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T O P O L O G I C A L  O B S T R U C T I O N S  

T O  T H E  R E P R E S E N T A B I L I T Y  OF F U N C T I O N S  
B Y  Q U A D R A T U R E S  

A. G. KHOVANSKII 

ABSTRACT. A topological variant of Galois theory, in which the mon- 
odromy group plays the role of the Galois group, is described. It turns 
out that there are topological restrictions on the way the Riemann 
surface of a function represented by quadratures covers the complex 
plane. 

1. INTRODUCTION 

1.1. Attempts to solve explicitly differential equations usually fail. The first 
rigorous proofs that some differential equations are not solvable by quadra- 
ture were obtained in the 1830's by Liouville. Liouville was undoubtedly 
inspired by the results of Lagrange, Abel, and Galois on the nonsolvability 
of algebraic equations by radicals. Unlike in Galois theory, automorphism 
groups do not play a central role in LiouviUe's method, even though Liou- 
ville uses "infinitely small automorphisms." His results have the following 
character: LiouviUe shows that "simple" equations cannot have solutions 
written by complicated formulas. "Simple" equations either have solutions 
of a sufficiently simple kind, or cannot be solved by quadrature. One can 
find an exposition of the Liouville method, as well as related work of Cheby- 
shev, Mordukhai-Boltovskii, Ostrovskii, and Ritt, in [1]. 

Another approach to the problem of solvability of linear differential equa- 
tions by quadrature was developed by Picard. Picard generalized Galois 
theory to the case of linear differential equations. Vessiot finished in 1910 
the work started by Picard, and proved that a linear differential equation is 
solvable by quadrature if and only if its Galois group has a solvable normal 
subgroup of finite index. This theorem of Picard-Vessiot is analogous to the 
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Galois theorem on the solvability of algebraic equations by radicals. The 
main results of the differential Galois theory are contained in [2]. 

It is interesting that the Picard-Vessiot approach is close to the Liouville 
approach. Namely, the Galois group of a linear differential equation has 
a solvable normal subgroup of finite index if and only if the equation has 
solutions of a very specific simple kind. One can therefore state the Picard- 
Vessiot theorem without mentioning Galois groups. In that form, for second- 
order equations, it was discovered and proved by Liouville, and for nth order 
equations, by Mordukhai-Boltovskii. Mordukhai-Boltovskii obtained this 
result by LiouviUe's method in 1910, independently of and simultaneously 
with Vessiot. 

There is a brief survey of the current state of the subject and a rather 
extensive bibliography in [3]. 

1.2. In this paper we describe a third approach to the problem of represent- 
ing functions by quadratures. We consider functions that are representable 
by quadratures as multi-valued functions of one complex variable. It turns 
out that there are topological restrictions on the way the Riemann surface 
of a function representable by quadratures covers the complex plane. If the 
function does not satisfy these restrictions, then it is not representable by 
quadratures. 

This approach has the following advantage, beside its geometric clarity. 
The topological prohibitions concern the character of the multivaluedness 
of the function. They are valid not only for functions that are representable 
by quadratures, but also for a much wider class of functions. One obtains 
this class if one adds the meromorphic functions to the class of functions 
representable by quadratures, as well as all functions representable by for- 
mulas containing the above. Because of this, the topological results on 
nonrepresentability of functions by quadratures are stronger than the alge- 
braic results. This is because composition of functions is not an algebraic 
operation. In differential algebra, instead of composition of functions, one 
considers differential equations satisfied by the composition. But, for exam- 
ple, Euler's F-function does not satisfy any polynomial differential equation. 
Therefore, it is hopeless to look for an equation satisfied by, say, F(expx). 
The only known results on the nonrepresentability of functions by quadra- 
tures and, say, Euler's F-functions have been obtained by our method. 

On the other hand, it is impossible to prove that a single-valued mero- 
morphic function is not representable by quadratures by using this method. 

The approach we describe was announced in [4], [5] and developed in 
my Ph.D. Thesis [6], but was never published in detail. Here, we partially 
fill this gap (in the past almost quarter of a century, these results have 
not been rediscovered; solvability by quadrature, though classical, is not a 
fashionable theme). 
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By using differential Galois theory (more precisely, its linear-algebraic 
part dealing with algebraic matrix groups and their differential invariants), 
one can show that there are only topological reasons for a Fuchs-type linear 
differential equation not to be solvable by quadrature. In other words, if 
there are no topological obstructions to the solvability by quadrature of a 
Fuchs-type differential equation, then this equation is solvable by quadra- 
ture. 

This and other facts pertaining to the topological Galois theory of Fuchs- 
type equations will be included in a forthcoming paper. 

1.3. A rigorous definition of the representabitity of a function by quadra- 
tures was given by Liouville. Here we give variants of this definition that 
we will need. 

A function f is said to be representable via the functions {7~} by quadra- 
tures if f can be represented by applying the arithmetic operations, differ- 
entiation, exponentiation, and integration on the ~a's. 

One can add solution of algebraic equations to the allowable operations. 
A function f is said to be representable via the functions ~ a }  by general- 

ized quadratures if f is representable via (7~a} by quadratures and solutions 
of algebraic equations. 

A function f is said to be representable via the functions {7~a} by n- 
quadratures if f is representable via (~a} by quadratures and solutions of 
algebraic equations of degree at most n. 

A function is said to be representable by quadra~ures (generalized quadra- 
~ures, n-quadratures) if it is representable via constants ~a -- C by quadra- 
tures (generalized quadratures, n-quadratures). 

Each elementary function is representable by quadratures, as was discov- 
ered by Liouville. Thus, for example, f (x)  = arctanx can be represented 
b y  

1 
f '  = x '  - 1. 

l + x  2' 

In general, the class of all functions representable via {7~a} by quadratures 
is not closed with respect to composition. But, as was shown by Liouville, 
the classes of all functions representable by quadratures, by generalized 
quadratures, and by n-quadratures are closed with respect to composition. 

As we consider multi-valued functions, the definitions above need to be 
made more precise. Let us make more precise, for example, what we mean 
by the composition of two multi-valued functions f(x) and g(x). Take an 
arbitrary point a, one of the germs Sa of f(x) at a, and one of the germs gb 
of g(x) at b ---- f(a) .  We shall say that the function ~(x) generated by the 
germ gbofa is representable as a composition of the functions f(x) and g(x). 
This definition does not produce a unique function. For example, there are 
exactly two functions that can be represented as ~ ,  namely f l  = x and 
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f2 - - x .  To say that a class of multi-valued functions is closed with respect 
to composition means that if two functions belong to this class, then any 
function that can be represented as a composition of these two functions 
also belongs to this class. 

The same has to be said about all the other operations on multi-valued 
functions that were mentioned in the above definitions and that will be 
encountered throughout this paper. 

1.4. In this paper, we prove the existence of the following topological ob- 
struction to the representability of a function by quadratures, generalized 
quadratures, and n-quadratures. 

First, a function that is representable by generalized quadratures, and in 
particular a function that is representable by quadratures or n-quadratures, 
can have a no more than countable number of singular points on the complex 
plane. (Note that even for the simplest functions that are representable by 
quadratures, the set of singular points can be everywhere dense.) 

This result is proved in Sec. 2.2, where we show that the class of functions 
with a no more than countable number of singular points is closed with 
respect to composition, the arithmetic operations, integration, and solution 
of algebraic equations. 

Second, the monodromy group of a function representable by quadratures 
is always solvable. (Note that even for the simplest functions representable 
by quadratures the monodromy group can be uncountable.) 

There are analogous restrictions on the placement of the Riemann surface 
of a function representable by generalized quadratures or by n-quadratures. 
But these restrictions are more complicated to state. There the monodromy 
group appears not as an abstract group, but as a group of permutations of 
the sheets of the function. In other words, these restrictions involve not just 
the monodromy group but the monodromy pair consisting of the monodromy 
group and the isotropy subgroup of some germ. 

The definitions concerning monodromy pairs are given in Sec. 3.5. The 
main theorem (cf. Sec. 4) describes how the monodromy pair of a function 
changes under composition, integration, arithmetic operations, etc. In Sec. 5 
we compute the classes of pairs of groups that appear in the main theorem. 
In Sec. 5.2 we gather all the results obtained. 

In Sec. 6 we consider functions mapping the half-plane into polygons 
bounded by ares of circles. We give an explicit classification of those poly- 
gous whose corresponding function is representable by quadratures. The 
main case of interest here turns out to be the well-known Christoffel-Schwarz 
case, in which the polygon has straight sides. There are two other inter- 
esting cases. The first reduces to the Christoffel-Schwarz case by taking 
logarithms, the second occurs when the function is algebraic. There are 
no other integrable cases. This result from [4], [6] is first published in de- 
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tail here. It is, of course, closely connected with a whole series of classical 
research, including the work of Klein [7]. 

1.5. Thus, in this paper we describe a topological variant of Galois theory, 
in which the monodromy group plays the role of Galois group. The results 
were obtained in 1969-1971 while I was a student of V. I. Arnold. I take 
this opportunity to thank my teacher. 

I am grateful to A. A. Bolibruch who suggested that  I reconsider and 
publish these old results, to my wife, T. V. Belokrinitskaya, who helped me 
in this endeavor, and to Smilka Zdravkovska who kindly agreed to translate 
the paper into English. 

2. FUNCTION WITH A NO MORE THAN COUNTABLE SET OF SINGULAR 
POINTS 

2.1. P r o h i b i t e d  se ts .  We first define the class of functions that  will be 
considered in what follows. A multi-valued analytic function of one complex 
variable is called an So function if its set of singular points is no more than 
countable. Let us make this definition more precise. 

Two regular germs fa and gb given at the points a and b of the Riemann 
sphere S 2 are said to be equivalent if 9b can be obtained from fa by analytic 
continuation along some curve. Each germ 9b equivalent to a germ fa is 
said to be a regular germ of the muiti-valued function f generated by the 
germ fa. 

A point b E S 2 is said to be singular for the germ fa if there is a curve 
V [0,1] --~ S 2, V(0) = a, 7(1) = b, such that  there is no analytic contin- 
uation of the germ along this curve, but  for every t, 0 < t < 1, there is an 
analytic continuation of the germ along the shorter curve V[0, t] -* S 2. It  is 
easy to see that  the sets of singular points of two equivalent germs coincide. 

A regular germ is called an S-germ if its set of singular points is no more 
than countable. A multi-valued analytic function is called an S-function if 
each of its regular germs is an S-germ. 

In what follows we shall need a lemma according to which a curve can 
be "taken off" a countable set after a small perturbation. 

L e m m a  o n  t a k i n g  a c u r v e  o f f  a c o u n t a b l e  s e t .  Let A be a no more 
than countable set in the complex plane C, let '7 [ O, 1 ] --* C be a curve, and 
let ~(t)  be a continuous positive function for 0 < t < 1. Then there is a 
curve ~ [ 0, 1 ] --* C such that ~(t) ~ A and IV(t) - ~( t) l < ~( t) for 0 < t < 1. 

The  "scientific" proof of this lemma consists of the following. In the 
function space of curves ~ close to % 
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the curves tha t  do not intersect a given point of A form an open dense set. 
The intersection of a countable number of open dense sets in such function 
spaces is not empty. 

We give here an elementary proof of this lemma. (It can be transferred 
almost verbatim to the case when A is uncountable but of Hausdorff length 
zero, cf. Sec. 7.) We first construct a curve ~ which is the union of an 
infinite number of segments whose vertices do not belong to A and such 
that  

1 
[7(t) - ~(t)l < ~ ~(t). 

Such a curve exists since the complement of A is everywhere dense. We 
now show how to change each segment [p, q] of ~ so as to obtain a curve 
that  does not intersect A. Take the segment [p, q] and let rn be the normal 
to this segment passing through the midpoint of [p, q]. Consider the set 
of two-segment curves [p, b] U[b, q], where b E m and b is sufficiently close 
to [p, q]. There is a continuum of such curves, and the intersection of any 
two such curves is {p, q}. Hence there is a two-segment curve in this set that  
does not intersect A. By replacing each segment of ~ by such a two-segment 
curve we obtain the desired curve. 

We shall also consider other sets outside of which a function has an 
analytic continuation. A no more than countable set A is called a prohibited 
set for the regular germ fa, if fa has a regular continuation along any curve 
7(t), 7(0) = a, tha t  intersects A in at most "r(0). 

T h e o r e m  on  p r o h i b i t e d  sets .  A no more than countable set A is a 
prohibited set for  a germ fa if  and only i f  A contains the set of singular 
points of fa. In particular, a germ has a prohibited set if and only i f  it is a 
germ of an S-function. 

Proof. Suppose there is a singular point b of the germ fa that  does not 
belong to some prohibited set A of fa. By definition, there exists a curve 

" / [0 ,1 ] - -~S  9, ~ / (0)=a ,  "~(1)--b, 

along which there is no regular continuation of fa,  but such a continuation 
exists through any t < 1. Without loss of generality, we can assume tha t  
a, b, and "r(t) all lie in the finite part of the Riemann sphere, i.e., tha t  
~/(t) ~ oo for 0 < t < 1. Let R(t) denote the radius of convergence of the 
series f 'd0 which is obtained by continuation of fa along q,(t). Then R(t )  
is a continuous function on [0, 1). By ' the  previous lemma, there is a curve 
~(t), ~(0) = a, ~(1) = b, such tha t  

1 
17(t) - $(t)l < S R(t) 
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and ~(t) ~ A for t > 0. The germ fa has a continuation along ~ up to the 
point 1. But  this clearly implies that  fa has a continuation along 7. This 
contradiction shows that  the set of singular points of fa is contained in each 
prohibited set for fa. The converse statement (a countable set containing 
the set of singular points of fa is a prohibited set for fa) is obvious. [] 

2.2. T h e  class o f  S - func t i ons  is closed.  

T h e o r e m  t h a t  t h e  class o f  S - func t ions  is closed. The class S of all 
S-functions is closed with respect to the following operations: 

(1) differentiation; i.e., if f �9 S, then f '  E S; 
(2) integration; i.e., if f E S, then f f (x)dx �9 S; 
(3) composition; i.e., if g, f �9 S, then go f �9 S; 
(4) meromorphic operations; i.e., if fi �9 S, i = 1 , . . . ,n ,  

and if F(xl ,  . . . , Xn) is a meromorphic function of n variables, then 
f = F(fl,..., f,~) �9 S; 

(5) solutions of algebraic equations; i.e., if fi �9 S, i = 1 , . . .  ,n ,  and if 

+ ] 1 ; n - 1  = 0, 

(6) 
then f �9 S; and 
solutions of linear differential equations; i.e., if fi �9 S, i = 1 , . . . ,  n, 
and if 

f(n) -at- f l f  (n-l) "1- �9 " + fn = O, 

then : �9 S. 

Proof. (1) and (2). Let fa, a ~ c~, be the germ of an S-function with A 
as set of singular points. If there is a regular continuation of fa along some 
curve 7 lying in the finite part of the Rieman~ sphere, then the integral and 
the derivative of this germ have a regular continuation along 7. Therefore, 
one can take A I.J(c~} as prohibited set for the integral and for the derivative 
of f~. 

(3) Let fa and gb be germs of S-functious with A and B as sets of 
singular points, respectively, and let f(a) = b. Denote by f - l ( B )  the full 
inverse image of B under the multi-valued correspondence generated by fa- 
In other words, x E f - l ( B )  if and only if there is a germ Cx equivalent 
to fa such that  r  �9 B. The set f - l ( B )  is no more than countable. One 
can take A U  f - I ( B )  as prohibited set for gb o fa. 

(4) Let f~a be germs of S-functions, let Ai be their sets of singular points, 
and let F be a meromorphic function of n variables. We assume tha t  fia 
and F are such that  the germ 

f~ = F ( A ~ , . . . ,  ],,~) 
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is a well-defined meromorphic germ. By replacing a by a nearby point if 
necessary, we can assume that fa is regular. If 7(t) is a curve that does not 
intersect 

A = UA i  

for t > 0, then fa has a meromorphic continuation along 7. Let B denote 
the projection on the Pdemann sphere of the set of poles of the function f 
generated by fa. One can take A U B as prohibited set in this case. 

(5) Let fia be germs of S-functions, let Ai denote their sets of singlflar 
points, and let fa be a regular germ such that 

y: + y l j : - x  +. . .+ yn.=o. 

If 7(t) is a curve that does not intersect 

A = UA~ 

for t > 0, then there is a continuation of fa along V that contains, in general, 
meromorphic and algebraic elements. Let B denote the projection onto the 
Riemann sphere of the poles of the function f and the ramification points 
of its Riemann surface. One can take A U B as prohibited set for fa. 

(6) If the coefficients of the equation 

f(n) + flaf(n-1) + . . .  + fna = O 

have a regular continuation along some curve 7 lying in the finite part of the 
Riemann sphere, then each solution fa of this equation also has a regular 
continuation along 7- Therefore, one can take 

A = U Ai U{oo}, 

where Ai is the set of singular points of fai, as prohibited set for fa. [] 

Remark. The arithmetic operations and exponentiation are examples of 
meromorphic operations. Hence, the class of S-flmctions is closed under 
arithmetic operations and exponentiation. 

Corol lary.  I f  a multi-valued function f (x)  can be obtained from single- 
valued S-f~nctions by integration, differentiation, meromorphic operations, 
compositions, and solutions of algebraic equations and of linear differential 
equations, then f (x )  has a no more than countable set of singular points. 
In particular, a fi~nction urith uncountable number of singular points cannot 
be represented by generalized quadratures. 
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3. THE MONODROMY GROUP 

3.1. The monodromy group with prohibited set. The monodromy 
group of an S-function f with prohibited set A is the group of permutations 
of the sheets of f as a result of going around the points of A. We now make 
this sentence more precise. 

Let Fa be the set of all germs of an S-function f at a point a that does 
not belong to some prohibited set A. Take a closed curve ~/in S 2 \ A starting 
at a. Given a germ fa in Fa, after analytic continuation of fa along q, we 
get another germ in Fa. 

Thus, each curve 7 in S 2 \ A determines a map from Fa to itself, and ho- 
motopic curves determine the same map. The product of curves determines 
the product (=composition) of the corresponding maps. We thus get a ho- 
momorphism ~- of the fundamental group of SZ\ A into the group S(Fa) of 
permutations of Fa. We shall call this the A-monodromy homornorphism. 
The monodromy group of an S-function f with prohibited set A (or the 
A-monodromy group) is the image of the fundamental group Irl (S 2 \ A, a) 
in S(Fa) under ~'. 

Proposition. 
(1) The A-monodromy group of an S-function does not depend on the 

choice of the base point. 
(2) The A-monodromy group of an S-function f acts transitively on the 

sheets of f .  

Both statements can easily be proved by using the lemma from Sec. 2.1. 
Let us prove, for example, the second. 

Proof. Let fla and f2~ be germs of f at a. As fl~ and f2~ are equivalent 
germs, there is a curve 3' such that continuation of fla along 7 produces 
f2a- By the lemma in Sec. 2.1, there is an arbitrarily close to 7 curve ~ that 
does not intersect A. If ~ is sufficiently close to 7, then the permutation of 
Fa corresponding to ~ will map fla to f2a. [] 

We now show some effects that one should take into account when study- 
ing quadrature functions as functions of one complex variable. 

Example. Consider the function 

=.In(X - za), 

where c~ > 0 is an irrational number. Then w(z) is an elementary function, 
given by a very simple formula. Nevertheless, the Riemann surface of w(z) 
covers the complex plane in a very complicated way. The set A of singular 
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points of w(z) consists of the points 0, cx~ and the logarithm ramification 
points 

ak = e 2k~ri/a, k E Z. 

Since a is irrational, the points ak form a dense set on the unit circle. It 
is not difficult to prove that the fundamental group 7rl(S 2 \ A) and the .4- 
monodromy group of w(z) have the cardinality of the continuum. One can 
also show that the B-monodromy group of w(z), where 

B = A U { a }  

and a ~ a~ is an arbitrary point on the unit circle, is a proper subgroup of 
the A-monodromy group of w(z). 

3.2. The  closed m o n o d r o m y  group.  Because of the dependence of the 
A-monodromy group on the choice of A, we are led to consider the group 
of permutations of the sheets of the function with a topology, the Tikhonov 
topology. It turns out that the closure of the A-monodromy group does not 
depend on A. 

Given a set M, we consider the following topology on the group S(M) of 
permutations of M. For each finite set L C M define a neighborhood UL of 
the identity permutation as the set of permutations p such that p(l) = l for 
I E L. Take as basis of neighborhoods of the identity permutation all the 
sets UL, where L runs over all finite subsets of M. 

Lernma on the  closure of  the  m o n o d r o m y  group.  The closure of 
the monodromy group of an S-function f with prohibited set A in the group 
s(F) of all permutations of the leaves of f does not depend on the choice 
of prohibited set A. 

Proof. Let A1 and A2 be two prohibited sets for f and let Fa be the set of 
leaves of f at a, 

a ~ A1 U A2. 

Let 
r l ,  r2 c_ ~(F~) 

be the monodromy groups of f corresponding to these two prohibited sets. 
It is sufficient to prove that, for each permutation #1 E r l  and for each 
finite set L C Fa, there is a permutation #2 �9 F2 such that 

~ul I~ = #2 IL" 

Let 
7 �9 ~rl( $2 \ A1, a) 

be a curve corresponding to ~1, Since L is finite, any curve 

�9 r l  (S 2 \ A1, a) 



OBSTRUCTIONS TO REPRESENTABILITY BY QUADRATURES 101 

tha t  is sufficiently close to 7 will induce a permutat ion 31 which coincides 
with ~1 on L. By the lemma in Sec. 2.1 such a curve ~ can be chosen so 
tha t  "~ does not intersect A2. Hence 31 will be an element of F2. [] 

Because of this l emma the notion of closed monodromy group of 
an S-function f is well defined: it is the closure in S ( F )  of the monodromy 
group of f with some prohibited set A. 

3.3.  Tran.~i t ive  a c t i o n s  o f  g r o u p s  o n  se t s  a n d  t h e  monodromy pair 
o f  a n  S - f u n c t i o n .  The  monodromy group of a function f is not just  an 
abs t rac t  group, but  also a transitive group of permutat ions of the sheets 
of f .  In this section we recall the algebraic description of transitive actions 
of groups on sets. 

An action of a group F on a set M is a homomorphism v from F to the 
group S ( M ) .  Two actions 

"rl F ~ S(MI) and r2 r ~ S(M~) 

are said to be equivalent if there exists a one-to-one map  

-- ,  M 2  

such tha t  

~ O r l  = r 2 ,  

where ~ S(M1) --+ S(M2) is the isomorphism induced by q. 
The  isotropy subgroup ra of an element a 6 M under r is the subgroup 

of all # 6 F such tha t  
r , ( a )  = a .  

The action ~- is said to be transitive if for any two elements a, b 6 M there 
is a ~ E r such tha t  

r # ( a )  -- b. 

The  following is obvious. 

Proposition. 
(1) An  action ~- of F is transitive i f  and only i f  the isotropy groups of 

any two elements a, b 6 M are conjugate. The image of F under a 
transitive action v is isomorphic to the quotient 

r~ N  ro,-1 
~6F 

(2) There is a unique up to equivalence transitive action of F with a 
given subgroup as the isotropy group of some element. 
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Thus, transitive actions of F can be described by a pair of groups. We 
say that a pair of groups [ F, Fa ], where Fa is the isotropy subgroup of some 
element a under a transitive action T of F, is the monodromy pair of a with 
respect to r. The group 

7"(r) ~ r / A  , r t'-I 
~EF 

will be called the monodromy group of the pair [ F, F~ ]. 
The A-monodromy homomorphisin 7" determines a transitive action of 

the fundamental group ~rl (S 2 k A) on the set F~ of sheets of f over a. 
The monodromy pair of a germ fa under the action 7" will be called the 

monodromy pair of fa with prohibited set A. The monodromy pair of a 
germ fa under the action of the closed monodromy group will be called 
the closed monodromy pair of fa. Any two germs of an S-function f have 
isomorphic monodromy pairs with prohibited set A, so one can talk of the 
monodromy pair of an S-function f with prohibited set A, and of the closed 
monodromy pair of f .  We shall denote by [ f ]  the closed monodromy pair 
of an S-function f .  

3.4. A lmos t  normal  func t ions .  A pair of groups 

[r, r0], r 0 c r ,  

is called an almost normal pair if there exists a finite set P C F such that 

/&to/-&-1 = F'~ ~ro/,~-l" 
/~EF /~EP 

L e m m a  on discre te  act ions.  The image r(F) of F under a transitive 
action 7" r --* S(M) is a discrete subgroup of S(M) if and only if the mon- 
odromy pair [F, Fo] of some element xo E M is almost normal. 

Proof. Let the group r(F) be discrete. Denote by P a finite subset of M 
such that the neighborhood U~ of the identity permutation does not contain 
elements of 7-(Y) other than the identity. This means that the intersection 

N r x  
xEP 

of the isotropy subgroups of the elements x E P acts trivially on M, i.e., 

F7 rx ~ N /'&Fob--l" 
zEff ~EP 
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The groups rx are conjugate to F0, so we can choose a finite set P C F such 
that 

N/-zro/-z-1 = N/zro/z-1. 
/~EP /~EF 

The converse is proved analogously. [] 

We shall say that an S-function ] is almost normal if the monodromy 
group of f is discrete. It follows from the lemma above that f is almost 
normal if and only if the closed monodromy pair [ f ] is almost normal. 

A differential rational function of several functions f~ is a rational func- 
tion of the f~'s and the derivatives of the fi's. 

Lernma on finitely genera ted  functions.  Let f be an S-function 
such that each germ of f at a is a differential rational function of a finite 
number of given germs of f at a. Then f is almost normal. 

Indeed, if the given germs do not change after continuation along a curve, 
then neither do differential rational functions of these germs. 

It follows from this lemma that any solution of a linear differential equa- 
tion with rational coefficients is an almost normal function. The same holds 
for many other functions that one encounters in differential algebra. 

3.5. Classes of  pairs of groups. In this section we describe how the 
dosed monodromy pairs of functions transform under composition, integra- 
tion, differentiation, etc. We need some notions related to pairs of groups, 
which we introduce now. 

By a pair of groups we shall always mean a pair consisting of a group r 
and a subgroup of P. We shall identify r with the pair consisting of 1 ~ and 
the trivial subgroup of F. 

Defini t ion.  A class E of pairs of groups will be called an almost complete 
class of pairs of groups if 

(1) for each pair of groups [r ,  r0] E C, r0 c r ,  and for each homo 
morphism 

r F ~ G ,  

where G is some group, the pair of groups [ TP, rF0 ] also belongs 
to/~; 

(2) for each pair of groups [ r , r0  ] e C, r0 _c r,  and for each h o m o  
morphism 

r G ~ F ,  

where C is some group, the pair of groups [~--l(F),.-1(r0)] also 
belongs to/3; and 
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(3) for each pair of groups [ F, ro ] E s Fo C F, and for each group G 
with a T2-topology and such that  F C_ G, the pair of groups [F, Fo ] 
also belongs to / : ,  where r and ro denote the closures of r and ro 
in G, respectively. 

Defini t ion.  An almost complete class Ad of pairs of groups will be called 
a complete class of pairs of groups if 

(1) for each pair of groups [r, r0] e • ,  and for each group F1 such 
that  

F0 C r l  a_ F, 

the pair of groups [ r ,  F1 ] also belongs to A4; and 
(2) for any two pairs of groups 

[ r , n ] ,  [ n , r 2 ]  e M ,  

the pair of groups [F, F2] also belongs to .s 

The minimal almost complete and the minimal complete class of pairs 
of groups containing a given class B of pairs of groups will be denoted by 
E..(B> and .hi (B) , respectively. 

Lemma.  

(1) IS the monodromy group of a pair of groups [r, ro] is contained 
in some complete class J~/l of pairs of groups, then [ r ,  Fo ] is also 
contained in A4. 

(2) / f  an almost normal pair [F, Fo] is contained in some complete 
class j~4 of pairs of groups, then the monodromy group of [ r ,  Fo ] 
is also contained in J~4. 

Let us prove the second claim. Let Fi, i = 1 , . . . ,  n, be a finite number 
of subgroups conjugate to F0 and such that  

n 

N r ,  = N 
i=1 ~EF 

The pairs [ r , r , ]  ~ e  isomorphic to the pair Jr,  r0 ], so 

[r,r,] eM. 
Let ~" F2 --* F denote the inclusion homomorphism. Then 

"-i(rl) = r2 Nrl, 
hence 

[r2,r Nrl] M. 
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Since • contains [r ,r~]  and [ r ~ , r 2 N r l  ], we have 

Continuing this argument, we obtain that )P[ contains the pair [F, [']$=1 r,  ] 
and hence )9I also contains the group 

r / N  ~r0~ -~" 
~EF 

Propos i t ion  on the  c lass / : ( [ f ] ) .  An almost complete class of pairs s 
contains the closed monodromy pair [ f ] of an S-function f if  and only if  g. 
contains the monodromy pair of f with prohibited set A. 

Proof. Let [F, F0 ] denote the monodromy pair'of f with prohibited set A. 
Then 

if] = [r, ro]. 
Therefore, any almost complete class /~ containing IF, I'0 ] also contains 
[ f ]. Conversely, if [ F, Fo ] belong to / : ,  then 

[r, r0] ez .  
Indeed, the topology in the permutation group is such that 

F0 = r A F o .  

Therefore the pair It,  r0 ] is the inverse image of [F,~o] under the inclu- 
sion o f f  in F. [] 

4. THE MAIN THEOREM 

Main  Theorem.  The class A4 of S-functions whose closed monodromy 
pairs belong to some complete class )k4 of pairs is closed with respect to 
differentiation, composition, and meromorphic operations. If, moreover, J~4 
contains 

(1) the group C of complex numbers with respect to addition, then All 
is closed with respect to integration, 

(2) the group S(n) of permutations on n elements, then Ad is closed 
with respect to solving algebraic equations of degree at most n. 

The proof of this theorem consist~ of the following lemmas. 

L e m m a  on the  derivative.  For each S-function f we have 

[f ' ]  E .A~([f]). 
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Proof. Let A be the set of singular points of the S-function f and let fa 
be a germ of f at a nonsingular point a. Denote by the F the fundamental 
group ~rl (S 2 \ A, a) and by FI and F2 the isotropy subgroups of f~ and ]~, 
respectively. Then ['2 contains r l .  Indeed, fa does not change after contin- 
uation along a curve 7 E F1, so the derivative ]a ~ does not change either. It 
follows from the definition of a complete class that 

e rl]>. 

Using the proposition in Sec. 3.5 we obtain 

I f ' ]  E A/l([f]). [] 

L e m m a  on  composi t ion .  For any two S-unctions f and g, we have 

[g o f ]  E A/[([f],[g]). 

Proof. Let A and B denote the sets of singular points of f and g, respec- 
tively. Let f - l ( B )  be the inverse image of B under the multi-valued corre- 
spondence generated by the multi-valued function f .  Set 

Q =  A L J . f - I ( B  ). 

Let fa be some germ o f f  at a ~ Q, and let gb be some germ ofg at b = f(a). 
Then Q is a prohibited set for the germ gbog,~. Denote by r the fundamental 
group lri ($2\  Q, a) and by r l  and F2 the isotropy subgroups of the germs fa 
and gb o fa, respectively. Denote by G the fundamental group ~rl(S2 \ B, b) 
and by Go the isotropy subgroup of gb. Define a homomorphism 

r r l  - - .G 

as follows. To each curve 7 E r l  associate the curve 

r o 7(t) = 1(7(,)), 

where f'y(0 is the germ obtained from f~ after continuation along 7 up 
to time t. The curves r o 7 are closed because f~ does not change after 
continuation along curves belonging to F1. A homotopy of 7 within S 2 \ Q 
determines a homotopy of ~- o 7 within S 2 \ B because 

c_ Q. 

Hence the homomorphism is well defined. The germ gb o fa does not change 
after continuation along curves belonging to the group ~--I(G0); in other 
words, 

T-I(G0) C r 2. 

This implies the lemma. Indeed, we have 

r _~ I~2 _~ 7-1(G0) _ 7--1(6) = P 1 C F, 
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and hence 
[ r ,  r2]  e M ( [ G ,  Go], [ r ,  rx ]). 

Using the proposition from Sec. 3.5, we get 

[ g o / ]  e M ( [ / ] ,  [g]). [] 

L e m m a  on the  i n t e g r a l  For each S-function f ,  the following inclu- 
sion holds: 

where C denotes the group of complex numbers with respect to addition. 

Proof. Let A be the set of singular points of f and let Q = A [.J(oo}. Let 
fa be some germ of f at a point a ~ Q and let ga be a germ of f f(x) dx 
at this point, g'a = fa. We can take Q as prohibited set for the germs f~ 
and ga. Denote by F the fundamental group Irl(S 2 \ Q,a), and by F1 and 
F2 the isotropy subgroups of fa and ga, respectively. 

Define a homomorphism 
r r l  + C  

as follows. To each curve 7 E I'1 associate the number 

/ f(^l(t)) dx, 

where f~(0 is the germ obtained by continuation of fa along 7 up to the 
point t, and x = 1'(t). The isotropy subgroup I" 2 of ga coincides with the 
kernel of v, and hence 

[ r ,  r2]  e M ( [ r , r ~ ] , c ) .  

By using the proposition from Sec. 3.5, we obtain 

In what follows it will be convenient to use vector-valued functions. The 
definitions of prohibited set, S-function, and monodromy group extend in 
a straightforward way to vector-valued functions. 

L e m m a  on vector-valued funct ions.  For each vector-valued S-func- 
tion 

r =  (S l , . . . , s , )  
the following equality holds: 

.M([ f]) = .M([ f~ ] , . . . ,  [fn ]). 
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Proof. Let Ai denote the set of singular points of fi. The set of singular 
points of f is 

Q=UA,. 
Let f~ = ( f l a , . . . ,  fna) be some germ of f at a point a ~ Q. Denote by F 
the fundamental group 7r1(S 2 \ Q, a), by Fi the isotropy subgroups of the 
germs fin, and by F0 the isotropy subgroup of fa- Then 

n 

1-'O = N Fi, 
i = l  

SO 

•([ r, r0 ])= M([r, rl ],..., [r, rn ]). 
By using the proposition in Sec. 3.5, we obtain 

A4([f]) =J~4([f l] , . . . , [ fn]) .  [] 

L e m m a  on  meromorph i e  opera t ions .  For each vector-valued S-func- 
tion 

f - -  ( f l , . - . , f n )  

and meromorphic function F ( x l , . . . , x n )  such that F o f is defined, the 
following holds: 

[ F o r ]  E A4([f]). 

Proof. Let A be the set of singular points of f and B the projection of the set 
of poles of F o f into the Riemann sphere. As prohibited set for F o f we can 
take Q = A U B. Let fa be some germ of f at a point a ~ Q. Denote by F the 
fundamental group ~rl(S 2 \ Q, a) and by F1 and F2 the isotropy subgroups 
of fa and F o fa, respectively. Then r2 is a subgroup of Fx: indeed, the 
vector-valued function f does not change after continuation along a curve 
"y ~ F1, hence a meromorphic function of f does not change either. It follows 
from r2 _ F1 that 

[ r ,  r2]  e M ( [ F ,  F1]). 

By using the proposition in Sec. 3.5, we obtain 

[ f o f ]  e .A4([f]). [] 

L e m m a  on a lgebra ic  funct ions.  Let f = ( f l , . . . ,  fn) be a vector-valu- 
ed function and y an algebraic function of f defined by the equation 

yn + f l f n - 1  J r ' "  + fn = O. (1) 

Then 
[y] e .M([f] ,  S(n)), 

where S(n) is the symmetric group on n elements. 
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Proof. Let A denote the set of singular points of f and B the projection of 
the set of algebraic ramification points of y into the Riemann sphere. As 
prohibited sets for y and f we can take Q = A [j B. Let Ya and fa be some 
germs of y and f at a point a it Q related by the formula 

n n--1 Ya + flaYa + " "  + fna = O. 

Denote by F the fundamental group ~rl(S2 \ Q,a) and by F1 and F2 the 
isotropy subgroups of fa and Ya, respectively. The coefficients of (1) do not 
change after analytic continuation along a curve 7 E F1, so the roots of (1) 
will only be permuted after such a continuation. We get a homomorphism 

~" rl --, S(n). 

The group F2 is contained in the kernel of v, and hence 

e M([r,r  ], Sin)). 
By using the proposition in Sec. 3.5, we obtain 

[y] e • ( [ f ] ,  S(n)). [] 

This finishes the proof of the main theorem. 

5. GROUP OBSTRUCTIONS TO REPRESENTABILITY IN QUADRATURES 

5.1. C o m p u t a t i o n  of  some  classes of  pairs of  groups.  The main 
theorem raises the problem of describing the minimal class of pairs of groups 
containing the group C of complex numbers with respect to addition, as well 
as the minimal classes of pairs of groups containing, respectively, C and the 
finite groups, and also C and the group S(n). In this section we solve these 
problems. 

P ropos i t i on  1. The minimal complete class of pairs, ~/[(f~a), contain- 
ing some given almost complete classes s of pairs consists of pairs of 
groups [ F, F0 ] for which there is a chain of subgroups 

r =rl _~ "" _~ r,~ C F0 

such that for each i, 1 < i < m -  1, the pair [r,,r,+l] is contained in 
some f~a(i). 

For the proof, it suffices to show that the pairs [r ,  F0 ] as described in the 
proposition (a) belong to the complete class A4 (s and (b) form a complete 
class of pairs. Both claims follow immediately from the definitions. 

One can easily check the following propositions. 

P ropos i t i on  2. The class of pairs of groups IF, r0, ] such that F0 is a 
normal subgroup of r and r / F 0 / s  commutative forms the minimal almost 
complete class s containing the class ,4 of all abelian groups. 
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Propos i t i on  3. The class of pairs of groups [ F, r0]  such that F0 is a 
normal subgroup o] r and F/r0  is finite forms the minimal almost complete 
class ~(]C) containing the class ]C of all finite groups. 

Propos i t i on  4. The class of pairs [F, F0] such that 

ind(r, r0) _< n 

forms an almost complete class of groups. 

We shall denote the class in Proposition 4 by L(ind < n). Proposition 4 is 
of interest to us because of the following characteristic property of subgroups 
of S(n). 

L e m m a  1. A group F is isomorphic to S(n) i.f and only if F contains 
subgroups Fi, i = 1, . . . ,  k, such that 

(1) N,=I F, does not contain nontrivial normal subgroups of F, and 
(2) k ~-]~i=I ind(r, F,) _< n. 

Proof. Let F be a subgroup of S(n). Consider the representation of I ~ as 
a subgroup of the permutation group on a set M consisting of n elements. 
Let M decompose into k orbits under the action of F. Choose a point xl 
in each of the orbits. The set of isotropy subgroups F~ of the x, satisfy 
the conditions of the lemma. Conversely, assume F contains subgroups 
satisfying the conditions of the lemma. Denote by P the disjoint union of 
the sets P~ - {P]}, where P]  are the conjugacy classes ofF ,  in F. There is 
a natural action of F on P. The corresponding representation of F in S(P) 
is faithful since the kernel of this representation lies in 

k 

Finally, S(P) is a subgroup of S(n) since P contains 

k 

)- ind(r, < n 
i=1 

elements. [] 

A chain of groups 

ri,  i = l , . . . m ,  F - - ' r l ~ . . . ~ r m C _ F o ,  

is called a normal tower of the pair of groups IF, F0 ] if r ,+ l  is a normal 
subgroup of F, for each i -- 1, . . .  , m -  1. The quotient groups r i / r i + l  axe 
called the quotients of the normal tower. 
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T h e o r e m  on  t h e  classes A4(A,/C), A~I(A, S(n)), and  A4(A). 

(1) A pair of groups [F, F0] belongs to the minimal complete class 
.A4(.A, IC) containing all finite and all abelian groups if  and only 
if  [ F, Fo ] admits a normal tower with each quotient either finite or 
abelian. 

(2) A pair of groups [F, Fo] belongs to the minimal complete class 
.A4(A, S(n)) containing S(n) and all the abelian groups if  and only 
if  [F, Fo ] admits a normal tower with each quotient either a sub- 
group of S(n) or an abelian group. 

(3) A pair of groups [F, Fo] belongs to the minimal complete class 
.~r containing all abelian groups if  and only if the monodromy 
group of [ F, Fo ] is solvable. 

Proof. (1) follows from the description in Propositions 2 and 3 of the classes 
s and/:(K:> and from Proposition 1. 

In order to prove (2), consider the minimal complete class of pairs of 
groups containing s and/ : ( ind < n). This class consists of pairs [F, F0] 
for which there is a chain of subgroups 

r = F1 D .. .  _D F,~ _C F0, 

such that  for each i, 1 < i _< m - 1, either Fi/Fi+l is abelian or 
ind(Fi, Fi+l) _< n (cf. Propositions 3 and 4, as well as Proposition 1). This 
class contains S(n) (cf. Lemma 1) as well as all abelian groups, and it is 
clearly the minimal complete class of pairs that has this property. All that  
remains is to reformulate the answer. We shall transform successively the 
chain of subgroups 

r = r l  . . .   _rm c r0,  

into a normal tower for [F, F0]. Assume that for j < i the group F~+I is a 
normal subgroup of r l  and that 

ind(Fi, Fi+I) _< n. 

Denote by Fi+l the largest normal subgroup of F~ contained in Fi+I. Clearly, 
Fi/Fi+l is a subgroup of S(n). Instead of the original chain of subgroups, 
consider the chain 

F = G1 _D -.. _D G m =  P0, 

where Gj = Fj for j < i and 

Gj = Fj ( ' ]Fi+l  

for j > i. By continuing this process (no more than m times) we obtain a 
normal tower and the required description of A4 (,4, S(n)). 
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We now prove (3). By Propositions 1 and 2 a pair of [ F, F0 ] belongs to 
Ad (,4) if and only if there is a chain 

F = F 1  2 " ' "  D Fm C_ F0, 

such that  F i /F i+l  is abelian. Consider the chain 

F = G  1 _D... D G ~ ,  

where G i+1, i -- 1 , . . . ,  m - 1, is the derived subgroup (commutator sub- 
group) of G ~. Each automorphism of F maps G i to itself, hence each G ~ 
is a normal subgroup of F. Induction on i shows that G i _ Fi, and, in 
particular, 

a m rm c ro. 

As G m is a normal subgroup of F and as G m C_ F0 we have 

G m C_ ['1 #Fo#- l"  
t~EF 

The definition of the chain of G ~'s implies that  F/G m is solvable. The group 

r/A 
~EF 

is solvable since it is a subgroup of F/G m. The converse assertion ( a pair of 
groups with solvable monodromy group belongs to A/t (,4)) is obvious. [] 

P r o p o s i t i o n  5. Let F be an abelian group of cardinality at most c icon - 
tinuum). Then 

r e L(A>. 

Proo/. The complex numbers C form a vector space over the rational num- 
bers whose dimension is r Let {e=} be some basis for this vector space. 
The subgroup C of C generated by the numbers {e=} is a free abelian group 
with r generators. Each abelian group r of cardinality <: r is a quotient of 
C, and hence 

r e [ ]  

It follows from Proposition 5 and the results of the computation of 

Ad(A,K:), Ad(S(n)), and Ad(A) 

that a pair of groups [F, r0 ] with F of c~rdinality _< e belongs to 

Ad(C,K:), Ad(C,S(n)) ,  and .A~(C), 

if and only if [ F, F0 ] belongs to 

.M(A,~) ,  A4(A,S(n)) ,  and .M(A), 

respectively. 
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We shall restrict ourselves to this result, as the group of permutations of 
the sheets of the function has cardinality < c. 

L e m m a  2. A free nonabelian group A does not belong to Ad (,4, ]C). 

Proof. Assume that  h E A4(A, ]C), i.e., that  A admits a normal tower 

A = F 1  _~ . . .  _~ F,~ = e 

with each quotient either finite or abelian. Each Fi is free since it a subgroup 
of a free group (cf. [8], p. 179). The group rm ~ e is abelian. Let r~+l be 
the first abelian group in this tower. For any two elements a, b E Fi there 
is a nontrivial relation: if Fi /I ' i+l  is abelian, then the elements 

aba-lb -1 and ab2a-lb -2 

commute; if ~'~i/I~i+l is finite, then some powers a p and b p of a and b com- 
mute. Therefore, Fi has no more than one generator, and hence is F~ abelian. 
This contradiction proves that  A ~ A~I(A, I(:). [i] 

L e m m a  3. For n > 4 the symmetric group S(n) does not belong to 
(c,  S(n - 1)>. 

Proof. For n > 4, the alternating group A(n) is simple and nonabeIian. 
Hence A(n) ~ ~4(C, S ( n -  1)), and therefore, for n > 4, 

S(n) ~ A~(C, S(n - 1)). [] 

L e m m a  4. The only transitive group of permutations on n elements that 
is generated by transpositions is the symmetric group S(n). 

Proof. Let I" be a group of permutations of a set M consisting of n elements, 
and let F be generated by transpositions. We shall say that  a subset Mo C_ 
M is complete if each permutation of M0 extends to some permutation 
of M tha t  belongs to I'. Complete subsets exist: for example, if an element 
of I" transposes two elements a, b E M, then M0 = {a, b} is complete. 
Let Mo be a complete subset of M with maximal number of elements. 
Assume Mo ~ M. Since F is transitive there is a transposition ~ E F 
among the generators of F which transposes an element a ~ M0 with some 
element b E Mo. The permutation group generated by /~ and S(Mo) is 
S(MoU{a}).  So M0 U{a} is complete and contains Mo as a proper subset. 
This contradiction proves that  F = S(M). [] 
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5.2. Necessa ry  condi t ions  for t h e  representabi l i ty  of  func t ions  
by quadra tu re s ,  n -quadra tu res ,  and  general ized quadra tu re s .  If 
a function f is representable by quadratures, n-quadratures, or generalized 
quadratures, then f has at most countably many singular points (cf. Sec. 2). 

We gather here the information we have obtained for the monodromy 
groups of such functions. 

Result on generalized quadratures. Let f be a function representable by 
genera|i~.ed quadratures. Then the closed monodromy pair [ f ]  of f has a 
normal tower with each quotient either finite or abelian. Moreover, this 
condition is also satisfied by the closed monodromy pair [ f ] of a function f 
that is representable by generalized quadratures, compositions, and mero- 
morphic operations via single-valued S-filnctions. If, moreover, f is almost 
normal, then this condition is also satisfied by the monodromy group I f ]  
of f .  

Result on n-quadratures. Let f be a function representable by n-quadra- 
tures. Then the closed monodromy pair [ f ]  of f has a normal tower with 
each quotient either a subgroup of S(n) or an abelian group. Moreover, 
this condition is satisfied by the closed monodromy pair [ f ]  of a function 
f that is representable by n-quadratures, compositions, and meromorphic 
functions via single-valued functions. If, moreover, f is almost normal, this 
condition is also satisfied by the monodromy group [ f ]  of f .  

Result on quadratures. The closed monodromy group of a function f 
representable by quadratures is solvable. Moreover, if a function f is rep- 
resentable via single-valued S-functions by quadratures, compositions, and 
meromorphic operations, then the closed monodromy group of f is also 
solvable. 

To prove these results, it suffices to apply the main theorem to the classes 
A 

A4(C,/C), A4(C,S(n)), and A4(C) 

of S-fimctions, and use the computations for the classes 

A4(C,/C), AA(C,S(n)), and A4(C). 

We now give examples of functions that are not representable by gen- 
eraiiT, ed quadratures. Let the Riemann surface of f be the universal cover 
of S 2 \ A, where S 2 is the Riemann sphere and A is a finite set with at 
least three points. Then f is not representable via single-valued S-functions 
by generalized quadratures, compositions, and meromorphic operations. In- 
deed, f is an almost normal function. The closed monodromy group of f is 
free and nonabelian since ~rt(S 2 \ A)"has the same properties. 

Example  1. Consider the function z(w) which maps conformally the 
upper half-plane into a triangle bounded by arcs of circles with zero an- 
gles. This function z(w) is inverse to the Picard modular function. The 
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Riemann surface of z(w) is the universal covering of the sphere minus three 
points. Therefore z(w) is not representable via single-valued S-functions by 
generalized quadratures, compositions, and meromorphic operations. 

Note that the function z(w) is closely related to the elliptic integrals 

1 

0 

and 

1 

K'(k) = - - 

o 

Each two of the functions K(k), K'(k), and z(w) form a pair such that each 
function in the pair is representable via the other by quadratures (cf. [9], 
pp. 257-280 and pp. 333-340). Therefore, neither of the functions K(k) and 
K'(k) is representable via single-valued S-functions by generalized quadra- 
tares, compositions, and meromorphic operations. 

In the following section we shall generalize Example 1 and enumerate all 
the polygons bounded by arcs of circles onto which the upper half-plane can 
be mapped by a function representable by generalized quadratures. 

Example  2. Let f be an n-valued algebraic function with simple ram- 
ification points whose images on the Riemann sphere are distinct. If n > 
4, then f is not representable via single-valued S-functions by (n - 1)- 
quadratures, compositions, and meromorphic operations. In particular, f 
is not representable by (n - 1)-quadratures. 

Indeed, if one goes around a simple ramification point of f ,  two sheets 
of f get transposed. The monodromy group of f is a transitive permutation 
group generated by transpositions, i.e., is equal to S(n). For n > 4, S(n) 
does not belong to JPl{C, S(n - 1)). 

6. MAPPING THE HALF-PLANE ONTO A POLYGON BOUNDED BY ARCS OF 

CIRCLES 

6.1. Appl ica t ion  of  t he  s y m m e t r y  principle.  Let G be a polygon 
bounded by arcs of circles in the complex plane. By the Riemann mapping 
theorem there is a function fG mapping the upper half-plane onto G. This 
mapping has been studied by Riemann, Schwarz, Christoffel, Klein, and 
others. We shall recall the classical results that will be needed. 

Denote by B = {bj} the inverse image of the set of vertices of G under fG, 
by H(G) the group of conformal transformations of the sphere generated 



116 A. G. KHOVANSKII 

by reflections about the sides of G, and by L(G) the subgroup of H(G) 
of index 2 consisting of fractional linear transformations. The following 
proposition follows from the Riemann-Schwarz symmetry principle. 

Proposition. 
(1) The function f a has a meromorphic continuation along curves that 

do not intersect B. 
(2) All germs of a multi-valued function fG at a nonsingular point a 

B can be obtained by applying the fractional linear group L(G) to a 
fixed germ of f a  at a. 

(3) The monodromy group of fa  is isomorphic to L(G). 
(4) The singularities of fa  around the points bj are of the following 

kind. I f  the angle aj of G at the vertex aj corresponding to bj is 
nonzero, then, after applying a fractional linear transformation, f a  
can be reduced to the following: 

f c ( z )  = - 

where 

and ~(z) is holomorphic around bj. I f  aj = O, then, after applying a 
fractional linear transformation, f a  can be reduced to the following 
form: 

fc(z)  = In(z) + ~(z), 

where ~(z) is holomorphic around bj. 

It follows from our results that if f a  is representable by generalized 
quadratures, then L(G), and hence H(G), belongs to AA(C,/C). 

6.2. G r o u p s  of  f rac t ional  l inear and  of  conformal  t r ans fo rma t ions  
be longing to  A,/(C, K:). Let 7r be the epimorphism of the group SL(2) of 
2 x 2 matrices with determinant equal to 1 into the group L of fractional 
linear transformations defined by 

Since ker r  = Z2, a group L _ L belongs to ~(C,K:)  if and only if the 
group r - l ( f , )  = F C SL(2) belongs to A//(C,K:). As F is a matrix group, 
F E ~,4(C,/C) if and only if F has a normal subgroup F0 of finite index that 
can be reduced to triangular form. (This version of Lie's theorem applies 
also to higher dimensions and plays an important role in differential Galois 
theory. We shall discuss such theorems in detail in Part 2 of this paper, 
which will be devoted to solvability by quadrature of Fuchs-type differential 
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equations.) The group F0 consists of 2 x 2 matrices, hence F0 can be reduced 
to triangular form in one of the following three cases: 

(1) Fo has a unique 1-dimensional eigenspace; 
(2) Fo has two 1-dimensional eigenspaces; 
(3) F0 has a 2-dimensional eigenspace. 

We now consider the linear fractional group L = 7r(r). A group L of 
fractional linear transformations belongs to .hA(C,/C) if and only if L has a 
normal subgroup L0 -- ~r(F) of finite index such that the set of fixed points 
of L0 consists of either one or two points or is the whole Riemann sphere. 

A group H of conformal transformations has a subgroup L of index 2 (or 
of index 1) consisting of fractional linear transformations. Hence 

,~ e M (C, IC) 

is equivalent to a condition analogous to the above-mentioned one. 

L e m m a  on conformal  t r an s fo rma t ion  groups in A/[(C,/C). 
A group ~I of conformal transformations belongs to A4 (C, lC) if and only 
if one of the following three conditions holds: 

(1) H has a fixed point; 
(2) H has an invariant set consisting of two points; 
(3) finite. 

The lemma follows from the discussion above as the set of fixed points of a 
normal subgroup is invariant under the action of the group. It is well known 
that a finite group L of fractional linear transformations of the sphere can 
be reduced to a group of rotations by a fractional linear transformation. 

If the product of two inversions with respect to two distinct circles cor- 
responds under stereographic projection to a rotation of the sphere, then 
it is not difficult to show that these two circles are great circles. Hence if 
t I  is a finite group of conformal transformations that is generated by inver- 
sions with respect to circles, then H can be reduced by a linear fractional 
transformation of the coordinates to a group of motions of the sphere that 
is generated by reflections. 

All finite groups of motions generated by reflections are well known. Each 
such group is the group of motions of one of the following solids: 

(1) a pyramid with base a regular n-gon; 
(2) an n-gonal dihedron, i.e., the solid obtained by gluing along the 

base two identical pyramids as in (1); 
(3) a tetrahedron; 
(4) a cube or octahedron; 
(5) a dodecahedron or icosahedron. 
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All these groups of motions, except for the dodecahedral-icosahedral, are 
solvable. Take a sphere centered at the center of gravity of the solid. The 
planes of symmetry of this solid intersect this sphere in a network of great 
circles. The networks corresponding to the solids enumerated above shall be 
called finite networks of great circles. Figure 3 depicts the finite networks. 

6.3. I n t e g r a b l e  cases. We now return to the problem of representation 
of a function f c  by quadratures. 

A case-by-case inspection will show that the conditions we found on the 
monodromy group are not just necessary but also sufficient for fG to be 
representable by quadratures. 

First integrable case. The group H ( G )  has a fixed point. This means that 
the sides of G, after extension, intersect in one point. Map this point to 
infinity by a fractional linear transformation. Then G gets mapped to a 
polygon G bounded by straight segments. 

All the transformations in L(~) have the form 

z ~ a z + b .  

All germs of 7 = f ~  at a nonsingular point c can be obtained by applying 

the group L(G) to a fixed germ i t :  

The germ 

fr --, afc + b. 

= fo/f  

is invariant under the action of L(G). This means that Rc is the germ of a 
single-valued function. The singular points of Rc can only be poles (cf. the 
proposition in Sec. 6.1.). Therefore, Re is rational. The equation 

7"If '  = R 

is solvable by quadrature. This is a well-known case of integrability. In this 
case f is called a Christoffel-Schwarz integral. 

Second integrable case. The group H ( G )  has an invariant set consisting 
of two points. This means that for each side of G, either these two points 
are inverse with respect to this side, or they both lie on the extension of 
this side. Map these two points to 0 and oo, respectively, by a fractional 
linear transformation. Then G is mapped to a polygon G bounded by arcs 
of circles centered at 0 and by rays emanating from 0 (cf. Figure 2). All 
transformations in L(G) have the form 

z --., az,  or z ---* b/z .  
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FIGURE 1. First integrable case 

FIGURE 2. Second integrable case 

All germs of 7 = f ~  at a nonsingular point c can be obtained by applying 
L(G) to a fixed germ 7c at c: 

L -~ ~7c, or L -~ b / L .  

The germ 

Rc = (7:~/7o) ~ 
is invariant under the action of L(G) and hence is the germ of a single-valued 
function R. The singularities of R can be only poles (cf. the proposition in 
Sec. 6.1), hence R is a rational function- 

The equation 

R = (7'17) ~ 

is solvable by quadrature. 
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Third integrable case. The group H(G) is finite. This means that  G can 
be mapped by a fractional linear transformation onto a polygon G whose 
sides lie on a finite network of great circles. The group L(G) is finite, so fG 
is finite-valued. Since all the singularities of fG are of a power kind (cf. the 
proposition in Sec. 6.1), fG is an algebraic function. 

We now consider the case of a finite solvable H(G) in more detail. This is 
the case when G can be mapped by a fractional linear transformation onto 
a polygon G whose sides lie on a finite network of great circles that  is not 
dodecahedral-icosahedral. In this case L(G) is solvable. By applying Galois 
theory, it is easy to show that  in this case fG is representable via rational 
functions by arithmetic operations and radicals. 

We have thus shown the following. 

T h e o r e m  on  po lygons  b o u n d e d  b y  arcs  o f  circles.  I / G  is a poly- 
gon not covered by the three cases above, then not only is fG not repre- 
sentable by generalized quadratures, but fG is not representable via single- 
valued S-9~unctions by generalized quadratures, compositions, and meromor- 
phic operations. 

7. CLASSES OF SINGULAR SETS 

In this paper we considered S-functions, i.e., multi-valued analytic func- 
tions of one complex variable with an at most countable number of singular 
points. Let S be the class of all at most countable subsets of the Riemann 
sphere S 2. We now enumerate those properties of S that we used: 

(I) ifA 6 S, then S2\A is everywhere dense and locally path-connected; 
(2) there is a nonempty set A such that A 6 S; 
(3) i f A E S a n d B C A ,  t h e n B 6 S ;  
(4) if Ai 6 S, i = 1, 2 , . . . ,  then 

OO 

[.JA~ e S ,  
1 

(5) let U1 and U2 be open sets in S 2 and 

/ Vl --, tr2 

an invertible analytic map; if A C_ [71 , and A 6 S, then f (A)  6 S 

We shall call a class of subsets of S 2 satisfying (1)-(5) above a complete 
class of sets. A multi-valued analytic function f will be called a Q-function 
if the set of singular points of f belongs to some complete class Q of sets. All 
definitions and results on S-functions extend to Q-functions. For example, 
we have the following variant of the main theorem: 
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F i n i t e  n e t w o r k s  o f  c ircles  

�9 ) a mr1-- n-Son (n=b') .b) n n-~ emedmn (n=b') 

/ - - -T~ \ 

FIGURE 3. Third integrable case 
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Variant  o f  t he  main  theorem.  For each complete class Q of sets and 
complete class Ad of pairs, the class AA consisting of all Q-functions f for 
which [ f ]  E .hd is closed with respect to differentiation, compositions, and 
meromorphic operations. If in addition, 

(1) C E .h4, then J~4 is closed under integration; 
(2) S(n) e fill, then Ad is closed under solutions of algebraic equations 

of degree < n. 

Here is an example of a complete class of sets. Let X~ be the set of all 
subsets of S 2 whose Hausdorff measure of weight a is equal to 0. It is not 
difficult to show that for cr < 1, Xa is a complete class of subsets of S 2. 

Note that the new formulation of the main theorem allows us to strengthen 
all negative results. So, for example, we have the following: 

Corol lary .  If a polygon G is not covered by one of the three integrable 
cases, fG is not representable via single-valued Xl-functions by generalized 
quadratures, compositions, and meromorphic operations. 
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