finiteness property. 
In Theorem 5 instead of Abelian functions one could consider more general functions, satis- 
fying equations of Fuchs type, for which the eigenvalues of the local monodromy operators lie 
on the unit circle. 

Remark 2. A single-valued real-analytic branch of the real or imaginary part of a 
multivalued Abelian function can be considered over a Pfaffian submanifold, and in particular, 
over semialgebraic domains of real algebraic submanifolds. The assertion of Theorem 5 is 
valid for such single-valued branches of Abelian functions and their compositions (its proof 
remains as before). In this extended form Theorem 5 contains the result of [8]. 
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