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ABSTRACT. An algorithm is given for computing the mixed Hodge structure (more precisely,
the Hodge-Deligne numbers) for cohomology of complete intersections in toric varieties in
terms of Newton polyhedra specifying the complete intersection. In some particular cases
the algorithm leads to explicit formulas.
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Homology and cohomology yield one of the most natural topological invariants of an

arbitrary variety. It had been known since Hodge's work that the cohomology of

projective complex manifolds admits a natural Hodge decomposition. Deligne (see [1] and

[2]) generalized Hodge theory to arbitrary complex algebraic varieties by endowing their

cohomology with a so-called mixed Hodge structure. In particular, for an arbitrary

algebraic variety X and a Hodge structure Hk(X) he defined the Hodge-Deligne numbers

hp'q(Hk(X)).

The present paper is devoted to a computation of these invariants for varieties X

defined in ( C \ 0 ) n by a system of polynomial equations fx = • · · = fk = 0, where the

polynomials are nondegenerate with respect to their Newton polyhedra Δι,...,ΔΙί. We

recall that the Newton polyhedron of a polynomial / = Eamxm, where m = (mx,...,mn)

and χ = (x1,..., xn), is the convex hull of those points m e R" for which am Φ 0. The

Newton polyhedron of a polynomial generalizes the notion of degree and plays a similar

role. A system of equations with fixed Newton polyhedra is nondegenerate for almost all

values of the coefficients.

Throughout this paper the space ( C \ 0 ) " is called the «-dimensional torus and is

denoted by T".

It might seem somewhat artificial that we study complete intersections in the torus T"

and not in the affine space C". We suggest two reasons to justify our choice. First, cutting

C " by coordinate hyperplanes into tori of various dimensions, we can apply the results on

complete intersections in tori to complete intersections in C". This principle can be

applied not only to the space C", but to arbitrary toric varieties, to wit algebraic varieties
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that split naturally into a union of disjoint tori. Thus the case of a torus plays a key role in
the computation of Hodge-Deligne numbers for complete intersections in toric varieties.
Second, the case of a torus is the simplest one. This is because the torus T" = (C \ 0)" is a
commutative algebraic group (with respect to the operation of coordinatewise multiplica-
tion). The invariant sheaves on this group decompose with respect to characters. Cohomol-
ogy with coefficients in such sheaves can be computed separately for each character of the
group, which considerably simplifies all computations.

It will be more comvenient to consider cohomology with compact support instead of
ordinary cohomology. Like the usual cohomology, cohomology with compact support has
a natural (mixed) Hodge structure. The Poincare duality between cohomology with
compact support and the usual cohomology on smooth algebraic varieties is compatible
with the Hodge structures. Therefore, in passing to cohomology with compact support we
do not lose anything. The convenience achieved thereby consists in the following. For a
variety X we consider the numbers

Then, if X = \JaXa is a decomposition of X into a union of a finite number of locally
closed subvarieties, we have ep'q(X) = Y.ae

p'q(Xa). Thus the ep'q behave in a very simple
way under decomposition of varieties into pieces, which is a very natural operation when
working with toric varieties.

An important role is also played by the numbers ep(X) defined by ep(X) = Y.qe
p-q(X).

We list the main results of the paper. First, for a nondegenerate complete intersection X
either in a torus or in an arbitrary toric variety we compute the numbers ep(X) in terms
of the Newton polyhedra of the equations defining the complete intersection. Second, for
a nondegenerate complete intersection X either in a torus or in an arbitrary toric variety
we give a finite algorithm for computing the numbers ep'q(X) in terms of the Newton
polyhedra. In the important special case of a hypersurface with prime Newton polyhedron
(a polyhedron in R" is called prime if the number of faces coming together at every vertex
is equal to n) we give explicit formulas for the numbers ep'q(X). Third, for a nondegener-
ate complete intersection X in a compact toric variety we give an algorithm for computing
the Hodge numbers hp>q(X) (this result is a consequence of the preceding one, since for
compact varieties hp'q is equal to ep'q modulo sign). Fourth, for a noncompact complete
intersection X we give an algorithm for computing the Hodge numbers in the following
cases: a) I is a complete intersection in a torus, and the Newton polyhedra of the
equations defining X have maximal dimension; b) X is a complete intersection in C", and
the Newton polyhedra of the equations defining X contain the origin and intersect all
coordinate axes (this result follows from the computation of the numbers ep'q(X) and an
analogue of the Lefschetz theorem).

A few words about the division of labor. The computation of toric cohomology
(Proposition 2.10) and generalization of some known results on Hodge structures to the
case of cohomology with compact support (the use of forms with "logarithmic poles";
Proposition 1.12) are due to the first author. The introduction of the additive invariant
ep-q of algebraic varieties and the applications of this invariant (Corollary 2.5; the
algorithm in §5) are due to the second author.
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The present paper had been written in 1978, but was not submitted for publication. Its

results are used in the first author's paper [5] and in a paper by the second author (in

preparation) in which the algorithms from the present paper are carried as far as explicit

formulas.

§1. Hodge-Deligne theory

In this section we recall the Hodge-Deligne theory of algebraic varieties over the field of

complex numbers C with special regard to cohomology with compact support. The central

role here is played by the characteristic ep-q(X) of an algebraic variety X.

1.1. Let Η be a finite-dimensional vector space over the field Q of rational numbers. A

pure Hodge structure of weight r on Η is a decomposition of the complex vector space

Hc = Η ® C = 0 Hp-q

p + q = r

such that Hp-q = Hq>p (here the bar denotes the complex conjugation in Hc). The

introduction of this notion is motivated by the classical Hodge theory according to which

the /--dimensional cohomology Hr(X,Q) of a compact Kahler manifold X has a natural

Hodge structure of weight r. The dimension of the vector C-space Hp'q is called the

Hodge number of type (p, q) of the structure Η and is denoted by hp-q(H).

A Hodge structure of weight r on Η gives rise to the so-called Hodge filtration F on

Hc, where

Fp = 0 Hs-r~s.
s>p

This is a descending filtration, and for each integer ρ

Hc = Fp θ Fr-p + l .

Conversely, if F is a descending filtration on Hc satisfying the above relation, then

putting Hpq = Fp Π Fq we obtain a pure Hodge structure of weight r on Hc.

1.2. Let Η be a vector space over Q. A (mixed) Hodge structure on Η consists of a) an

ascending weight filtration W on Η and b) a descending Hodge filtration F on Hc that

are connected by the following relation: the filtration F induces a pure Hodge structure of

weight r on the complexification of GTWH = Wr/Wr_x.

In particular, for each r there is a decomposition

{GxwH)c= 0 Hpq.

The dimension of the C-space Hpq is called the Hodge number of type (p, q) of the Hodge

structure Η and is denoted by hpq{H).

1.3. Let Η and H' be Q-spaces endowed with Hodge structures. A Q-linear homomor-

phism /: Η -> Η' is called compatible with Hodge structures (or a morphism of Hodge

structures) if / is compatible with filtrations W and F, i.e., if /(W r) c Wr' and fc(Fp) c
p'P

The morphisms of Hodge structures are strictly compatible with filtrations W and F

(see [1]). From this it follows that the functor Hp-q is exact. In other words, if

H' -+ Η -* H" is an exact sequence of Hodge structures, then for every (p,q) the

sequence H'p-q -> Hp·" -* H"p'q is also exact.

1.4. Deligne has shown [2] that for each complex algebraic variety X the cohomology

Hk(X,Q) carries a natural Hodge structure which coincides with the classical (pure)

Hodge structure in the case of smooth projective varieties. However we find it more
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convenient to use cohomology with compact support Hk(X, Q). They also carry a natural

Hodge structure. We list some basic properties of the Hodge theory of cohomology with

compact support of smooth noncompact algebraic varieties:

a) ///: X —» Υ is a proper morphism, then the homomorphism f *: H*(Y) —» H*(X) is

compatible with the Hodge structures.

b) The Kunneth isomorphism H*(X) ® H*(Y) -» H*(X X Y) is compatible with the

Hodge structures, where the left-hand term is the tensor product of Hodge structures.

c) // Υ is a closed subvariety in X, then the exact sequence

••• - + # * ( * \ y ) ->Hk

c(x) - > H * ( y ) -+ΗΪ+1(Χ\Υ) -» •··

is a sequence of Hodge structures.

d) The Hodge numbers hp-q(Hk(X)) are equal to 0 for ρ + q > k (and also for ρ < 0 or

q<0).

These four properties hold for all algebraic varieties, but it is easier to prove them for

nonsingular varieties and they will be used only in this case. On the other hand,

smoothness is essential for the other two properties.

e) // X is a smooth projectiue variety, then the Hodge structure on H*(X) = H*(X)

coincides with the classical one.

f) Let X be a smooth irreducible η-dimensional variety. Then the Poincare pairing

Hk(X) ® H2"-k(X) -* H?n(X) = Q [ - n ]

is compatible with the Hodge structures in ordinary cohomology and cohomology with compact

support.

Property e) actually remains true if we assume that the variety χ is quasismooth instead

of smooth (see [3]). In particular,

g) For a compact quasismooth algebraic variety X, the Hodge structure on Hk(X) is a

pure structure of weight k.

1.5. Generalizing the notion of Euler characteristic, for each pair of integers (p, q) we

introduce the following invariant of algebraic variety X:

We observe that ep-q(X) = eq-p(X). For a compact smooth (or quasismooth) variety X

we have

where the hp-q(X) are the Hodge numbers of X. So in this case to know the numbers

ep-q(X) is the same as to know the Hodge numbers, and in particular, this knowledge

allows one to compute the Betti numbers of X.

It is convenient to consider the numbers ep"q(X) as coefficients of a single polynomial

e( X) in the variables χ and x:

e(X;x,x) = YJe
p-q{X)xpx".

p.q

Our main reason for introducing the characteristic e is the following additivity property.

1.6. PROPOSITION. Suppose that X is a disjoint union of a finite number of locally closed

subvarieties X;, i e /. Then e(X) = E/e/e(Jf,-).

We give a proof only for the case when X and all the Xt are smooth varieties. Moreover,

we assume that (^,-) / e / satisfy the following condition: the closure Xt of an arbitrary

stratum Xt is a union of some X,. In this case there exists an integer i e / such that Xt is
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closed in X. Using 1.4c) and the fact that Hp'q is exact (see 1.3), for each pair (p, q) we

obtain the equality

ep-"{X) = ep-"(X\Xi) + ep-"{Xi).

It remains to pass from X to X\Xt. The general case can be reduced to this one by a

suitable refinement of the partition (X j)i e , .

1.7. COROLLARY. Let (Xt) be a finite covering of X by locally closed subvarieties. Then

e{x)= Σ (-i)ke(xian---nxit).
'n < · • • < h

Another convenient property of our characteristic e is its multiplicativity, which follows

from 1.4b).

1.8. PROPOSITION. e(X x Y) = e(X) x e(Y).

1.9. COROLLARY. Let f: X -> Υ be a bundle with fiber F which is locally trivial in the

Zariski topology. Then e(X) = e(Y) X e(F).

In fact, let (Yt) be an open covering of Υ which trivializes /. To prove the corollary it

suffices to apply 1.7 to the covering (f~1(Yi) of the variety X, then apply 1.8 to

f~1(YiJ Π · · · r\f~l(Yii) = (Yi(in ••• nYlk)X F, and finally apply 1.7 to the covering

1.10. We consider some elementary examples showing how to use our characteristic e.

To begin with,

a) If A1 consists of a single point, then e(X) = 1.

b) Let X = P 1 be the Riemann sphere. Then e(Px) = 1 + xx.

c) Since P 1 is a union of C and the point oo, we see that e(C) = xx. In general,

e(C") = (xx)".

d) Considering P" as a union of C" and the hyperplane at infinity P " " 1 , we see that

< ? ( P " ) = 1 + xx + ••• + (xx)n.

e) For the one-dimensional torus T 1 = C \ 0 we have ^(T1) = xx - 1. In general, for

the η-dimensional torus T" = (T 1)" we have e(T") = (xx - 1)".

As a matter of fact, it is easy to compute all Hodge-Deligne numbers for a torus; all of

them are equal to zero with the exception of hp'p(H?+p(T")) = Cp, where Cp is the

number of combinations of ρ elements from a given set of η elements.

f) We give a less elementary example. Let Υ be a smooth subvariety of codimension

r + 1 in a smooth variety X. Let p: X -> X be the blowing up of the subvariety Υ in X.

Then ρ~λ(Υ) is a bundle over Υ with fiber P r , and so

e(X) = e(X) + e(Y)[xx + ••• +(xx)r].

In particular, we have the following formula for the Betti numbers bk:

bk(X) = bk(X) + bk^2(Y) + ••• +bk-2r{Y).

1.11. The additivity and multiplicativity properties discussed above lead to computation

of e(X) only for very simple varieties X; in more complex cases one has to use less trivial

techniques. In our case the ultimate success is due to the fact that for a hypersurface in a

torus one can compute the sums T.qe
p-q(X) by interpreting them as cohomology of certain

coherent sheaves. We discuss this in more detail.
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Let X be a smooth algebraic variety, and X a smooth compactification of X such that

the divisor D = X\X has transversal intersections in X. We denote by &ρχ D) the sheaf

of germs of regular differential /7-forms on X vanishing on D. More precisely, if

D^,..., DN are the irreducible components of D, then Ωρχ D) is the kernel of the

restriction homomorphism Ω £ -» φ . Ω £ .

We have the following

1.12. PROPOSITION. There exists a spectral sequence

degenerating at the term El and converging to the Hodge filtration on H*(X).

In the case when X is compact this spectral sequence coincides with the Hodge-

de Rham spectral sequence. In the general case we see that the space Hk~p(X, Q^x D)) is

isomorphic to the space FpH^(X)/Fp+lHk(X) whose dimension is equal to

Zqh
p-q(Hk{X)). Denoting by χ(Χ, g ) the Euler-Poincare characteristic of a sheaf g on

X, which by definition is equal to Σ^( - l ^ d i m Hk{ X, g) , we obtain the following

1.13. COROLLARY. In the above notation and under the above assumptions

§2. Toric varieties

Here we briefly recall the structure of toric varieties which are the main objects

considered in the present paper. We already mentioned that toric varieties are special

partial compactifications of tori. We begin with recalling some properties of tori.

2.1. A torus (more precisely, an η-dimensional torus) is an algebraic variety T "

isomorphic to ( C \ 0 ) " . If xi is the coordinate on the ith factor C \ 0 , then for each

in = (mx,..., mn) e Z" the monomial xm = x™1 · · · x™» is a regular function on T"

(and even a group homomorphism T" -» T 1). Moreover, each regular function / on T"

can be uniquely written in the form of a finite linear combination of the monomials

xm,m e Z". In other words, the ring C[T"] of regular functions on T" is isomorphic to

the group algebra C[Z"] of the abelian group Z", and T" = SpecC[Z"] is the spectrum of

this algebra. Since there is no natural basis in the group of characters of the torus T", we

shall use the more neutral symbol Μ in place of Z".

A function / on the torus T" = Spec C[M] considered as an element of C[M] is called a

Laurent polynomial. If / = LmeMamxm, then the set Supp(/) = [m e M, am Φ 0} is

called the support of /. The convex hull of Supp(/) in the real vector space M R = Μ ® R

is called the Newton polyhedron of / and is denoted by Δ(/) .

Each point / of the torus Τ defines a group homomorphism φ,: Μ -> Τ 1 according to

the formula <pt(m) = xm(t). It is easy to see that this allows us to identify the set of all

complex-valued points of T" with the set Hom(M, T 1 ) of group homomorphisms of Μ to

T 1 .

2.2. A detailed definition of toric varieties is given in [3] and [8]. Here we only use the

fact that a toric variety can be covered by affine toric varieties (charts) of the form

Xa = SpecQa Π Μ], where σ is a convex polyhedral cone in M R . The points of the

variety Xo are identified with the semigroup homomorphisms σ η Μ -* Τ 1 (where T 1 is
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C \ 0 and the composition law coincides with multiplication). This description shows how

to identify points of T" with points of Xa.

We shall be mainly interested in the toric varieties ΡΔ corresponding to a polyhedron Δ

in M R . Let Δ be a bounded convex polyhedron in M R whose vertices he in Μ (in what

follows we shall consider only such polyhedra). To each face Γ of the polyhedron Δ (for

short, we write Γ < Δ) we associate the cone Ο>η(Δ, Γ) = Or>or • (Δ - Q), where Q is

an arbitrary point lying strictly inside Γ. The variety PA is covered by the charts

*α>η(Δ,η = SpecC[Con(A,D ηλί],

where Γ runs through the set of faces of Δ. Actually, it suffices to consider only the

vertices P; the chart corresponding to a vertex Ρ will be denoted by UP. The variety ΡΔ is

the compactification of the torus ΤΔ = XCon(A.\)' t n e dimension of this projective variety is

equal to dim Δ. We observe that if dim Δ Φ η, then the torus ΤΔ is not isomorphic to T".

To each face Γ of the polyhedron Δ there corresponds a closed subvariety in ΡΔ which is

isomorphic to P r and is denoted by the same symbol. The corresponding " big torus" in

P r will be denoted by T r . If Γ and Γ" are two faces, then Ρ Γ η ΡΓ, = Ρ Γ η Γ - ; this shows

that the variety ΡΔ is very similar to the polyhedron Δ. We will not elaborate on this

observation. We only remark that the symbol Ρ is used in order to emphasize the analogy

with projective spaces, which are special cases of toric varieties.

2.3. The variety ΡΔ may have singularities lying on subvarieties Ρ Γ , Γ < Δ. This is due

to the fact that Δ is not prime at the corresponding faces. We give the necessary

definition, restricting ourselves to the case of vertices.

Let Ρ be a vertex of Δ. The polyhedron Δ is called prime at Ρ {prime at Ρ with respect

to M ) if the cone Con(A, P) is generated by a basis of MR (by a basis of the lattice M). A

polyhedron is prime (prime with respect to M) if it is prime at all vertices.

2.4. PROPOSITION. //Δ is prime (prime with respect to M), then ΡΔ is a quasismooth

(smooth) variety.

In fact, suppose that Δ is prime at Ρ with respect to M. Choosing a suitable

isomorphism Μ - Ζ", we may assume that the semigroup Con(A, P) C\ Μ is isomorphic

to N " and the semigroup ring C[Con(A, Ρ) η Μ] is isomorphic to the ring of polynomials

C[xY,..., xn]. But that means that the chart UP is isomorphic to the affine space C". Since

the charts UP cover ΡΔ, ΡΔ is a smooth variety. One can use similar arguments in the case

when Δ is prime.

Moreover, the same arguments show that if Δ is prime with respect to M, then the

di-visor D = ΡΔ \ T" has transversal intersections on ΡΔ.

2.5. COROLLARY. If A is a prime polyhedron, then the Hodge numbers hp'q(PA) are equal

to 0 for ρ Φ q and

PROOF. Since ΡΔ is a union of the tori T r , Γ < Δ, we see that e(PA) = Σ Γ < A(xx - \)dimT

(see 1.6 and l.lOe)). On the other hand, ΡΔ is compact, and by the above proposition it is

quasismooth; hence hP"(PA) = (-l)p + qep-q(Pt,) (cf. 1.5).

2.6. Let Δ and Δ' be polyhedra in MR. We say that Δ' majorizes Δ if there exists a map

a: som(A') -> som(A) of the set of vertices of Δ' to the set of vertices of Δ such that

Con(A, a(.P')) c Con(A', P'). If such a map α does exist, then it is unique. This map
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extends to the set of all faces if we define α(Γ') to be the face of Δ with vertices a(P'),

P' <= som(r ') .

If Δ' majorizes Δ, then there is a natural morphism of algebraic varieties ρ = ρΔ, Δ :

ΡΔ, -» ΡΔ. This morphism maps the chart UP, to the chart ί/α(Ρ), and for these affine

charts it is contragredient to the natural homomorphism of semigroup algebras

C[Con(A, a(P')) η Μ] -» C[Con(A', Ρ') Π Μ].

Morphisms of the above type can be used to resolve the singularities of ΡΔ. In fact, for

each Δ there exists a prime polyhedron Δ' which majorizes Δ.

2.7. If Δ' majorizes Δ and Δ majorizes Δ' (in this case Δ and Δ' can be called similar),

then the spaces ΡΔ and ΡΔ, are canonically isomorphic. Thus each element of a class of

similar polyhedra defines one and the same toric variety. The question then arises: what

corresponds to the polyhedron Δ itself? It turns out that this polyhedron defines a

polarization of Ρ = ΡΔ, i.e., an ample invertible sheaf 0 Ρ ( Δ ) on ΡΔ. More precisely, &Ρ(Δ)

is the subsheaf of the sheaf of rational functions on Ρ whose sections over the affine chart

Up (P e som(A)) have the form xpf(x), where f(x) is an arbitrary regular function on

UP, i.e., f(x) is an element of C[Con(A, Ρ) Π Μ]. From [8], Theorem 13, it follows that

the invertible sheaf 0 Ρ ( Δ ) is ample, i.e., some multiplicity of this sheaf defines a

projective embedding of P.

The preceding construction can be slightly generalized. Namely, suppose that Δ' is a

polyhedron majorizing Δ. Consider the invertible sheaf (of fractional ideals) &Ρ(Δ) =

Ρ Δ \ Δ ( ^ Ρ / Δ ) ) on Ρ = ΡΔ. Its local description is essentially the same as above: over the

affine chart UP- the sections of 0 Ρ (Δ) have the form xa(P >/(x), where a(P') is the vertex

of Δ corresponding to P' under the majorization map and f(x) is an arbitrary Laurent

polynomial from C[Con(A', Ρ') Π Μ].

Such a description of the sheaves 0 Ρ ( Δ ) yields a simple characterization of its

cohomological properties. First of all, for each m e Δ η Μ the function xm is a global

section of 0 Ρ ( Δ ) . We denote by L(A) the space of all Laurent polynomials with support

in Δ.

2.8. PROPOSITION, a) //°(ΡΔ-, 0(Δ)) =

b) //'(ΡΔ,, 0(Δ)) = Ofori > 0.

The proof can be found in [6].

2.9. Along with the description of the invertible sheaves 0 Ρ ( Δ ) we shall need a

description of the sheaves of differential forms on the space Ρ = ΡΔ. Here we shall assume

that Ρ is a smooth variety, i.e., that Δ is a prime polyhedron with respect to M, although

this assumption is not esssential. As we explained in 1.11, we are especially interested in

the structure of the sheaves Ω^. ιΟ), where D = P \ T . We recall that Ώ[Ρ D) is the kernel

of the restriction homomorphism

Ω £ - 0 ΩΡρ,

where Γ runs through the set of faces of codimension 1 in Δ. All further results on these

sheaves are based on the existence of a canonical isomorphism

Here, as usual, 0v{-D) denotes the sheaf of ideals of D, i.e., the sheaf of germs of

functions vanishing on D = Ρ \ Τ.
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We give an explicit construction of this isomorphism. It transforms the tensor ηιλ

Λ · · · A m ® / , where m1,...,m£.M and / is a local section of Θ( - D), to the p-lorm

(dxm' dxm"
f Χ"" Λ " • Λ χ " > •

It is easy to verify that this yields a homomorphismof sheaves AP(M) ® Θ{-D) -* Ω(

Ρ

Ρ D).

It remains to check that this is an isomorphism. It suffices to do that over each chart UP.

Each such chart is isomorphic to C", and under this isomorphism D becomes a union of

coordinate hyperplanes; after this the verification presents no more difficulties.

For ρ = η the above isomorphism shows that the sheaf 0( — D) is isomorphic to the

canonical sheaf Ω"ρ D) = ΩΡ.

We denote by L*(A) the space of Laurent polynomials whose support lies strictly in the

interior of the polyhedron Δ. It is easy to see (compare with 2.8a)) that for dim Δ = η the

space L*(A) is identified with the space of global sections of the invertible sheaf

0p( — D) ® CP(A). This proves the first part of the following assertion.

2.10. PROPOSITION. Let Δ be an η-dimensional polyhedron in MR, and let Δ' be a

polyhedron majorizing Δ and prime with respect to M. Then for Ρ = ΡΔ.

( , Γ Ρ , Ο ) ( ) ) | ^

PROOF. We need to show that Ω̂ ρ Ο ) (Δ) is acyclic, and to do this we may assume that

ρ = η. But in this case Ω"Ρ D) = ΩΡ is the canonical sheaf on P, and the acyclicity of

Ω'Ρ(Δ) = Κ ® 0(Δ) follows from the assertion in §4 of [6].

In particular, under the assumptions of 2.10 we obtain the following formula for the

Euler-Poincare characteristic of the sheaf Ω(

Ρ

Ρ>β)(Δ):

where /*(Δ) = dim L*(A) is the number of integral points in the interior of Δ. It is also

clear that χ(Ρ, QfoD)) = (- l)"C,f.

§3. Lefschetz-type theorems for toric varieties

In this section we present some comparison theorems for properties of the toric variety

ΡΔ and of its hyperplane sections.

3.1. Each regular function / on the torus T" = SpecC[M] (or, which is the same, each

Laurent polynomial / e C[M]) defines a hypersurface in T". This hypersurface is given

by the equation f(x) = 0; we denote it by Zf or simply by Z. Each hypersurface in T"

can be represented in this form.

3.2. Now let Δ be a polyhedron in MR containing supp(/). Then / e £ ( Δ ) and, in

view of 2.7, / can be viewed as a global section of the invertible sheaf 0 Ρ ( Δ ) on the toric

variety ΡΔ. Being a section of 0(Δ), / defines a hypersurface in ΡΔ; this hypersurface

consists of the points where this section vanishes. The resulting hypersurface will be

denoted by Z(Af) or Z. In the local chart UP (where Ρ is a vertex of Δ; see 2.2) the

subvariety Ζ is given by the equation x~pf(x) = 0. Assuming that dim Δ = η, we see that

Ζ Π Τ " = Ζ, so that in this case Ζ is a compactification of Ζ (although not necessarily the

closure of Ζ in PA). We also observe that in view of the ampleness of &(A) the variety

ΡΔ \ Ζ is affine.
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In what follows we shall need a slightly more general construction. Suppose again that

Δ' majorizes Δ; considering / as a section of the invertible sheaf 0(Δ) on ΡΔ,, we obtain a

hypersurface in ΡΔ, which will be denoted by Ζ ( Δ , Δ / ) . It is clear that Ζ ( Δ , Δ / ) =

ρ Δ ~ Δ ( Ζ ( Δ / ) ) . This is again a compactification of Z, and in the affine chart UP. (P' e

som(A')) this hypersurface is given by the equation x~a(P >/(x) = 0, where α is the

majorization map (see 2.6).

From this it is easy to understand the structure of the intersection of Ζ ( Δ- Δ f) with the

torus T r , where Γ' is a face of Δ'. Let α(Γ') be the corresponding face of Δ. Shifting Δ

and Δ', we may assume that Γ" and α(Γ') contain 0; let Mr be the sublattice in Μ cut

out by the subspace in M R spanned by Γ". Finally, let fa(r) be the trace of the Laurent

polynomial / on the face α(Γ'). Then Ζ(Δ->Δ f) η ΤΓ, is the hypersurface in the torus

T r , = SpecC[M r ] given by the equation / α ( Γ ) = 0.

3.3. In the following two assertions we compare the fundamental group <nx and the

Picard group Pic of the hypersurface Ζ with the corresponding groups of ΡΔ (the structure

of these last groups is described in [3]). Since we will not use these results, we give only

very general statements. The proofs of the propositions below easily follow from the

Lefschetz-Grothendieck theory, but the details would lead us astray.

So, let / e L(A), where Δ is an «-dimensional polyhedron, and let Ζ = Ζ ( Δ f) be the

corresponding hypersurface in Ρ = ΡΔ.

3.4. PROPOSITION, a) If η ^ 2, then Ζ is connected.

b) If η > 3, then π χ (Ζ) is a finite cyclic group.

c) If η > 3 and Δ is prime with respect to M, then ΐΓχ{Ζ) = 0.

Examples show that if Δ is not prime with respect to M, then Ζ is not necessarily

simply connected even if Δ is a simplex of dimension > 3. Perhaps this is the most

interesting aspect in which hypersurfaces in our situation differ from hypersurfaces in

projective spaces.

3.5. PROPOSITION, a) If η > 3, then Pic Ζ is a group of finite type and Pic Ρ -> Pic Ζ is a

monomorphism.

b) If η > 4 and Δ is a prime polyhedron, then Pic Ρ is a subgroup of finite index in PicZ.

c) If η ^ 4 and Δ is prime with respect to M, then Pic Ρ = PicZ.

3.6. The above two facts concern an arbitrary Laurent polynomial /; from now on we

shall assume that / is nondegenerate. We say that a Laurent polynomial f e L(k) is

nondegenerate with respect to Δ if the hypersurface Ζ = Ζ ( Δ ^ transversally intersects all

strata of P. In other words, for each face Γ < Δ the variety Ζ ΓΊΤΓ must be smooth and

have codimension 1 in T r . In particular, Ζ must not pass through the " vertices" of Ρ (i.e.,

points of the form PP, where Ρ e som(A)), and so Δ must coincide with the Newton

polyhedron of /. This allows us to speak simply about nondegeneracy of /.

If / is nondegenerate with respect to Δ and Δ' majorizes Δ, then Ζ ' = Ζ(Δ._Δ f) also

transversally intersects the strata of ΡΔ,. In particular, if in addition Δ' is prime with

respect to M, then Z ' is a smooth variety and Dz = D Π Ζ ' is a divisor with transversal

crossings (see 2.4). Finally we observe that from Bertini's theorem it follows that a

"generic" element from £ ( Δ ) is nondegenerate with respect to Δ (see [6]).
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The following Lefschetz type theorem compares the cohomology of a toric variety

Ρ = ΡΔ and its nondegenerate hyperplane section Ζ = Ζ ( Δ > / ) . Here and up to the end of

this section Δ denotes a polyhedron of dimension η = rk M.

3.7. THEOREM. The Gysin homomorphism H'(Z,C) —> H' + 2(P, C) is an isomorphism for

i > η — 1 = dim Ζ and is a surjection for i = η - 1.

PROOF. The Gysin homomorphism fits into the exact sequence

H' + l(P\Z) -> H'(Z) -> Hi+2(P) -» H' + 2(P\Z)

of hypercohomology of the exact sequence of complexes

0 -> Ωρ -> Ω p (log Ζ)) -» Ω^ 1 -» 0.

Here the complexes and the sheaves Ω and Ω (log) on the toroidal varieties Ρ and Ζ are

understood in the sense of [3], §§13 and 15. The left-hand homomorphism corresponds to

the Poincare residue. Since Ρ \ Ζ is an affine toroidal variety, its cohomology groups

H'(P \ Z, C) vanish for /" > η (see [3], §§13 and 6). This completes the proof.

3.8. COROLLARY. For each open toric subvariety U c Ρ the homomorphism H'C(Z C\U)

—> H'C
+2(U) is bijective for i > η — 1 andsurjectivefor i = η — 1.

PROOF. Since U is obtained from Ρ by throwing out several strata, it suffices to verify

that the assertion remains true if we throw out from U a closed irreducible T-invariant

subvariety F. We denote U\F by V and consider the following commutative diagram

with exact rows (see 1.4c)):

J
(znF)

+ 1(F)

- Η'

-> Ε

(ζην) ->

'< + 2(V) -

H'C{ZC\U) -»

/^+ 2(C/) - Hi

Ζ

I
+ 2

nF)
γ,

(F)

Since F (the closure of F in P) is a toric variety of smaller dimension and Ζ η F is an

ample nondegenerate hypersurface in F, the assertion of the corollary holds for F in view

of the inductive assumption. The proof is now completed by a routine diagram search.

In particular, for U = T" we obtain the following

3.9. PROPOSITION. The Gysin homomorphism H'C(Z, C) -» H'C
 + 2(J", C) is an isomorphism

for i > η — 1 = dim Z.

3.10. REMARK. The dual statement to the effect that "the natural homomorphism

//'(T) -» H'(Z) is bijective for i < η - 1" was first proved by D. N. Bernshtem. His very

transparent proof based on Morse theory is not yet published. The first author has given a

purely algebraic proof of this fact. The above proof is the third one known to the authors.

We remark that the above results also carry over to complete intersections (see §6).

3.11. Since the cohomologies of the torus Τ and the Hodge structure on them are well

known (see l.lOe)), Proposition 3.9 gives complete information about the Hodge structure

on H'C(Z) for / > dimZ. In fact, for such / there is an isomorphism of Hodge structures

H[{Z) = //; + 2(T) [1]. On the other hand, if / < dim Z, then H'(Z) = 0; this is a general

fact about smooth affine varieties. Therefore the " middle-dimension" cohomology groups

H"~l(Z) are of main interest. It is also seen that the Hodge-Deligne numbers

hp-i(H?~l(Z)) can be easily recovered from ep-q{Z).
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T h e s e r e m a r k s a n d the fact t h a t hp'\Hn

c~\Z)) = 0 f o r / ? + < 7 > « - l (see 1.4d))

a l l o w u s t o d e r i v e f r o m 3.9 the fol lowing f o r m u l a : for ρ + q > η - 1

( 0 , P*Q,
( j ( j \(-iy+p+1cr\ P = q.

§4. Computation of the χ ^characteristic

In this section we compute the χ ^characteristic of a hypersurface Ζ in the torus T, i.e.,
the sum Y.qe

p-q{Z). Along with the Lefschetz type theorems, this is the second important
ingredient of our computation of ep'q(Z). In what follows it will be assumed that the
Newton polyhedron Δ has dimension η = dim MR.

4.1. Let / e i ( A ) be a nondegenerate Laurent polynomial. We denote by Ζ the
hypersurface Ζ(Δ._Δΐ/) in Ρ = ΡΔ,; Ζ is a smooth compactification oi Ζ = Zf whose divisor
at infinity Dz = D η Ζ, D = Ρ \ Τ, is a divisor with transversal crossings. In view of
1.13, T.qe

p-q modulo sign coincides with the Euler-Poincare characteristic of the sheaf
tifz oz)

 o n Z. The computation of this last characteristic (see [4]) can be carried over to Ρ
in a fairly standard way. We briefly recall how to do that, since Hirzebruch considers the
sheaves Ω | and proceeds somewhat differently.

To begin with, we observe that there is the following exact sequence of coherent sheaves
onP:

0 -> afz,Dz) ®βρ Cp(-Z) -» Qfp^ ®Or Θ2 - Q[ll

Dz) - 0.

This sequence is analogous to the corresponding sequence of usual sheaves of differentials

(see [4], §16.3) and is easily obtained from it by passing to the kernels of the correspond-

ing restriction homomorphisms. Recalling that Ζ is defined by a section of the invertible

sheaf 0Ρ(Δ), we see that 0 P (Z) = <2Ρ(Δ). Taking the tensor product of the preceding

exact sequence with the invertible sheaves 0P{(k + 1)Δ) and passing to the Euler-Poin-

care characteristics, we obtain

,Ω(ν^))= Σ (-1)*χ

Using the exact sequence

0-» 0 Ρ ( - Δ )

we see that

All this is commonplace; special features of the toric situation manifest themselves in
that by Proposition 2.10 the summands of the above sum can be expressed in terms of the
number of points in the polyhedra Α:Δ. Performing a series of elementary transformations,
we obtain the final result:

(- lr^cr 1 - Σ (-Ι)*Ο>+Υ+Ι/·(*Δ).

We recall that l*(kA) is the number of integral points lying in the interior of the
polyhedron Α:Δ.
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4.2. REMARK. Here and in what follows we are interested only in the dimension of the

space of sections of the sheaves ί2(

ρ

Ρ Ο)(λ:Δ). However Proposition 2.10 yields a finer

structure of a grading of type Μ on these spaces. Sometimes it is very important to

consider this finer structure (see [5]).

4.3. In order to represent the result obtained in 4.1 in a more compact form, we

introduce some functions associated to polyhedra. Let Δ be a polyhedron in MR

(replacing Μ by a sublattice if necessary, we may assume that Δ spans M R ) ; we consider

the Poincare series of the interior of Δ:

A > 0

where / * denotes the number of interior lattice points of a polyedron. We shall soon see

that the function

is a polynomial of t of degree dim Δ + 1. We denote the coefficients of ΦΔ(ί) by φ,(Δ);

thus

It is clear that φ ο(Δ) = 0, φ^Δ) = /*(Δ), and, in general,

Comparing this expression (for i = η — p) with the final formula of 4.1, we obtain the

following formula (for an «-dimensional Δ):

4.4.

In particular, it follows that φ,(Δ) = 0 for / > η + 1 and φη + 1 (Δ) = 1.

4.5. REMARK. Summing up the formulas 4.4 for all p, we obtain the following formula

for the Euler characteristic:

E{Z) = £(-l)*dimtf*(Z) = ^{-χγ aimHk{Z),
k k

which, modulo sign, coincides with Σ,φ,(Δ) = ΦΔ(1). Since ΦΔ(1) = n\V(A), where V(A)

is the «-dimensional volume of Δ, we again get (see [7])

4.6. REMARK. Occasionally instead of the functions φ,(Δ) associated with the interior of

the polyhedron it is more convenient to use similar functions associated with the

polyhedron itself. To do this we consider the Poincare series for Δ

and the polynomial (of degree at most dim Δ)
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From the Serre duality for the sheaves &(kA) on the variety ΡΔ it can be deduced that
φ,(Δ) = ψ<ϋπ,Λ + ι-;(Α). Therefore 4.4 can be rewritten in the following form:

i-iy-^ep-oiz) = (-iVcr1 + Ψ,+1(Δ).

This formula is convenient for small p, while 4.4 is more convenient when ρ is close to n.

§5. The Hodge-Deligne numbers of a hypersurface in a torus

This section is the central one in our paper. In it we show how the knowledge of
Hqe

p'q{Z) allows us to recover all the numbers ep'q{Z) for a nondegenerate hypersurface
Ζ in a torus and hence all Hodge-Deligne numbers for Z. In many cases we are able to
give explicit formulas for these numbers.

5.1. Let Δ be a polyhedron in MR, and let / e C[M] be a Laurent polynomial which is
nondegenerate with respect to Δ. We shall give an algorithm for computing the numbers
ep-"(Z) for the hypersurface Ζ = Zf in the torus T" = SpecQM].

To begin with, we observe that it suffices to consider the case when dim Δ = η = rk Μ.
In fact, in general Ζ is a product of the hypersurface Z' with the same equation in a torus
of dimension dim Δ and the torus T' of the complementary dimension: Ζ = Ζ' Χ Τ'.
From the multiplicativity of e (Propositon 1.8) it follows that

5.2. So, in addition to the assumptions of 5.1, we shall assume that dim Δ = η. Let Δ' be
a prime (or prime with respect to M) polyhedron majorizing Δ, let Ρ = ΡΔ-, and let
Ζ = Ζ(Δ._Δ j Y For a face Γ" < Δ' we denote by Z r , the hypersurface Ζ ΠΤΓ, in the torus
T r (see 2.2 and 3.2; the Newton polyhedron of Z r , coincides with α(Γ')); then
Ζ = U r < A < Z r . Hence

e»-q(Z) = e'-»(ZA,) + Σ ep'"(Zr).
Γ'<Δ'

We observe that ΖΔ, = Ζ and for Γ" < Δ' the hypersurface ZT, has smaller dimension, so
that arguing by induction we may assume that the numbers ep'q(Zr.) are known.

By 3.11, the numbers ep'q(Z) for ρ + q > η - 1 are also known; hence the same is true
for the numbers ep'q(Z) for ρ + q > η — 1. By Poincare duality for the smooth (or
quasismooth) variety Z, the numbers ep'q(Z) = e"~1~p-"~1~q(Z) are also known for
ρ + q < η — 1. Using the formula establishing the relationship between e(Z) and e(Z),
we obtain all numbers ep'q(Z) for ρ + q < η — 1.

Since the sums Y,qe
p-q{Z) are also known (see 4.1 or 4.4), we obtain the last missing

number ep'"~1~p(Z).
5.3. REMARK. The above method for computing the numbers ep'q{Z) is quite trans-

parent and constructive, and without doubt it is an algorithm. It is clear that the numbers
ep-q{Z) are determined by the polyhedron Δ; more precisely, they depend on combina-
torial properties of Δ (i.e., on the contiguity scheme of the faces) and on the numbers
l*(kti) or /(Α:Δ) for all faces Γ and all integral k (incidentally, it suffices to consider only
k in the interval 0 < k < dim Γ).

In some special cases which will be discussed below the above arguments are sufficient
for deriving explicit formulas for the numbers ep'q(Z). Explicit formulas in the general
case have recently been obtained by the second author.
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5.4. REMARK. AS we explained in 3.11, starting from ep<q(Z) one can compute all

Hodge-Deligne numbers hp'q(H^{Z)). Thus, starting from the one-parameter family of

numbers Σ ep-q(k), we obtain a three-parameter family of numbers.

5.5. The most important special case when the numbers ep'q(Z) can be explicitly

computed is the case when the polyhedron Δ is prime. However we begin with the

compact case, i.e., with the computation of the Hodge numbers for Ζ = Ζ ( Δ f), which is

the canonical compactification of Z.

Decomposing Ζ into a union of Z r (where Γ runs through the set of faces of Δ) as in

5.2 and using the additivity of ep'q, we obtain

Σ>'·*(ζ)= Σ Σ*'·'(ζΓ)
q Γ«:Δ q

-Ι τ\ρ+ι V ( -\\dimTrp + l ά ί Τ

-(-ί) L K~l) Cdimr
Γ«;Δ

We observe that the first summand of the last expression is nothing else but hp + 1-p+l(P)

(see 2.5).

Now we apply the Lefschetz Theorem 3.7, which shows that ep'q(Z) = ep + hq+1(P) for

ρ + q > η — 1. In view of the Poincare duality for Ζ (here is the place where we use the

assumption that Δ is prime), ep-q{Z) is not equal to zero only ii ρ = q οτ ρ + q = η — \.

Thus Η ρ + q = η — I and ρ Φ q, then

\ip + q = n-\ and ρ = q, then

ep-p{Z)= Σ ( - ^ [ ( - ΐ / ^ Γ -

The remaining ep~q(Z) either vanish or can be computed via symmetry. In particular, for

η > 1

Φ ι ( Δ ) =

Continuing to assume that Δ is prime, we give formulas for ep-q{Z). Understandably,

we shall restrict ourselves to the case when ρ > q.

5.6. THEOREM. Suppose that Δ is a prime n-dimensional Newton polyhedron. Then for

p> q

( Σ (-i)d

PROOF. We shall use the following formula (which is a consequence of 1.7):

ep'q{Z)= Σ (- l )"~ d l m V-«(Z r ) ,

where ZT = Ζ n P r . By the results of the preceding section, for ρ > q all the ep'q(ZT) are

zero with the exception of the case ρ + q = dim Γ — 1, when

This proves the theorem.
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In particular, for q = 0 and ρ > 0 we have

As we shall see below, this formula holds for an arbitrary Δ.

5.7. REMARK. The formula from 5.6 can be rewritten in the form

5.8. PROPOSITION. For an arbitrary polyhedron Δ in MR and arbitrary ρ > 0

eP-\Z) = (-iy-1 Σ /-(Γ),
dim Τ — ρ + 1

where Γ runs through the set of (p + \)-dimensionalfaces ο/Δ.

PROOF. First of all, we may assume that dim Δ = η. In fact, in the general case Ζ is

multiplied by the torus of dimension η - dim Δ and epfi by (-i)«- d ™ A Assuming that

Δ is η-dimensional, we now use the argument from 5.2. Let Δ' be a prime polyhedron

majorizing Δ, let Ρ = ΡΔ·, and let Ζ = Ζ(Δ- Δ f). Let Γ' be a face of Δ' which does not

coincide with Δ'; since d i m Z r < η — 1, it is clear that e"~1~p-"~1(Zr) - 0. Moreover,

the numbers e " " 1 ^ · η ~ \ Ζ ) are also equal to 0 for 0 < ρ < η - 1 (see 3.11). In what

follows we shall assume that 0 < ρ < η - 1; for ρ = η - 1 the proposition immediately

follows from 4.3.

In view of the Poincare duality for Z, ep'°(Z) = 0. On the other hand,

ep>°(Z)= Σ ep-°(Zr).

If Γ" Φ Δ', then the hypersurface ZT, = Ζ n T r , has smaller dimension and we can use

the inductive assumption. Hence to prove the proposition it remains to verify that

Σ (- i ) d i m r " 1 Σ /*(r) = o,
Γ'«Δ' Γ<α(Γ)

dim Γ =ρ + 1

where α(Γ') is the face of Δ corresponding to Γ" under the majorization map 2.6. The

expression on the left can be rewritten as follows:

Γ«Δ Ι Γ'<Δ'
T Γ«α(Γ')

Σ /*(r) Σ (-ι)dim Γ' Ι

Hence it suffices to verify that for each face Γ of the polyhedron Δ which is different from

Δ we have

To do this, it is convenient to pass to the fans Σ Δ and ΣΔ, dual to the polyhedra Δ and Δ'.

More precisely, to each face Γ of the polyhedron Δ we associate the cone σΓ dual to

Οοη(Δ,Γ); similarly, to Γ" < Δ' we associate the cone a r . The condition Γ < α(Γ')

becomes then the condition σΓ, c σΓ. The collection of cones σΓ-, where Γ ς̂ α(Γ'), forms

a conic polyhedral decomposition of the cone σΓ. Since d imF' = η — d i m a r , the above
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equality turns into

«r'c«r

which is almost obvious. This completes the proof of Proposition 5.8.

5.9. COROLLARY. For dim Δ = η > 4

Φ 2 ( Δ ) - Σ Φι(Γ)
dim Γ = η — 1

(we recall that <ρ2(Δ) = /*(2Δ) - (η + 1)/*(Δ) and Ψι(Τ) = /*(Γ)).

5.10. COROLLARY. e o o (Z) = (— 1 ) " 1 ( Π - 1), where Π is the number of integral points
lying in the 1-skeleton of A.

In fact, arguing as in the beginning of the proof of 5.8 we may reduce the problem to
the case when dim Δ = n. Since e°-p(Z) = ep-°(Z), we have

dim Γ » 2

On the other hand, according to 4.6

1 = /(Δ) = ΣΓ<Δ/*(Γ),Since

5.11. The formulas obtained in 5.8-5.10 allow us to give explicit computations of Hodge
numbers for arbitrary Newton polyhedra of dimension at most 4. Here we restrict
ourselves to the Hodge-Deligne numbers for the most interesting "middle-dimension"
cohomology groups H"~1(Z).

a) n = 1. In this case Δ is an interval of length /, and Ζ consists ο ί / = / * ( Δ ) + 1 =
/(Δ) - 1 points.

b) η = 2. In this case Ζ is a smooth curve of genus /*(Δ), Π of whose points are
known out. From now on Π denotes the number of integral points in the 1-skeleton of Δ.
The table of Hodge numbers for H](Z) has the form

/*(Δ)

Π - 1

0

/•(Δ)

c) η = 3. Here Ζ is a noncomplete surface; the table of Hodge numbers for H^(Z) has
the form

/*(Δ)

Σ/*(Π
Γ

Π - 1

0

Λ1·1

Σ/*(Γ)
Γ

0

0

/*(Δ)
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where Α1·1 = φ2(Δ) — Σρ/*(Γ). Here the sum is taken over the two-dimensional faces of
Δ. We also recall that φ2(Δ) = /*(2Δ) - 4/*(Δ).

Incidentally, the canonical compactification Ζ = Ζ ( Δ / ) is a quasismooth surface whose
Hodge numbers are as follows:

h2-°(Z) = Α°·2(Ζ) =

/,οα = his> = Λ2.ι = Λι,2 = 0

d) Μ = 4. In what follows Γ runs through the set of 3-dimensional faces of Δ and F
runs through the set of 2-dimensional faces of Δ. The Hodge table for H?(F) has the form

*(Δ)

Σ/*(Γ)
Γ

£/*(/•)
F

Π - 1

0

hX,2

Λ 1 · 1

Σι*(η
F

0

0

h2·1

Σ/*(Γ)
Γ

0

0

0

/*(Δ)

where

Incidentally, φ2(Δ) = /*(2Δ) - 5/*(Δ) and φ3(Δ) = ψ2(Δ) = /(2Δ) - 5/(Δ) + 10.
5.12. Knowing the numbers ep-q for the hypersurfaces in tori, we thereby know them

for hypersurfaces in arbitrary toric varieties. We consider in more detail the case of
hypersurfaces in the «-dimensional affine space A = C". In this case the lattice Μ has a
natural basis and can justifiably be denoted by Z". The Newton polyhedron of a
polynomial f{xx,.. ·,*„) lies in the positive orthant R"+. As above, we assume that the
polynomial / is nondegenerate; the corresponding hypersurface f(x) = 0 in A will be
denoted by Z".

Our approach to the study of Za is the same: we represent A" as a union of tori and
sum up the corresponding ep·". More precisely, for each / c {1,..., η} we denote by Z,
the hypersurface defined by the equation f, = 0 in the torus (C\0)1 7 1. The Newton
polyhedron of f, coincides with Λ, = Λ Π R'; clearly, if Δ does not intersect R7, then
Z, = (C \ 0)'7'. Summing over /, we see that

This again yields the Euler characteristic of Z" (see [7], §4):

but still gives little information about the cohomology of Za.
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A more complete answer can be given if, in addition, we assume that the Newton

polyhedron Δ is "convenient", i.e., coincides with R"+ in some neighborhood of 0. First, in

this case Hk(Za) = 0 for k < η — \ (since Z" is affine and toroidal), and second,

Hc

k(Z") = Hk + 2(k) [1] for k > η - 1 (Corollary 3.8). In other words, all Hc

k(Za) vanish

with the exception of Hc"-\Za) and 7/ 2 "~ 2 (Z a ) = C[l - «]. Thus the only nontrivial

Hodge structure is that on H"'l(Z") for which

, x,,_! , ,. ,. iep'q(Za), (ρ,ς)φ (n -l,n - 1),
( - 1 ) " hp-q( H"~1(Za)) = < ν , Τ ' Ί / ν > />
1 j l ' [ '' \ e p - q ( Z " ) - l , ( p , q ) = ( n - l , n - l ) .

§6. Complete intersections
In this section we show how the above results can be applied to the computation of

Hodge structures for complete intersections in tori.

6.1. Let T " again be the «-dimensional torus with lattices of characters M, and let

fx,...,fr e C[Μ] be r Laurent polynomials defining r hypersurfaces Z, = Zf (i =

1,...,/") in T". Let Δ, be the Newton polyhedron of /,. In what follows we assume that

the system fx,...,fr is nondegenerate (see [7] for a definition of this notion).

For a nondegenerate system fx,...,fr, the hypersurfaces Zx,..., Z r intersect transver-

sally and define a complete intersection Υ = Zx Π • • • C\Zr. Moreover, if Δ is an arbitrary

«-dimensional polyhedron majorizing Δ 1 ; . . . , ΔΓ, then the hypersurfaces Zx,...,Zr in ΡΔ

intersect transversally (and are transversal to the divisor D = Ρ Δ \ Τ " ) ; this constitutes a

geometric definition of nondegeneracy of the system fx,..., fr.

6.2. To compute ep-q(Y) we add auxiliary variables λ 1 , . . . ,λ Γ (Lagrange multipliers),

and in the toric variety C Χ Τ we consider the hypersurface ZF with the equation

F(\,x) = \J1(x)+ ••• +\rfr(x)-l = 0.

The Newton polyhedron Λ of the polynomial F is the convex hull (in the space

Rr X M R ) of the following (r + 1) polyhedra: {0}, {ex} Χ Δ 1 ( . . . , {er} Χ Δ,, where

ej,...,er is the natural basis of Zr. It is easy to verify that F is nondegenerate with

respect to Λ.

Restricting the projection C X T" -» T" to ZF, we obtain a map m: ZF -> T". It is

easy to see that for a point χ from Υ the fiber π~1(χ) is empty. If χ <£ Υ, then the fiber

π~ι(χ) is a linear affine subspace in C. Moreover, ZF is a locally trivial (in the Zariski

topology) bundle over Ύ"\Υ with fiber C " 1 . Therefore by 1.9

e(ZF) = (xx)r-le(T"\Y)

or

ep-«{Y) = ep-q(T") - ep + r-1-q+r-l(ZF).

This formula reduces the study of the complete intersection Υ to the study of the

hypersurface ZF. We observe, however, that ZF is a hypersurface not in a torus, but in

Cr X T".

6.3. The complete intersection F c T " is a smooth affine variety, dim 7 = η - r.

Therefore H'C(Y) = 0 for i < η — r. Moreover, as in the case of hypersurfaces, we have

the following Lefschetz-type theorem for Υ (D. N. Bernshtein).

6.4. THEOREM. Suppose that all Newton polyhedra Δ ΐ 5 . . . , ΔΓ have dimension η = rk M.

Then the Gysin homomorphism

is an isomorphism for i > η — r.



298 V. I. DANILOV AND A. G. KHOVANSKH

Thus the Hodge structure on H^(Y) is also well known for k > η - r. Together with

the formula for the numbers ep'q(Y) from 6.2, this also allows us to recover the Hodge

numbers hΡ·«(Η?-\Υ)).

6.5. REMARK. The assumption that the polyhedra Δ 1 ; . . . , Ar in the statement of

Theorem 6.4 are η-dimensional may be somewhat weakened (but not totally discarded).

Namely, it suffices to require that for each nonempty / c {1,..., r} the dimension of the

polyhedron E , e / A , be not less than η + \I\- r. In that case we can also compute all

Hodge-Deligne numbers of Y.

6.6. REMARK. Without any conditions on Δ,, summing the formulas from 6.2 for all ρ

and q, we see that E(Y) = —E(ZF). Applying the formula from 4.5 for the Euler

characteristic of a hypersurface in a torus, we see that

Here / runs through the subsets of {1, . . . , r } , Λ, = Λ ί Ί (R7 X M R ) and ΚΠ + | / | (Λ 7 )

denotes the (n + |/|)-dimensional volume of Λ,.

We denote by Δχ * · · · * Δ, the convex hull of the polyhedra {ex} XA, {e r} x A r

in the space Rr X M R . Then Λ is a pyramid with vertex {0} and base Δχ * · • · * Δ,.. In

general, for / c {l,...,r} we denote by Δ*' the polyhedron * ; ( Ξ / Δ , ; then Λ, is a

pyramid over Δ*'. Since

the formula for E(Y) can be rewritten as follows:

ι

Comparing this with the formula from [7], Theorem 2, we obtain

k,\k\ = n

Here, for a multi-index la = (k1,..., kr), Vn(Ak) denotes the mixed volume

kt times kr times
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