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Abstract
We define a class of L-convex-concave subsets of RP 3, where L is a
projective line in RP 3. These are sets whose sections by any plane
containing L are convex and concavely depend on this plane. We
prove a version of Arnold’s conjecture for these sets, namely we prove
that each such set contains a line.

1 Introduction

A classical definition of the convex domain in an affine space admits a
natural projective analogue. Namely, a subset of RPn is called convex if it
does not intersect some hyperplane and is convex in the complement to it
in the usual sense if one identifies this complement with an affine space.

The main object of interest in this paper is a class generalizing the
class of convex subsets of RPn, the class of the so-called L-convex-concave
subsets of RPn. The letter L denotes here a projective subspace of RPn,
and if L is a hyperplane then we get the usual convex sets. Motivation for
the definition came initially from attempts to prove or disprove the Arnold
conjecture (see below). However, it turned out that this class is quite
interesting in itself. Many properties and operations possible for convex sets
can be generalized for the class of L-convex-concave sets, including duality,
affine structure, and others, see [KN1]. What is remarkable, however, is the
fact that, unlike the convex sets, there is a difference between affine and
projective definitions of L-convex-concave sets. In other words, a similar
affine generalization of the notion of the convex set gives an essentially
wider class with less remarkable properties, and Theorem 1 of this paper
together with an example from [KN2] can be considered as a manifestation
of this difference.
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1.1 Definitions of L-convex-concave subsets of RP n. In the very
definition of convex subsets of a projective space a hyperplane appears.
Similarly, the class of L-convex-concave subsets of RPn depends on the
choice of L, a projective subspace of RPn. Here is the definition.
Definition 1. Let L be a fixed proper projective subspace of RPn. A
closed set A ⊂ RPn is L-convex-concave if

1. A ∩ L = ∅,
2. for any projective subspace N ⊂ RPn of dimension dimL + 1 and

containing L the intersection A ∩ N is convex,
3. for any projective subspace T ⊂ L of dimension dimL−1 the comple-

ment to the image of π(A) under projection π : RPn \T → RPn/T ∼=
RPn−dimL is an open convex set (if dimL = 0 then we take an iden-
tity map as the projection π).

For subspaces L of different dimensions we get different classes. Here
are some examples of L-convex-concave sets. For dimL = n − 1 the first
two requirements are exactly the definition of a convex subset of RPn, and
the third means that it is nonempty, so nonempty convex sets are indeed a
particular case of L-convex-concave subsets of RPn.

For dim L = 0 the second condition means that the intersection of A
with any projective line containing the point L is a segment, and that the
complement to A is an open convex set (in this case π is just an iden-
tity mapping). In other words, A is a complement to an open convex set
containing L.

Domains bounded by a quadric are another example of L-convex-concave
sets. Let Q(x, x) be a quadratic form positively defined on L and negatively
defined on some L′, a projective subspace of dimension n−dimL−1 not in-
tersecting L. Then the set A = {Q � 0} is L-convex-concave: the sections
and projections are both bounded by spheres.

For any L a projective subspace A of maximal possible dimension not
intersecting L (namely of dimension equal to n− dim L− 1) is a L-convex-
concave set. Indeed, the intersections A ∩ N are just points (so convex),
and the projection π(A) will be a hyperplane in RPn/T ∼= RPn−dimL, so
its complement is an affine space Rn−dimL.

This example can be considered as a limit case of the previous example:
it corresponds to Q ≡ 0 on A = L′.

1.2 Main theorem. The main conjecture about the L-convex-concave
sets claims that the previous example is the backbone of any L-convex-
concave set.
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Conjecture 1 (Main Conjecture). Any L-convex-concave domain
A ⊂ RPn contains a projective subspace of dimension equal to n−dimL−1.

Evidently, this conjecture is true for a particular case of nonempty con-
vex sets: in this case n− dim L− 1 = 0, and conjecture claims that the set
is nonempty. The first nontrivial case is of n = 3 and dim L = 1. The main
result of this paper claims that in this case the Main Conjecture is true.

Theorem 1 (Main Theorem). Any L-convex-concave set A ⊂ RP 3,
dim L = 1, contains a projective line.

1.3 Arnold’s conjecture. The main conjecture about L-convex-con-
cave sets is closely connected to the Arnold conjecture about quasi-convex
hypersurfaces in RPn, see [A]. The conjecture is motivated by a theo-
rem about locally convex hypersurfaces proved in the same paper. Here
is the statement of this theorem. Let M be a connected closed hypersur-
face M without a boundary embedded to RPn. Suppose that the second
fundamental form of M is everywhere negatively defined (it means that in
some affine coordinates M is locally defined as xn = −x2

1 − ... − x2
n−1 +

higher order terms). The theorem proved in [A] claims that M bounds a
convex body, i.e. that there is a hyperplane H not intersecting M and M
bounds a convex body in the affine space RPn \ H.

Arnold (in [A]) conjectured that an analogue of this fact holds for any
hypersurface with an everywhere non-degenerate second fundamental form.
We will say that a quadratic form in R

n−1 has signature (n− k− 1, k) if its
restriction to some k-dimensional linear subspace is negatively defined and
its restriction to some n − k − 1-dimensional linear subspace is positively
defined.

Conjecture 2 (Arnold’s conjecture). Consider a domain U ⊂ RPn

bounded by a connected smooth hypersurface B without boundary. Sup-
pose that the second fundamental form of B with respect to the outward
normal is non-degenerate at any point of B and has signature (n−k−1, k)
(necessarily the same for all points). Then there exist a projective sub-
space Lk of dimension k contained in U and a projective subspace Ln−k−1

of dimension n − k − 1 not intersecting U .

For k = n − 1 this conjecture becomes the aforementioned theorem in
[A] about locally convex hypersurfaces.

Another example is the domains bounded by quadrics considered above
as an example of an L-convex-concave sets. Their boundary have the sig-
nature of the second quadratic form equal to (n − dim L − 1,dim L). The
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conjecture is true for these domains: one can take L and L′ as the required
projective subspaces.

The fact that the domains bounded by quadrics are both L-convex-
concave and have constant signature of the second quadratic form of the
boundary is not a coincidence. In fact, L-convex-concave domain with
smooth boundary will necessarily have constant signature of the second
quadratic form of the boundary (namely equal to (n − deg L − 1,deg L))
as soon as it is non-degenerate. Moreover, any L-convex-concave set after
a small perturbation becomes a L-convex-concave domain with smooth
boundary and non-degenerate second quadratic form, see [KN2], so the
main conjecture is a consequence of the Arnold conjecture.

Arnold’s conjecture is stronger than our main conjecture since it con-
cerns a wider class of domains: not all domains with constant signature of
the second quadratic form are L-convex-concave for some L. The differ-
ence between the two conjectures is twofold. First, in the very definition of
the L-convex-concave domain we postulate the existence of one of the sub-
spaces whose existence is claimed in the Arnold conjecture. Second, in the
definition of L-convex-concave domains we suppose that all their sections
by subspaces containing L as a hyperplane are convex.

1.4 Affine L-convex-concave sets and Arnold’s conjecture. One
can try to look on the Arnold conjecture from an affine point of view: take
any affine chart R

n of RPn, and reformulate the conjecture in affine terms.
The Arnold conjecture then claims that domain in RPn bounded by a
closed connected hypersurface B without boundary with constant signature
of its second quadratic form necessarily contains an affine subspace, and the
projective origins of the hypersurface will be translated to some conditions
on the asymptotical behavior of B.

In [KN2] we approach the Arnold conjecture from this affine point of
view. The main goal was to clarify the role of the projective space in the
conjecture.

First we consider domains asymptotically approaching the quadratic
cone K = {x2

1 + ... + x2
k − x2

k+1 − ... − x2
n = 0} as |x| → +∞. We prove

Arnold’s conjecture in this case.
Next we considered a slightly different asymptotic behavior. Namely,

we considered domains bounded by a surface asymptotically approaching a
union K ′ ⊂ R

3 of moved apart halves of the standard cone K = {x2 +y2 =
z2} ⊂ R

3(e.g. K ′ = {(x, y, z) | x2 + y2 = (|z| − 1)2, |z| � 1}). In this case
the Arnold conjecture is false: we constructed an example of such a domain



1086 A. KHOVANSKII, D. NOVIKOV GAFA

not containing any lines.
These two facts strengthen the importance of the projective settings in

Arnold’s conjecture. Indeed, these two asymptotic conditions, quite similar
from an affine point of view, imply a different form of projective closure
of the domain in RP 3: in the first case the closure has locally smooth
boundary and in the second case the closure will be non-smooth and, more
importantly, locally convex at the points of intersection with the infinite
plane.

The example constructed in [KN2] gave birth to the definition of L-
convex-concave sets, since it was constructed using affine convex-concave
sets. Here is the definition: a domain A ⊂ R

3 is called affine convex-concave
if all its sections by horizontal planes are convex, compact and concavely
depend on the plane. The last condition simply means that for any three
horizontal sections the middle one lies inside the convex hull of the union
of two external sections. As in the projective case, as soon as the second
quadratic form of a boundary of an affine convex-concave set is defined (i.e.
when this boundary is smooth) and nondegenerate, it has signature (1, 1),
so satisfies the conditions of the Arnold conjecture. A counterexample was
therefore constructed by a smoothening in the class of the affine convex-
concave sets of a strip – a very degenerate affine convex-concave set not
containing lines.

Any L-convex-concave subset of RP 3, dim L = 1, is affine convex-
concave in any chart for which L is an infinite horizontal line. However,
the opposite is not true: by virtue of Theorem 1 the closure in RP 3 of the
example above is not L-convex-concave subset.

1.5 Structure of the paper. The proof of Theorem 1 belongs in fact
to the realm of convex geometry. It heavily exploits the two fundamental
theorems of convex geometry: Helly’s theorem and the Browder theorem.
The proof is partly guided by the general ideology of the Chebyshev best
approximation. In particular, one of the key ingredients of the proof is an
analogue of the Chebyshev alternance, see Lemma 7 and Theorem 10.

Further we will consider only bodies L-convex-concave with respect to
some fixed once and forever projective line L. Also, we will use an equivalent
definition of a convex-concave set. Namely, in [KN1] it is shown that the
L-convex-concave subsets of RP

3 can be characterized in the following way.

Definition 2. A body B ∈ RP
3 is called L-convex-concave with respect

to a line L (further called infinite horizontal line) not intersecting B if

• sections of B by planes passing through this line (further called
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horizontal planes) are all compact and convex and
• for any three such horizontal sections, through any point of any of

them passes a line intersecting two another.

For convenience we will suppress the letter “L” and will use the term
convex-concave for the L-convex-concave bodies.

The rest of the paper contains only the proof of the Theorem 1 and is
organized as follows. In §2 we show that it is enough to prove that for any
five sections of a convex-concave set by planes containing L there is a line
intersecting all of them, see Theorem 2. This is a standard application of
the Helly theorem. From the other hand, using Browder theorem, we prove
that for any four sections one can find a line intersecting all of them, see
Theorem 4.

Starting from §3 we are dealing with five fixed sections of a convex-
concave body. The general idea is simple. Fix an Euclidean metric on
some affine cart in RP 3 containing all five sections and not containing L
and take a line closest to these five sections (the Chebyshev line). Our goal
is to prove that one can always find a line which lies closer to these five
sections, unless the Chebyshev line intersects all five sections.

More exact, in §3 we introduce the Euclidean metric, define the Cheby-
shev line and establish its basic properties. On planes containing sections
arise five half-planes with the property that any line lying closer to five sec-
tions than the Chebyshev line should intersect all these half-planes. The
opposite is almost true. Namely, any line intersecting these half-planes (fur-
ther called good deformation) produces a line closer to the sections than the
Chebyshev line, see Lemma 5. So all we need to prove is the existence of
a line intersecting these five half-planes, which depends on the projective
properties of their mutual position only. These properties are the main
object of further investigations.

At this stage a split occurs. We impose a condition of genericity on the
collection of these half-planes (namely, their boundaries should be pairwise
non-parallel) and deal further with non-degenerate cases only. In degener-
ate cases existence of the good deformation follows from Theorem 4 due to
a remarkable self-duality of the condition of L-convex-concavity, see §3.4
and [KN1].

In §4 and §5 we investigate combinatorial properties of a collection of
five half-planes corresponding to a Chebyshev line, forgetting for a moment
the convex-concavity condition. In other words, we consider a more general
problem of properties of a line closest to five convex figures on five parallel
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planes. This reduces to a purely combinatorial problem about possible
arrangements of rooks on a chess board. We find an equivalent of the
classical condition of Chebyshev alternance for our situation. Namely, only
six possible combinatorial types of collections of half-planes are possible,
see Theorem 10.

In §6 for each of these six types we prove existence of a good deformation
using the convex-concavity condition. More exact, each of these combina-
torial types have some continuous parameters (namely distances between
sections and double ratios of angles between their boundaries). If a con-
figuration of half-planes arose from a Chebyshev line as above, then these
parameters should satisfy some inequalities. In other words, only part of
the space of parameters corresponds to Chebyshev alternances. It turns out
that configurations of half-planes arising from sections of a convex-concave
body belonging to the complement to this part.

More exactly, using the combinatorial properties of each case and The-
orem 11, we are able to prove existence of a line intersecting four of the
half-planes in a some particular sectors. These sectors are chosen in such
a way that the line intersecting them should necessarily intersect the fifth
half-plane and the existence of a good deformation follows.

2 Applications of Helly’s Theorem and Browder’s Theorem

In this section we first introduce a linear structure on the set of all lines
not intersecting the line L. We prove that the Theorem 1 follows from
the fact that for any five sections of a convex-concave body there is a line
intersecting all of them. Another result claims that for any four sections
there is a line intersecting all of them.

2.1 Affine structure on the set of all non-horizontal lines. We
call a plane horizontal if it contains the line L ⊂ RP 3 (further called the infi-
nite horizontal line). A line is called non-horizontal if it doesn’t intersect L.

We choose coordinates (x, y, z) in a complement to some horizontal
plane in such a way that the infinite horizontal line lies in the projective
plane {z = 0}. In these coordinates the non-horizontal lines have a pa-
rameterization of the type x = az + b, y = cz + d. This correspondence
{non-horizontal line} → (a, b, c, d) defines coordinates on the set U ∼= R

4 of
all non-horizontal lines.

An affine structure introduced on U by these coordinates is compatible
with the affine structure in horizontal planes: intersection of a convex com-
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bination of two lines with a horizontal plane is a convex combination (with
the same coefficients) of intersections of these two lines with this plane.
Therefore the affine structure defined by these coordinates is independent
of the choice of coordinates and depends on the choice of the infinite hori-
zontal line only (however, the linear structure, i.e. the line with coordinates
(0, 0, 0, 0) (=z-axis), can be chosen arbitrarily).

Figure 1: �3 is a linear combination of �1 and �2

Denote by Ut the set of all non-horizontal lines intersecting a horizontal
section St = B ∩ {z = t} of a projective convex-concave body B. From the
last remark we immediately see that

Lemma 1. Ut is closed and is convex in the coordinates introduced above.

The inverse is also true. Namely, for any horizontal plane {z = t} there
is a map φt : U → {z = t} mapping a non-horizontal line to its point of
intersection with this plane.

Lemma 2. This map preserves convexity, i.e the image of a convex subset
of U is again a convex set.

2.2 Non-horizontal lines and sections of a convex-concave body.

2.2.1 Five sections: Helly’s theorem. Let B be a convex-concave
subset of RP 3.

Theorem 2. Theorem 1 follows from the following claim:

∀ t1, t2, t3, t4, t5 ∈ R

5⋂

i=1

Uti 
= ∅ .

In other words, it is enough to prove that for any five horizontal sections
Si of B there exists a line intersecting all of them.
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Proof. Indeed, Theorem 1 is equivalent to
⋂

t Ut 
= ∅. Since Ut are convex
subsets of U ∼= R

4, the claim is almost a particular case (n = 4) of the
classical Helly theorem:
Theorem 3 (Helly’s theorem, see [H1,2]) . Intersection of a finite family
of closed convex sets in R

n is nonempty if and only if intersection of any
n + 1 of them is nonempty.

The only problem is that the family Ut is not finite. However, one can
circumvent this technicality in a standard way using the fact that

Lemma 3. Intersection of Ut1 ∩ Ut2 is compact for any t1 
= t2.

Indeed, any line belonging to Ut1 ∩Ut2 is uniquely defined by its points
of intersection with these two sections, so Ut1 ∩ Ut2 is homeomorphic to
St1 × St2 , which is compact.

So, take a compact K = U1∩U0 and consider a family of sets Ũt = K\Ut.
These sets are relatively open in K. We want to prove that ∪tŨt 
= K.
If not, then Ũt is a covering of K, so we can take a finite family {Ũti}
covering K. This means that the intersection of a finite family consisting
of the corresponding Uti and U1 and U0 will be empty. This is impossible
by Helly’s theorem if intersection of any five of Ut is nonempty. �

2.3 Four sections: Browder’s theorem. It turns out that the convex-
concavity condition (even the affine one, see §1.4 for a definition) guarantees
existence of a line passing through any four sections. We will prove this
with slightly more general assumptions.

Theorem 4. Let A,B,C,D be four compact convex non-empty sets in
R

n satisfying the following conditions:

1. A ⊂ {xn = t1}, B ⊂ {xn = t2}, C ⊂ {xn = t3}, D ⊂ {xn = t4},
where ti are pairwise different;

2. through any point of B a line passes intersecting both A and C, and
3. through any point of C a line passes intersecting both B and D.

Then there exists a line intersecting all four bodies.

Remark 1. Here we use only some of the conditions provided by convex-
concavity.

We will use a Browder theorem – a fixed-point theorem for upper semi-
continuous set-valued mappings, see [B]. Here is the statement of this
theorem.

Let f : X → Set(X) be a mapping from X to the set of all subsets
of X.
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Definition 3. f is called upper semi-continuous on X if for any x0 ∈ X
and any open set G containing f(x0) there exists a neighborhood U of x0

such that f(x) ⊂ G for all x ∈ U .

Remark 2. For single-valued maps this property means continuity.

Theorem 5 (Browder’s theorem, see [B]). Let X be a non-empty compact
convex set in a real, locally convex, Hausdorff topological vector space E.
Let f be an upper semi-continuous set-valued mapping defined on X such
that for each x ∈ X, f(x) is a non-empty closed convex subset in X. Then
there exists a point x̂ ∈ X with x̂ ∈ f(x̂).

We will apply Theorem 5 to the composition f : B → CSet(B) of the
tautological map B → CSet(B) and two maps h1 : CSet(B) → CSet(C)
and h2 : CSet(C) → CSet(B), where CSet(B) and CSet(C) are sets of all
compact convex subsets of B and C correspondingly. Namely, for U ⊂ B we
define h1(U) ⊂ C as a set of all points of C which lie on a line intersecting
both A and U . Similarly, for V ⊂ C we define h2(V ) ⊂ B as set of all
points of B which lie on a line intersecting both D and V . These maps are
completely defined by their restrictions to the one-point subsets of B and
C correspondingly, namely hi(U) = ∪x∈Uhi({x}).

Check first that our result indeed follows from Theorem 5. Suppose
that for some x ∈ B we have x ∈ f(x). This means that x ∈ h2(y) for some
point y ∈ h1({x}). By definition of hi, this means that the line passing
through x and y intersects both A and D. �

We have to check that f(x) satisfies conditions of Theorem 4.
By convex-concavity f(x) is non-empty for all x ∈ B.

Lemma 4. f(x) = h2(h1({x})) is upper semi-continuous.

We will prove that both h1 and h2 are upper semi-continuous in the sense
defined below, and the claim will follow from the fact that the composition
of upper semi-continuous maps is again upper semi-continuous. Denote by
Nδ(U) = {x|dist(x,U) < δ} the δ-neighborhood of U .
Lemma 5. Mapping h1 is upper semi-continuous in the following sense:
for any U ∈ CSet(B) and any ε > 0 there exist a δ > 0 such that if
U ′ ⊂ Nδ(U) then h1(U ′) ⊂ G = N2ε(h1(U)). The mapping h2 is also upper
semi-continuous.

Proof. We prove it for h1, and the proof for h2 differs by notation only.
By definition h1(U) = ∪x∈Uh1({x}). Therefore by compactness of U it is
enough to prove that for any b ∈ B and any ε > 0 there is a δ > 0 such
that if dist(b′, b) < δ then h1(b′) ⊂ Nε(h1(b)).
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Figure 2: Construction of h1(b) and upper semi-continuity of h1(U)

Note that h1(b) = C ∩ Ab, where Ab is a compact upper semi-continu-
ously depending on b in Hausdorff metric (in fact Ab and Ab′ differ by a
parallel translation only).

The claim follows from the fact that an intersection of a compact with
another compact upper semi-continuously depending on parameters de-
pends upper semi-continuously on parameters. Let’s prove this fact. Let
V = h1(b), and A′

b = Ab \ Nε(V ). Let 0 < α < min(ε,dist(A′
b, C)). For b′

close enough to b we have Ab′ ⊂ Nα(Ab) and

h1(b′) = C ∩ Ab′ ⊆ C ∩ Nα(Ab) ⊆
(
C ∩ Nα(A′

b)
) ∪ (

C ∩ Nα(Nε(V ))
)

⊆ C ∩ Nα+ε(V )

and the last one is a subset of G.
The second inclusion is true by upper semi-continuous dependence of

Ab on b, the third is true since Ab ⊂ A′
b ∪ Nε(V ), the fourth is true since

C ∩Nα(A′
b) = ∅ by choice of α and the last one is true since α + ε < 2ε. �

To satisfy the last condition of Theorem 5 we have to check that f(x)
is a closed convex subset of B.

Lemma 6. hi(U) is compact convex set as soon as U is compact convex
set.

Proof. Indeed, the set of lines intersecting both U and A is convex (as
intersection of two convex closed sets) and compact (since a line is defined
by its two points of intersection with U and A, which are both compact), so
the set of points of intersections of these lines with {xn = t3} is also convex
and compact. But h1(U) is exactly the intersection of this set with C, so
it is also convex and compact. �

Remark 3. From a Leray theorem and the previous result we get that
the set of non-horizontal lines intersecting at least one of the chosen five
sections is homotopically equivalent to a ball or to a sphere according to
the existence or nonexistence of a line passing through all five sections. We
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know that there exist affine convex-concave bodies (see the introduction
and [KN2]) without a line inside, so the case of a sphere is possible. This
sphere divides the set of all non-horizontal lines into two connected parts.
As a corollary we see that for some five sections of these affine convex-
concave body (in our example in [KN2] these are just line segments) there
is a line not intersecting them which cannot be moved to infinity without
intersecting the sections.

3 Chebyshev Line

By the previous section all we need to prove is that through any five hori-
zontal sections of the convex-concave body passes a line. We fix them from
now on. We choose a sixth horizontal plane L (not containing sections),
choose affine coordinates in R

3 ∼= RP 3 \ L and, using a standard scalar
product, introduce a metric on horizontal planes. Using this metric we
define a Chebyshev line – a line minimizing the maximal distance from its
point of intersection with a plane of the section to the section. On each
plane containing a section we choose a half-plane containing the section
with boundary passing through the point of intersection of a Chebyshev
line with the plane and perpendicular to the shortest segment joining this
point and the section.

In this and the next section we investigate combinatorial conditions im-
posed on the configuration of these half-planes by the fact that the Cheby-
shev lines minimizes the maximal distance to the sections.

3.1 A Chebyshev line. Denote by S1, S2, S3, S4 and S5 the five sec-
tions of a convex-concave body B ∈ RP

3 cut by five horizontal planes Li, i.e.
Si = B ∩Li. Choose coordinates (x̃, ỹ, z̃, w̃) in RP

3 in such a way that the
infinite horizontal line has equation z̃ = w̃ = 0 and Si ⊂ {w̃ 
= 0} ∼= R

3. We
take standard coordinates (x = x̃/w̃, y = ỹ/w̃, z = z̃/w̃) in {w̃ 
= 0}  R

3.
In these coordinates the planes Li are given by equations Li = {z = ti}.
We take metric on Li induced by a scalar product

(
(x1, y1, z1), (x2, y2, z2)

)
= x1x2 + y1y2 + z1z2 .

Suppose that there is no line intersecting all five sections Si (otherwise
there is nothing to prove).

Definition 4. The (non-horizontal) line � minimizing the

max
i=1,...,5

dist(� ∩ Li, Si)
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(where Li are the horizontal planes containing Si) will be called a Cheby-
shev line.

The existence of this line follows from compactness of the sections. Fur-
ther we will denote ai = � ∩ Li and by si ∈ Si the point of Si closest to ai.
Lemma 7 (Chebyshev property). The dist(ai, Si) = dist(ai, si) are all
equal.

Proof. Indeed, let one of them, say dist(a1, S1), is smaller than all others
and strictly smaller than one of the distances. By Theorem 4 there exists
a line �1 which intersects all four remaining sections. Therefore for small
values of ε the points of intersections of the line �ε = (1−ε)�+ε�1 lies closer
to Si than ai for i = 2, 3, 4, 5. From the other hand, dist(�ε∩L1, S1) changes
continuously with ε. So for small ε > 0 we get maxi=1,...,5 dist(�ε ∩Li, Si) <
maxi=1,...,5 dist(ai, Si), which contradicts to the Chebyshev property of �. �

Corollary 1. The Chebyshev line � doesn’t intersect Si for any i if there
is no line intersecting all Si.

Further, in order to simplify the notation, we will suppose that the
coordinates are chosen in such a way that the Chebyshev line coincides
with the z axis. Indeed, a linear transformation of the type (x, y, z) →
(x− (az + b), y − (cz + d), z) doesn’t change metric in horizontal planes, so
the Chebyshev line for the shifted sections will be the shifted Chebyshev
line. From the other side, using a transformation of this type we can move
any non-horizontal line to the z-axis.

3.2 Five half-planes. The definition of the Chebyshev line � means
that one cannot find another line intersecting the planes Li at points a′i
such that dist(a′i, Si) < dist(ai, Si), where ai = �∩Li. Here we reformulate
this condition in different terms.

For each ai = � ∩ Li we can indicate an angle of desirable directions in
Li: if ai moves in this direction then the dist(ai, Si) decreases. These are
directions forming an acute angle with the direction −−→aisi. So the half-plane
Hi = {x ∈ Li|(−→aix,−−→aisi) � 0} arises. The vector −−→aisi is orthogonal to its
boundary and is directed inward.

Another description of Hi is as follows: the function f(x) = dist(x, Si)
is a smooth function everywhere on Li\Si, so in particular for x = ai. After
identification of TaiLi and Li the half-plane Hi is described as {dfai(·) � 0}.

We will need further the following evident statement, see Figure 3:
Lemma 8. Let H be a half-plane in L1 bounded by a line passing through
a1 and normal to −−→a1n. Suppose that S1 ⊂ H. Then n ∈ H1.
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Figure 3: The half-plane H contains s1, so n ∈ H1

3.3 Good deformations. Here we describe lines (further called good
deformations) whose existence contradicts to the fact that the Chebyshev
line � doesn’t intersect the sections Si . Our goal from now is to prove their
existence.

Lemma 9. If � is the Chebyshev line for Si and Hi are as above, then there
exist no line intersecting interiors of all Hi.

Proof. Suppose there exists a line �̃ intersecting interiors of all Hi. Then
z-axis cannot be a Chebyshev line since

max
i

dist
(
(ε�̃ + (1 − ε)�) ∩ Li, Si

)
< max

i
dist(ai, Si)

for ε > 0 small enough. In other words, moving the Chebyshev line in the
direction of �̃ in the space of all non-horizontal lines decreases its distance
to Si.

Indeed, all we have to check is that d
dε(dist((ε�̃ + (1− ε)�) ∩ Li, Si))|ε=0

< 0, which follows directly from definitions (of Hi and the linear structure
on the set of non-horizontal lines). �

In fact one can prove a stronger claim.

Definition 5 (Good deformation). A line �1 intersecting all Hi and the
interior of at least one of them will be called a good deformation.

Lemma 10. If � is the Chebyshev line for Si and Hi are as above, then
there is no good deformation.

Proof. The proof uses the same idea as Lemma 7. Suppose that �1 intersects
the interior of H1 and denote by �2345 the line intersecting S2, S3, S4, S5

(it exists by Theorem 4). Consider the two-parametric family of lines
λ�1 + µ�2345 + (1 − λ − µ)�. The idea is that, in linear approximations,
moving � toward �1 decreases distance to S1 (while not increasing other
distances), and moving � toward �2345 decreases distances to all other sec-
tions. So some combination of these two movements decreases the maximal
distance from the Chebyshev line to sections, which is impossible.
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In other words, denote points of intersection of λ�1 + µ�2345 + (1−λ−µ)�
with Li by bλ,µ

i . Then ∂
∂λ |λ=µ=0 dist(bλ,µ

i , Si) are non-positive for i =
2, 3, 4, 5, and is strictly negative for i = 1. Also ∂

∂µ |λ=µ=0 dist(bλ,µ
i , Si)

are strictly negative for i = 2, 3, 4, 5. Therefore for some positive c1, c2 we
have ∂

∂ε |ε=0 dist(bεc1,εc2
i , Si) < 0 for i = 1, 2, 3, 4, 5, i.e. for small ε > 0 the

line εc1�1 + εc2�2345 + (1 − εc1 − εc2)� is closer to Si than the Chebyshev
line – a contradiction. �

Remark 4. The use of the convex-concave property of the sections is
almost unnecessary: interiors of any four parallel half-planes with pairwise
non-parallel (see below) sides can be intersected by a line, which is as good
as �2345 for the proof.

3.4 Degenerate cases. In what follows we will always impose the fol-
lowing genericity assumption on Hi: we assume that ∂Hi are pairwise non-
parallel (i.e. do not intersect in RP 3).

For the degenerate cases (with some of the boundaries ∂Hi being par-
allel) the proof of existence of a good deformation is reduced via duality
considerations to the Theorem 4. This reduction is constructed in details
and in much more general situation in [KN1].

More exactly, let B ⊂ R
3 be a convex-concave set, let Lα be a (finite)

family of horizontal planes, and Sα = B ∩ Lα be corresponding sections.
Choose in each Lα a half-plane H̃α supporting Sα, and suppose that the
union of their boundaries

⋃
∂H̃α intersects the infinite horizontal line in

at most four points. In affine chart this means that there are at most four
different directions such that boundary of each H̃α is parallel to one of these
directions.

Theorem 6 (Three dimensional case of the last theorem in [KN1]). There
is a line intersecting all H̃α.

Here is how one can apply this result to the degenerate family of half-
planes H1, ...H5 constructed from a Chebyshev line as above. Let H̃i be sup-
porting to Si half-planes with boundaries parallel to the corresponding Hi.
The half-planes Hi contain the corresponding sections Si in the interior by
Lemma 7 (since the point of intersection of the Chebyshev line with the
plane of Si is the closest to Si point of the boundary of Hi). Therefore
H̃i lie in the interiors of Hi, so the line whose existence is claimed in the
theorem is a good deformation.

We briefly outline below results [KN1] leading to the Theorem 6.
The main fact is existence of a special L-duality preserving the class of
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L-convex-concave sets satisfying the Main Conjecture 1. Here we describe
this duality in three-dimensional case only.

First, suppose that the set B ⊂ RP 3 is convex-concave with respect to a
line L ⊂ RP 3 and has a smooth boundary. The dual of this boundary (i.e.
the set of all planes π ⊂ RP 3 tangent to the boundary of B) divides the
dual projective space (RP 3)∗ into two parts. One of these parts contains
the line L∗ dual to L. The set B⊥

L ⊂ (RP 3)∗ L-dual to B ⊂ RP 3 is the
closure of the second part.

In general case, i.e. if the boundary of B is not smooth, another defini-
tion of the duality should be used. Namely, we define the set B⊥

L ⊂ (RP 3)∗

L-dual to B ⊂ RP 3 as the union of all planes intersecting all sections of B
by planes containing L.

We prove that this construction is a duality, i.e. that the dual set is
again from the same class (i.e. convex-concave) and that dual of the dual
of the set is the set itself.

Theorem 7 (see [KN1]). Let L∗ ⊂ (RP 3)∗ be the line dual to the line
L ⊂ RP 3.

• The set B⊥
L ⊂ (RP 3)∗ is L∗-convex-concave.

• The set B ⊂ RP 3 is L∗-dual to the set B⊥
L ⊂ (RP 3)∗.

Remarkably, the Main Conjecture is true for both B and B⊥
L simultane-

ously: for any line � ⊂ B the line �∗ dual to � lies inside B⊥
L and vice versa.

The proof of Theorem 6 consists of construction of a convex-concave set P
whose L-dual contains a line by a simple application of the Theorem 4. By
construction the sections of P by Lα are contained in H̃α, so the dual of
this line, as a line intersecting all these sections, is a required one.

Here we outline the proof of the Theorem 6.
The convex-concave set P mentioned above is a result of certain surgery

on B. Namely, we replace each section of B by a convex polygon with
� 8 sides circumscribed around the section. The sides of the polygons are
tangent to the sections and parallel to the boundaries of H̃α (here we use
the degeneracy condition to claim that we get at most octagons). It turns
out that the resulting set P is convex-concave.

Consider the L-dual P⊥
L of P . Roughly speaking, sections of P⊥

L cor-
respond to projections of P , and projections of P⊥

L correspond to sections
of P . The set P has four remarkable projections, the projections along the
directions of boundaries of H̃α. Projections of P along other directions can
be reconstructed from these four, since the sections are octagons. Similarly,
the four sections S∗

i , i = 1, 2, 3, 4, of P⊥
L corresponding to these projections
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define P⊥
L in the following sense: the part of P⊥

L lying between two adjacent
sections is the convex hull of these two sections.

Theorem 4 claims existence of a line � intersecting all Si. But any such
line lies entirely inside P⊥

L . The dual of this line lies inside P and therefore
intersects all Piα. Since Pα ⊂ Hα, this line is a required one.

4 Combinatorial Properties of Half-planes Arising from a
Chebyshev Line

In this and the next sections we investigate combinatorial properties of
mutual position of the five half-planes constructed above. In this section
we do not use the convex-concavity of the sections Si (so the results are
valid for any five convex compact figures lying on five horizontal planes
in R

3), and use only part of conditions implied by the fact that � is the
Chebyshev line for Si. This, however, is enough to single out only six
possible combinatorial types, and we deal with them one-by-one in the
next sections.

There can be two types of good deformations – the ones intersecting �
(so-called trivial good deformations), and not intersecting �. In this sec-
tion we consider the restrictions on the mutual position of the half-planes
implied by the absence of the good deformations of the first kind, i.e. the
absence of lines intersecting � and interiors of all half-planes Hi (recall that
by the genericity assumption of §3.4 the boundaries of a half-plane are
pairwise non-parallel).

We used an affine chart and a scalar product to define a Chebyshev line
in the previous section, but the question we arrived at, i.e. the question if
there is a line intersecting a given set of five half-planes, is a projective one.
Here is a reformulation of the problem in projective terms. In RP 3 we are
given configurations consisting of

1. five different projective planes Li, all containing the same line (further
called a infinite horizontal line),

2. five half-planes Hi ⊂ Li – parts of these planes – containing convex
(with respect to the infinite horizontal line) figures Si together sat-
isfying convex-concavity condition. The boundary of each half-plane
consists of an infinite horizontal line and some other line. These
other lines are pairwise nonintersecting (by the genericity assump-
tion of §3.4);

3. a line � intersecting all these other lines and not intersecting the
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infinite horizontal line.

In this section we are looking for configurations without lines intersect-
ing both � and interiors of all half-planes. First we encode combinatorial
properties of any configuration by a purely combinatorial code, leaving
temporarily aside continuous parameters of the problem (double ratios of
the intersections of the boundaries of half-planes with the infinite horizontal
line and with the line �) and the condition of absence of good deformations.
This encoding can be done in several ways, so several codes correspond to
each configuration. The condition of absence of trivial good deformations
means that the configuration cannot be coded by a trivial code. In the next
section we will see that there are at most six such configurations.

4.0.1 Coding. We will code combinatorial properties of configura-
tions using projections from points x ∈ � to the horizontal planes. As a
result we will get a code — a permutation of numbers 1, 2, 3, 4, 5 with signs.

The line � is an affine part of a projective line �̃ ∼= RP
1 ∼= S

1. This
projective line is divided into 5 intervals by its points of intersection with
half-planes Hi. We choose a point M ∈ � from one of these intervals and
orientation on �. We enumerate the points of the intersections of the half-
planes with � starting from M according to the chosen orientation, thus
enumerating the half-planes Hi and planes Li by numbers 1, 2, 3, 4, 5.

Consider a projection π : R
3 \ LM → L1 with center M , where LM is

the horizontal plane passing through M . Take an orientation on the circle
S

1 ⊂ L1 centered at a1 = � ∩ L1 and a point N ∈ S
1 \ ∪π(∂Hi). Thus we

get an enumeration of the set of 10 points S
1 ∩ (∪iπ(∂Hi)) (recall that by

the non-degeneracy assumption none of ∂Hi are parallel).
We can now write down a sequence of five numbers with signs (fur-

ther called a code) which will encode the combinatorial properties of the
configuration: on the i-th place of this sequence stands the number of the
half-plane whose boundary projects onto the i-th point on S

1 taken with +
if the projection contains the point N and with − otherwise.

Remark 5. In the figures we denote the boundaries of π(Hi) by their
numbers i. The arrows point toward the projections of the corresponding
half-planes.

4.0.2 Equivalent codes. In the coding procedure described above
we made several choices. As a result we get several codes for the same
situation. The resulting classes are in fact orbits of a group acting on the
set of all possible codes.
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Figure 4: This projection and choices of N and of orientation of S
1 correspond

to the code 3 + 2 − 1 + 4 + 5+

This group is generated by two pairs of generators. The first pair cor-
responds to the choices made on S

1.
The first generator, denoted by β1, corresponds to the moving of the

point N to the previous interval. It acts on the code by cyclic permutation
of the numbers and changing the sign of the last element: the i-th number
goes to the (i + 1)-th place except the first one which moves to the fifth
place and changes sign, e.g. β1(1 + 2 + 3 + 4 − 5−) = 5 + 1 + 2 + 3 + 4−.

The second generator, denoted by β2, corresponds to the change of ori-
entations on the circle. It acts on codes by symmetry: we should put the i-
th number on the 5−i-th place preserving the sign (e.g. β2(1+2+3+4−5−)
= 5 − 4 − 3 + 2 + 1+).

Figure 5: Action of β1 and β2

The second pair corresponds to the choices made on the Chebyshev
line �. In general, changing the position of the center of the projection
or the orientation results not only in change of enumeration of half-planes
but also in the different choice of the plane of projection. So in order to
describe the effect of moving the point M to the next interval or changing



Vol. 13, 2003 L-CONVEX-CONCAVE BODY IN RP 3 CONTAINS A LINE 1101

the orientation of � we have to identify somehow the planes of projections.
The third generator of the group, denoted by α1, corresponds to the

moving the point M to the point M ′ in the previous interval. If we identify
planes L1 and L2 using the projections from M ′ and (upon this identifica-
tion) make the same choice of N and of the orientation of S

1, then α1 acts
on codes by changing 1+ to 2+ , 2+ to 3+, 3+ to 4+, 4+ to 5+, 5+ to
1−, . . . , 5− to 1+ (e.g. α1(1+2+3+4−5− = 2+3+4+5−1+). In other
words, the numeration shifts by 1 and the image of the fifth (from the M)
half-plane flips.

Figure 6: Projections from M and M ′ differ on H5 and agree on H1, H2, H3

and H4

The fourth generator, denoted by α2, corresponds to the change of ori-
entation of �. After identifying L1 and L5 by projection from M action of α2

reduces to the renaming of the planes. So α2 acts on codes by interchanging
5 with 1 and 4 with 2 with signs preserved (e.g. α2(1 − 2 + 3 + 4 − 5−) =
5 − 4 + 3 + 2 − 1−). In other words, in the sequence of signs and numbers
we rename numbers and leave signs intact.

Figure 7: Action of α1 and α2

It is easy to see from this description that αiβjα
−1
i β−1

j = α10
1 = α2

2 =
β10

1 = β2
2 = Id, α2α1α2 = α−1

1 and β2β1β2 = β−1
1 , i.e. the group generated

by αi and βi is D5
⊕

D5.
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4.1 Cases of evident good deformation: trivial codes and the
Chebyshev property. Here we translate the condition of absence of
some good transformations mentioned in the beginning of the section to
the language of codes.

4.1.1 Trivial codes. There are cases (i.e. combinatorial types of
intersections of projections of Hi) which are forbidden for Chebyshev lines.
These are in particular the cases when, for some choice of M , projections
of all Hi have nontrivial intersection (i.e. more than one point). Indeed, in
this case a good deformation which will intersect the Chebyshev line can
be easily found.

Theorem 8. A configuration corresponding to a Chebyshev line cannot
be coded by a code containing 1+, 2+, 3+ and 4+.

Proof. Suppose first that by choosing a point M ∈ � and a point N ∈ S
1

we get a code consisting of positive numbers only, i.e. a permutation of
1+, 2+, 3+, 4+ and 5+. By definition this means that the line connecting
M and N intersects all Hi at their interior, i.e. is a good deformation.

If the code contains 5−, then, after applying α−1
1 , we get an equivalent

code with only positive entries, thus reducing to the previous case. �

4.1.2 Another easy case: the Chebyshev property. The fol-
lowing lemma uses for the first (and the last) time the Euclidean metric.
More exact, it uses the definition of Hi as the set of all points x ∈ Li such
that the angle x̂aisi is acute (where si ∈ Si is the point of Si closest to ai).
We will need this lemma only in the last section, where we consider the six
nontrivial codes.

Theorem 9. For a configuration constructed from a Chebyshev line no
half-plane H ⊂ L1 with a1 ∈ ∂H can contain S1, π(S2), π(S3) and π(S4)
simultaneously.

Proof. Denote by N the endpoint of inward normal a1N to ∂H.
We are given that π(Si) ⊂ H for i = 1, 2, 3, 4. Therefore π(si) ∈ H, so,

by Lemma 8, N ∈ π(Hi).
If N 
∈ π(∂Hi) then the code corresponding to N contains 1+, 2+, 3+

and 4+ and we are done by the previous lemma.
If not, we can move the point N slightly and get the same result.

Namely, suppose that N ∈ π(∂Hi) for some i. Since (by the genericity
assumption) no π(∂Hi) coincide, N cannot lie on more than one π(∂Hi).
Therefore slightly moving N to the interior of this π(Hi) we get a point N ′
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corresponding to a code containing 1+, 2+, 3+ and 4+, which is forbidden
by Theorem 8. �

Figure 8: The case of N ∈ ∂H1: the point N ′ lies in the interiors of H1, H2, H3

and H4

Remark 6. This lemma generalizes the following simple geometrical fact:

Lemma 11. There is no half-space H ⊂ R
3 with the Chebyshev line on its

boundary containing all five sections Si.

Indeed, in this case in each plane Li we will get a figure like in Lemma 8,
so a line obtained from a Chebyshev line by a small parallel translation in
the direction of the inward normal to ∂H will lie closer to all sections.

5 The Chess Board

In this section we single out all non-trivial codes, i.e. not equivalent to
those named in Theorem 8. Though the number of codes is huge (namely
3840 = 255!), there are only six equivalency classes not containing trivial
codes. They are listed in the Theorem 10 below.

5.1 From a code to a corresponding chessboard. It is easier to
visualize codes as a position of five rooks on a 5 × 5 chess board. This
is done as follows: in the first column we put the rook in the row whose
number is equal to the first number in the code. The color of the rook
is white if this first number has sign + and black otherwise. We continue
like this for the second, third, fourth and fifth columns (so if we forget the
colors, the rook’s position is exactly the graph of the permutation given by
the code).
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Figure 9: The code and the board corresponding to the projection above

It is easy to see that each column or row contains exactly one rook, i.e.
the rooks do not threaten each other.

5.2 How the symmetry group acts on the rooks’ positions. We
described above an action of some symmetry group on codes. In the chess
board realization the action of this group is remarkably simple:

• β1 acts by moving the fifth column to the first place and changes the
color of the rook standing in this column;

• α1 acts in a similar way but with rows: α1 moves the fifth row to the
first place and changes the color of the rook standing in that row;

• β2 acts by symmetry with respect to the vertical line;
• α2 acts by symmetry with respect to the horizontal line.

5.3 Six equivalence classes consisting of nontrivial arrangements
only. The trivial codes correspond to the arrangements of white rooks
only, which will be called trivial arrangements. Our goal in this subsection
is to exclude the rooks’ arrangements equivalent to trivial ones.

Lemma 12. Any arrangement not equivalent to a trivial one is equivalent
to an arrangement with only one black rook. Moreover, this rook can be
assumed not to stand on the border of the board.

Proof. Pick any arrangement which is not equivalent to a trivial one. The
β5

1 simply changes all colors to the opposite ones, so we can assume that
the number of black rooks is equal to one or two. The first case is what we
need, so suppose that there are two black rooks. If one of them stands on
the first or the last row, then using α±1

1 we can change its color without
changing the color of others, so leaving only one black rook. A similar
statement holds for columns and β1.
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Figure 10: Action of generators of the group

So we can suppose that both black rooks are in the inner 3 × 3 square.
Then we get at least two white rooks on the border. Take the fifth row. It
contains one rook. Therefore the first or the fifth column should contain
another white rook and moving this column and the fifth row (i.e. acting
by β1α1 or by β−1

1 α1) we arrive to a situation with four black rooks, which
is equivalent (by β5

1) to a situation with one rook only.
This black rook cannot stand on the border as otherwise by one move

(α±1
1 or β±1

1 ) we arrive at a trivial situation. �

Using the symmetries α2 and β2, we can assume that a black rook
occupies one of the four squares (2, 2), (2, 3), (3, 2), (3, 3).

5.3.1 The case (2,2). Consider first the case of the black rook on
the square (2, 2).

Lemma 13. If one of the squares (1, 1), (1, 5), (5, 1) is occupied, then the
position is trivial.

Proof. Indeed, in these cases β−1
1 α−2

1 or β−2
1 α−1

1 or β1α
−2
1 correspondingly

transforms the position to a trivial one. �

Therefore in a position not equivalent to a trivial one, the white rook
in the first column can occupy only one of the squares (1, 3) or (1, 4) and
the square (5, 1) is empty.
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5.3.2 White on (1,3) and Black on (2,2). This leaves four con-
figurations:

C1 3 + 2 − 1 + 4 + 5+
C2 3 + 2 − 1 + 5 + 4+
C3 3 + 2 − 4 + 1 + 5+
C4 3 + 2 − 5 + 1 + 4+

Figure 11: Four non-equivalent configurations C1–C4

5.3.3 White on (1,4) and Black on (2,2). There are another
four possibilities (remember that (5, 1) is empty):

D2 4 + 2 − 1 + 5 + 3+
D3 4 + 2 − 3 + 1 + 5+
D4 4 + 2 − 5 + 1 + 3+
D5 4 + 2 − 1 + 3 + 5+

But D4 becomes trivial after α−3
1 β2

1 , and D2 becomes D3 after β2
1α2β2.

Moreover, after α3
1β

−3
1 C4 becomes D2. So the only new configuration

is D5.

Figure 12: D4 becomes trivial after α−3
1 β2

1

5.3.4 Black on (2,3). Similarly to Lemma 13, the white rook in
the first column cannot stand on the first or the last row. In other words,
in a position with a black rook on (2, 3) and not equivalent to a trivial one,
the squares (1, 5) and (1, 1) are empty. Indeed, α±1

1 β−2
1 correspondingly

trivialize these arrangements.
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Figure 13: C4 is equivalent to D2 and to D3

So the only places the white rook can stand are (1, 2) or (1, 4). These
positions are in fact equivalent by α2, so we can consider the positions with
a white rook on (1, 4) and the black rook on (2, 3).

But these positions are equivalent by α2β2β
−2
1 to the positions with a

black rook on (2, 2), so are in fact considered above.

Figure 14: The series of cases of the black rook on (2, 3) is equivalent to the
series C

5.3.5 Black on (3,2). These arrangements are also equivalent to
arrangements with the (only) black rook on (2, 2). The proof repeats word-
for-word the proof above changing β to α and α to β everywhere. This is
because the actions of the group is symmetric with respect to the diagonal
(though this symmetry isn’t itself in the group).

5.3.6 Black rook on (3,3). The complement of the square to the
third row and the third column consists of four two-by-two squares.

Lemma 14. If the arrangement is not equivalent to a trivial one, then each
square contains exactly one rook.

Proof. Indeed, if not, then one of them contains two rooks and the oppo-
site should necessarily contain the other two (since exactly one rook stands
in each row and in each column). Applying β2 if necessary, one can as-
sume that these are the lower left and the upper right squares. Then α2

1β
3
1

transforms the arrangement to a trivial one. �
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Figure 15: Triviality of the case of the black rook on (3, 3) and one of the squares
containing two rooks

Lemma 15. If one of rooks stands in the corner (i.e. on (1, 1), (1, 5), (5, 1)
or (5, 5)), then the situation is equivalent to a situation with the only black
rook standing on (2, 2) (i.e. is in fact considered above).

Proof. Using α2 and β2, if necessary, we can suppose that the white rook
stands on (1, 1). Then we get a situation with the only black rook on (2, 2)
after α−1

1 β−1
1 . �

Corollary 2. All configurations with one white rook in the inner 3 × 3
square are trivial or have a rook in a corner.

Proof. Suppose that (2, 2) is occupied and the position is neither trivial
nor with a rook in a corner. Then the 2 × 2 square contain one rook each.
Then the squares (1, 4) and (4, 1) are occupied, since the corners are empty
and the second row and second column already contain a rook. Therefore
the only remaining square for the fourth rook is in the corner (5, 5), which
is forbidden. �

Figure 16: The case of the black rook on (3, 3) and one of the rooks in the corner
is equivalent to the series C

The only remaining positions are 4+1+3−5+2+ and 2+5+3−1+4+,
which are equivalent by α2 or β2.

5.3.7 The final list. It consists of six variants.

Theorem 10. A configuration corresponding to a Chebyshev line should
be equivalent to a configuration described by one of the following codes

C1 3 + 2 − 1 + 4 + 5+ C2 3 + 2 − 1 + 5 + 4+ C3 3 + 2 − 4 + 1 + 5+
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C4 3 + 2 − 5 + 1 + 4+ D5 4 + 2 − 1 + 3 + 5+ E6 4 + 1 + 3 − 5 + 2+

Figure 17: The six nontrivial variants

6 Non-triviality of a Code and Convex-concavity Imply
Existence of a Good Deformation

In this section we consider the six nontrivial cases of Theorem 10. Each
case has several continuous parameters (e.g. angles between ∂Hi, distances
between Li), and only for some choice of parameters the configuration of
half-planes arises from a Chebyshev line. In other words, for only part
of the parameter space parameterizing this combinatorial type, the corre-
sponding configuration of half-planes does not admit a good deformation.
Indeed, Theorem 10 excludes only codes admitting a good deformation in-
tersecting the Chebyshev line �, and do not deal with good deformations
not intersecting �.

In what follows we show that the configurations of half-planes arising
from sections Si of a convex-concave body all admit a good deformation.
Therefore they cannot correspond to a Chebyshev line, so the assumption
that the Chebyshev line doesn’t intersect the sections leads to a contradic-
tion.

More exactly, we extract from the convex-concavity condition some in-
equality between the double ratio of angles between ∂Hi and the double
ratios of distances between Li in some particular combinatorial assump-
tions. This inequality implies existence of a line intersecting four of the
half-planes Hi in some particular sectors. For five of the six cases of The-
orem 10 these assumptions are satisfied, and moreover the resulting line
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automatically intersects the fifth half-plane. The sixth case E6 simply can-
not occur for convex-concave sections.

The main tool in the proofs is Theorem 4, only applied now to some
parts of the sections Si. The only Euclidean property we will need is
Theorem 9, whose statement is projective. So we can move the center
of projection to infinity, and the projection becomes a parallel projection
π : R

3 → L1 along the z-axis, with Si are ordered by their z-coordinate.
We will also use a linear structure defined on L1 defined by the coordi-

nates x and y (i.e. we take the point a1 as the origin).

6.1 Sectorial Browder theorem. We will denote by π(Hi)c for the
closure of L1 \ π(Hi). We define half-spaces Bi = π−1(π(Hi)) and denote
by Bc

i the closure of their complements.
Theorem 11. Suppose that

1. H1 ∩ π(H4)c ⊂ π(H2)c and
2. π(H3) ∩ π(H2) ⊂ π(H4)c.

Suppose moreover that S1∩π(H4)c 
= ∅. Then π(S2)∩π(H3), π(S3) ∩ π(H2)
and π(S4)∩Hc

1 are also non-empty and there exists a straight line L inter-
secting S1 ∩ Bc

4, S2 ∩ B3, S3 ∩ B2 and S4 ∩ Bc
1.

Figure 18: The configuration of half-planes and projection of the line L from
Theorem 11

In our notation the conditions (1) and (2) mean existence of the subse-
quence 1+2−3+4− in a sequence coding the configuration. In applications
below the condition S1 ∩ π(H4)c 
= ∅ will follow from Lemma 20 below.
Proof. First we prove two combinatorial lemmas:
Lemma 16. H1 ∩ π(H4)c ⊂ π(H3).

Proof. Suppose that H1 ∩ π(H4)c 
⊂ π(H3). Since boundaries of the half-
planes are pairwise different, there is a point x lying in the interior of
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(H1 ∩ π(H4)c) \ π(H3). Then −x ∈ Hc
1 ∩ π(H4) ∩ π(H3) ⊂ π(H2) ∩ π(H3)

by assumption and also −x ∈ π(H4) – a contradiction. �

Lemma 17. π(H2) ∩ π(H3) ⊂ π(H1)c.

Proof. As before, take x in the interior of π(H2) ∩ π(H3) ∩ H1. Then
x ∈ π(H4)c∩π(H1) by the assumption (2) and therefore x ∈ π(H2)c by the
assumption (1) – contradiction. �

Our claim will be proved by applying Theorem 4 to S1 ∩ π(H4)c as B,
S2 ∩ B3 as A, S3 ∩ B2 as C and S4 ∩ Bc

1 as D. Let’s check conditions of
Theorem 5. In other words, we have to check that

1. a line passing through S1 ∩ Bc
4 and intersecting S2 and S3 (existing

by convex-concavity) intersects S2 ∩ B3 and S3 ∩ B2, and
2. a line passing through S3 ∩ B2 and intersecting S1 and S4 (existing

by convex-concavity) intersects S4 ∩ Bc
1 and S1 ∩ Bc

4.

(Clearly S1 ∩ Bc
4, S2 ∩ B3, S3 ∩ B2 and S4 ∩ Bc

1 are compact and convex).
Let a line intersect S1∩Bc

4 and S2 and S3 at points c1, c2 and c3 accord-
ingly. Necessarily c2 lies between c1 and c3. We know that c1 ∈ S1∩π(H4)c

⊂ H1 ∩π(H4)c ⊂ π(H2)c ∩π(H3). Since c1, c3 ∈ B3, so c2 ∈ B3 (so S2 ∩B3

is non-empty). Similarly, c1 ∈ Bc
2 and c2 ∈ B2, so c3 ∈ B2 (and S3 ∩ B2 is

non-empty). So the first claim is proved.
Similarly, let a line intersect S3 ∩B2 and S4 and S1 at points c3, c4 and

c1 accordingly. As before, S3 ⊂ Bc
4 ∩ Bc

1. Since c4 ∈ B4 and c3 ∈ Bc
4, so

c1 ∈ S1 ∩ π(H4)c. Since c3 ∈ Bc
1, so c4 ∈ S4 ∩ Bc

1 (so in particular S4 ∩ Bc
1

is not empty). The second claim follows. �

6.2 Double ratios. After projecting a configuration satisfying condi-
tions of Theorem 11 to the plane L1 we obtain a figure below.

Figure 19: Double ratios of planes Li and projections of boundaries of Hi

Here L is the projection of the line existing by Theorem 11. By
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A′, B′, C ′,D′ we denote intersections of L with Si and by A,B,C,D in-
tersections of L with ∂(π(Hi)).

The existence of the line L implies an inequality between the double
ratio of distances between Li and the double ratio of directions of bound-
aries of Hi. Namely, denote the double ratio AB/BD : AC/CD of points
A,B,C,D by (A,B,C,D). Then (A′B′C ′D′) is exactly the double ratio of
distances between Li:

(A′, B′, C ′,D′) =
h1

h1 + h2
:

h1 + h2

h3
,

where hi is the distance between Li and Li+1. (A,B,C,D) is the double
ratio of directions of ∂Hi, and the following inequality holds:

Corollary 3. In the assumptions of Theorem 11 the double ratio of
distances between Li is strictly smaller than the double ratio of directions
of ∂Hi:

(A′, B′, C ′,D′) > (A,B,C,D) .

Proof. Indeed, the configuration of the points A′, B′, C ′,D′ is obtained from
the points ABCD by movements which only increase the above double
ratio:

1. (A,B,C,D) < (A′, B,C,D) since A′B/A′C > AB/AC,
2. (A′, B,C,D) < (A′, B′, C,D) since A′B′/B′D > A′B/BD,
3. (A′, B′, C,D) < (A′, B′, C ′,D) since C ′D/A′C ′ > CD/A′C,
4. (A′, B′, C ′,D′) < (A′, B′, C ′,D) since C ′D′/B′D′ > C ′D/B′D.

The equality is possible only if all points A′, B′, C ′,D′ lie on the corre-
sponding lines, which is impossible since, for example, the point B′ lies in
π(S2) which is included in the interior of the half-plane π(H2), so B′ 
= B
and the inequality in (2) is strict. �

Lemma 18. With conditions as above suppose that four points A′′, B′′, C ′′

and D′′ lie on a line L′ and

• A′′ ∈ ∂H1 \ π(H4)
• C ′′ ∈ ∂(π(H3)) \ π(H4)
• D′′ ∈ ∂(π(H4)) \ H1

Suppose moreover, that A′′B′′ : B′′C ′′ : C ′′D′′ = A′B′ : B′C ′ : C ′D′. Then
B′′ lies in the interior of π(H2) ∩ π(H3).

Proof. This follows directly from the inequality Corollary 3. Indeed, let
B = L′ ∩ ∂(π(H2)). Then

(A′′, B,C ′′,D′′) = (A,B,C,D) < (A′, B′, C ′,D′) = (A′′, B′′, C ′′,D′′) .
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Figure 20: Line L′ of Lemma 18

This is equivalent to A′′B/BD′′ < A′′B′′/B′′D′′, which is possible only
if B” is between B and D′′, i.e. B′′ ∈ π(H2). Since B′′ ∈ [A′′C ′′], also
B′′ ∈ π(H3). �

The lemma means that the line, whose existence is claimed in Theo-
rem 11, can be moved in such a way that it will still intersect the interior
of H2 and will also intersect boundaries of H1, H3 and H4.

6.3 The six non-trivial configurations which contradict convex-
concavity. We will call a stencil any five points c1, c2, c3, c4, c5 ∈ L1 which
are projections points of intersections of some line l ⊂ RP 3 with Li, ci =
l∩Li. Note that |c1c2| : |c2c3| : |c3c4| : |c4c5| is the same for all stencils and
is equal to h1 : h2 : h3 : h4 where hi are the distances between Li and Li+1.
Evidently this is a necessary and sufficient condition for five points in L1

lying on a line in this order to be a projection of points of intersection of
some line in RP 3 with the planes Li.

A projection of a good deformation is a stencil with an additional prop-
erty ci ∈ π(Hi), with at least one ci lying in the interior of π(Hi). Vice
versa, any such stencil is a projection of a good deformation.

We can reformulate Lemma 18 using this notation:

Lemma 19. Suppose that

1. H1 ∩ π(H4)c ⊂ π(H2)c,
2. π(H3) ∩ π(H2) ⊂ π(H4)c and

3. S1 ∩ π(H4)c 
= ∅.
Then there exists a stencil such that

1. c1 ∈ ∂H1 ∩ π(H4)c,
2. c2 lies in the interior of π(H2) ∩ π(H3),
3. c3 ∈ ∂π(H3) ∩ π(H4)c and
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4. c4 ∈ ∂π(H4) ∩ π(H1)c.
Similar statements hold for all strictly increasing subsequence of 12345

consisting of four numbers (i.e. 1245 or 1345, etc. instead of 1234).

6.3.1 Chebyshev property. Here we prove that one of the conse-
quences of the Chebyshev property formulated in Lemma 9 is that the set
S1 ∩ π(H4)c in Lemma 18 is never empty.
Lemma 20. If S1 ⊂ π(H4) or S1 ⊂ π(H5) then the configuration is trivial.

Proof. In the first case π(S2) and π(S3) also lie in π(H4) by convex-
concavity. Indeed, any point of S2 lies on a segment with endpoints on
S1 and S4, and projection of such a segment lies entirely in π(H4). The
same is true for S3, so by Lemma 9 the configuration is trivial. Similarly,
in the second case Si ⊂ π(H5) for i = 1, 2, 3, 4, 5 and again by Lemma 9
the configuration is trivial. �

In cases C1, C3, C4 and D5, Lemma 19 and Lemma 20 immediately
give the existence of a stencil which is a projection of a good deformation.

6.3.2 The C1 case. This is the case 3 + 2 − 1 + 4 + 5+. We will
consider an equivalent (after β−2

1 β2) variant 1 + 2 − 3 + 5 − 4−.
If S1 ∩ π(H4)c = ∅ then the configuration is trivial by Lemma 20. So

S1 ∩ π(H4)c 
= ∅ and Lemma 19 is applicable to the subsequence
1 + 2 − 3 + 4− of the code.

In the resulting stencil c4 ∈ π(H5) and c1 
∈ π(H5). Indeed, the sector
H1 ∩ π(H4)c is the smallest sector bounded by boundaries of half-planes
and containing the point N . Since N 
∈ π(H5), so H1∩π(H4)c∩π(H5) = ∅.
This means that −c4, c1 
∈ π(H5).

Therefore the point c5 of the stencil lies in π(H5). Therefore the line
projecting to this stencil is a good deformation.

Figure 21: The case C1



Vol. 13, 2003 L-CONVEX-CONCAVE BODY IN RP 3 CONTAINS A LINE 1115

6.3.3 The C3 case. This is the case of 3 + 2− 4 + 1 + 5+. We will
consider the equivalent (after β2α

6
1) case of 1 + 2 − 5 − 3 + 4−.

As above, S1 
⊂ π(H4) by Lemma 20, so we can apply Lemma 19 to the
subsequence 1+2−3+4− of the code, exactly as in the case C1. As before,
c1 lies on ∂H1∩π(H4)c and therefore in π(H5)c. Also, c4 ∈ ∂π(H4)∩Hc

1 and
therefore c4 ∈ π(H5). So c5 also lies in π(H5) since c5 and c1 lie on different
sides of c4. Therefore the stencil given by Lemma 19 is a projection of a
good deformation.

Figure 22: The case C3

6.3.4 The C4 case. This is the case of 3 + 2− 5 + 1 + 4+. We will
consider the equivalent (after β2

1β2α
−1
1 ) case of 1 + 2 − 3 + 5 − 4+.

As before, by Lemma 20, S1 
⊂ B5. We apply Lemma 19 to the subse-
quence 1+2−3+5− and get a stencil with c1 ∈ ∂H1∩π(H5)c, c2 ∈ π(H2),
c3 ∈ ∂π(H3) ∩ π(H5)c and c5 ∈ ∂π(H5) ∩ Hc

1. Then c4 ∈ π(H4). Indeed,
c1, c5 ∈ π(H4) and c4 lies between c1 and c5. So this stencil is a projection
of a good deformation.

6.3.5 The D5 case. This is the case of 4 + 2 − 1 + 3 + 5+. It is
equivalent (after a6

1b2) to the case 1 + 4 − 2 − 3 + 5−.
Again, S1 
⊂ B5 by Lemma 20. We apply Lemma 19 to the subsequence

1 + 2 − 3 + 5− and get a stencil with c1 ∈ ∂H1 ∩ π(H5)c, c2 ∈ π(H2),
c3 ∈ ∂π(H3)∩π(H5)c and c5 ∈ ∂π(H5)∩Hc

1. Now c4 ∈ π(H4) follows from
the fact that c3, c5 ∈ π(H4) and c4 lies between c3 and c5. So this stencil is
a projection of a good deformation.

In the two last cases we should exhibit a little more inventiveness.
The case C2 requires double application of Lemma 19, whereas in E6

the combinatorial properties of the intersections contradict Theorem 11.



1116 A. KHOVANSKII, D. NOVIKOV GAFA

Figure 23: The case C4

Figure 24: The case D5

6.3.6 The C2 case. This is the case of 3 + 2 − 1 + 5 + 4+. After
applying α3

1β1β2 it will transform into an equivalent variant 1+2−3−4+5−.
By Lemma 20 S1 ∩ π(H5)c 
= ∅. Applying Lemma 19 to the sequences

1 + 2 − 4 + 5− and 1 + 3 − 4 + 5− we see that there are two stencils, one
with points c1c2c3c4c5 and another with points c′1c′2c′3c′4c′5, such that the
following conditions hold

1. c1, c
′
1 ∈ ∂H1 ∩ π(H5)c,

2. c2 ∈ π(H2) ∩ π(H4),
3. c′3 ∈ π(H3) ∩ π(H4),
4. c4, c

′
4 ∈ ∂π(H4) ∩ π(H5)c and

5. c5, c
′
5 ∈ ∂π(H5) ∩ π(H1)c.

But any two stencils satisfying (1), (4) and (5) differ only by a di-
latation centered at the origin and these dilatations preserve π(Hi). So
c3 ∈ π(H3) ∩ π(H4) and we get the stencil which is a projection of a good
deformation.
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Figure 25: The case C2

6.3.7 The E6 case. This is the case of 4 + 1 + 3 − 5 + 2+. It is
equivalent (by β4

1) to 1 − 3 + 5 − 2 − 4+. Recall that Bi = π−1(Hi).
Suppose first that S1∩π(H3) 
= ∅. Similarly to the proof of Theorem 11,

we will apply Theorem 4 to S1 ∩ π(H3) as B, S4 ∩ B2 as C and S2 and S3

as A and D correspondingly and will arrive at a contradiction.
Construct two mappings, h1 : CSet(S1 ∩ B3) → CSet(S4 ∩ B2) and

h2 : CSet(S4 ∩ B2) → CSet(S1 ∩ B3), as in the proof of Theorem 4.
Namely, take a point b ∈ S1 ∩ B3. There is a line passing through this
point and section S2 and intersecting the section S4 at point c. Since
π(b) ∈ π(S1) ∩ π(H3) ⊂ π(H2)c and evidently π(S2) ⊂ π(H2), we conclude
that π(c) ∈ π(S4) ∩ π(H2), i.e. c ∈ S4 ∩ π(H2). The mapping h1 is the ex-
tension to the closed subsets of S1 ∩B3 of the mapping sending the points
a to the set of all such c. Similarly, to define h2 take any point c ∈ S4 ∩B2.
There is a line passing through this point and intersecting the section S3

and the section S1 at a point a. Since π(c) ⊂ π(H4)∩ π(H2) ⊂ π(H3)c and
π(S3) ⊂ π(H3), we get that a ∈ S1 ∩ B3.

By virtue of Theorem 4 this proves existence of a line intersecting
S1 ∩ π(H3), S2, S3 and S4 ∩ B2.

But this line cannot exist. Indeed, denoting the projections of the in-
tersection points by c1c2c3c4 we see that c2, c4 ∈ π(H4) ∩ π(H2) ⊂ π(H3)c

and therefore the point c3 – lying between c2 and c4 – should also belong
to Bc

3, which contradicts c3 ∈ π(H3).
Therefore S1 ⊂ π(H3)c. By convex-concavity we get that π(S4), π(S5)

⊂ π(H3) (any point of these sections is an endpoint of a segment intersecting
S3 with another endpoint in S1). Therefore π(S5) ⊂ π(H5) ∩ π(H3) ⊂ π(H2)
and π(S4) ⊂ π(H4) ∩ π(H3) ⊂ π(H2)c.



1118 A. KHOVANSKII, D. NOVIKOV GAFA

Figure 26: The case of S1 ∩ π(H3) 
= ∅ is impossible

This is incompatible with the existence of lines joining S5, S4 and S2

given by the convex-concavity condition. Indeed, take any segment inter-
secting S2, S4 and S5 at points s2, s4 and s5 correspondingly. Its projection
[π(s2), π(s5)] has both ends in π(H2), so π(s4) ∈ π(H2) as well, which con-
tradicts π(s4) ∈ π(S4) ⊂ π(H2)c.

Figure 27: The case of S1 ⊂ Bc
3 is impossible (the previous picture is rotated by

180◦)

End of the proof of Theorem 1. Existence of the Chebyshev line implies by
Theorem 10 that one of the combinatorial cases C1–C4, D5 or E6 should
occur. We just proved that in each of these cases the convex-concavity
condition is incompatible with the existence of the Chebyshev line: either
a good deformation exists (C1–C4, D5), or the case cannot occur for the
sections of the convex-concave set (E6). So the assumption of the existence
of the Chebyshev line led us to a contradiction.
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