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This appendix is dedicated to the study of the solvability of differential equations
by explicit formulae. This is a quite old problem: the fist idea of solving it dates
back to Abel. Today one knows three approaches to solve this problem. The first
one belongs to Liouville; the second approach considers the problem from the point
of view of the Galois’s theory: it is related to the names of Picard, Vessiot, Kolchin
and others; the third approach, topological, was firstly introduced, in the case of
functions of one variable, in my thesis. I am infinitely grateful to my research
director V.I. Arnold, who aroused my interest in this subject.

I had always believed that the topological approach cannot be completely applied
to the case of many variables. Only recently I discovered that this is not true and
that in the multi-dimensional case one can obtain absolutely analogous results [25].

This appendix contains the subject of my lectures to the Mathematical Society
of Moscow and to the students of the École Normale Supérieure at the Independent
University of Moscow (october 1994).

The section, concerning the functions of many variables, was added for this
appendix in autumn 2002.

I would like to thanks T.V. Belokrinitska for her help during the preparation of
this appendix and F. Aicardi for the translation in English.

1 Explicit solvability of equations

Some differential equations possess “explicit solutions”. If it is the case, the solution
gives itself the answer to the problem of solvability. But in general all attempts to
find explicit solutions of equations turn out to be vain. One trays thus to prove
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that for some class of equations explicit solutions do not exist. We must now de-
fine correctly what this means (otherwise, it will not clear what we wish really to
demonstrate). We choose the following way: we distinguish some classes of func-
tions, and we say that an equation is explicitly solvable, if its solution belong to one
of these classes. To different classes of functions there correspond different notions
of solvability.

To define a class of function we give a list of basic functions and a list of allowed
operations.

The class of functions is thus defined as the set of all functions which are obtained
from the basic functions by means of the allowed operations.

Example 1. The class of functions representable by radicals.
List of basic functions: constants and the identity function (whose value is equal

to that of the independent variable).
List of the allowed operations: the arithmetical operations (addition, subtrac-

tion, multiplication, division) and the root extractions n
√
f , n = 2, 3, . . . of a given

function f .
The function g(x) = 3

√
5x+ 2 2

√
x + 7

√
x3 + 3 is an example of a function repre-

sentable by radicals.
The famous problem of the solvability of the algebraic equations by radicals is

related to this class. Consider the algebraic equation

yn + r1(x)y
n−1 + · · ·+ rn(x) = 0, (1)

in which ri(x) are rational functions of one variable. The complete answer to the
problem of solvability of equation (1) by radicals consists in the Galois theory (see
§8).

Note that already in the simplest class, that in example 1, we encounter some
difficulties: the functions we deal with are multivalued.

Let we see exactly, for example, what is the sum of two multivalued analytical
functions f(x) and g(x). Consider an arbitrary point a, one of the germs fa of
function f(x) at point a and one of the germs ga of function g(x) at the same point
a. We say that the function φ(x), defined by the germ fa + ga, is representable as
sum of functions f(x) and g(x). This definition is not univocal. For example, one
sees easily that there are exactly two functions representable as the sum

√
x+

√
x,

namely f1 = 2
√
x and f2 ≡ 0. The closure of a class of multivalued functions with

respect to the addition is a class which contains, together with any two functions,
all functions representable by their sum.

One can say the same for all the operations on the multivalued functions that
we shall encounter in this chapter.

2



Example 2. Elementary functions. Basic elementary functions are those func-
tions which one learns at school and which are usually represented on the keyboard
of calculators. Their list is the following: the constant function, the identity function
(associating to every value, x, of the argument the value x itself), the n-th roots n

√
x,

the exponential exp x, the logarithm ln x, the trigonometrical functions: sin x, cos x,
tanx, arcsin x, arccos x, arctan x. The allowed operations are: the arithmetical
operations, the composition.

Elementary functions are expressed by formulae, for instance:

f(x) = arctan(exp(sin x) + cos x).

From the beginning of the study of analysis, we learn that the integration of
elementary functions is very far from being an easy task. Liouville proved in fact
that the indefinite integrals of elementary functions are not, in general, elementary
functions.

Example 3. Functions representable by quadratures. The basic functions in this
class are the basic elementary functions. The allowed operations are the arithmetical
operations, the composition and the integration. A class is said closed with respect
to the integration, if it contains with every function f also a function g such that
g′ = f .

For example, the function

exp

(∫ x dt

ln t

)
is representable by quadratures. But, as Liouville had proven, this function is not
elementary.

Examples 2 and 3 can be modified. We shall say that a class of functions is closed
with respect to the solutions of the algebraic equations, if together with every set of
functions f1, . . . , fn it contains also a function y, satisfying the equation

yn + f1y
n−1 + · · ·+ fn = 0.

Example 4. If in the definition of the class of elementary functions we add the
operation of solution of algebraic equations, we obtain the class of the generalized
elementary functions.

Example 5. The class of functions representable by generalized quadratures
contains the functions obtained from the class of functions representable by quadra-
tures by adding the operation of solution of algebraic equations.
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2 Liouville’s theory

The first exact demonstrations of the non solvability of some equations neither by
quadratures nor by elementary functions were obtained by Liouville in the middle
of the XIX century. Here we briefly expose his results.

The reader can find a wider exposition of the Liouville method and of the works
on analogous subjects by Chebychev, Mordukai-Boltovski, Ostrovski and Ritt in
book [1].

First of all, Liouville showed that the classes of functions in Examples 2–5 can
be constructed in a very simple way. Indeed, the set of basic elementary functions
seems to be very large. Moreover, in the definition of this class one encounters some
algebraic difficulties due to the composition operation. Liouville at first proved that
one can reduce a lot the lists of basic functions, in one half of the cases leaving in
it only the constants, ad in the remaining cases leaving only the constants and the
identity function. Secondly, he proved that in the list of the allowed operations the
composition is superfluous. One can define all the necessary operations using only
arithmetical operations and differentiation. This fact plays an essential role for the
algebraization of the problem of the differential fields numerability.

Let us formulate the corresponding definitions in differential algebra.
A field of functions F is called a differential field if it is closed with respect to the

differentiation, i.e., if g ∈ F , then g′ ∈ F . One can also consider the abstract differ-
ential fields, i.e., the field in which there is defined a supplementary differentiation
operation, satisfying the Leibniz identity: (a · b)′ = a′ · b+ a · b′.

Suppose that a differential field F contains another smaller differential field F0,
F0 ⊆ F . An element y ∈ F is said algebraic over field F0, if y satisfies an algebraic
equation of type:

yn + a1y
n−1 + · · ·+ an = 0,

where the coefficients ai’s belong to field F0. In particular, element y is called radical
over field F0, if y

k ∈ F0. The element y is said integral over field F0, if y
′ ∈ F0.

The element y is said logarithmic over field F0, if y
′ = a′/a, where a ∈ F0. The

element y is said exponential integral over field F0, if y
′ = ay, a ∈ F0. The element

y is said exponential over field F0, if y
′ = a′y. The extension of field F0 by means of

element y, denoted by F0{y}, is called the minimal differential field, containing F0

and y. The field F0{y} consists of the rational functions in y, y′, . . . , y(k), . . . with
coefficients in F0.

• 1) Element y is said representable by radicals over field F0, if there exists a
sequence F0 ⊆ F1 ⊆ · · · ⊆ Fk, such that every extension Fi ⊆ Fi+1 is obtained
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by adding one radical to field Fi, and field F0{y} is contained in Fk. A sequence
of this type is called a tower.

By this method one defines also other types of representability of an element
y over a field F0. The towers in these definitions are built by means of other
types of extensions Fi ⊆ Fi+1:

• 2) Element y is said elementary over field F0 when one can add logarithmic
and exponential elements.

• 3) Element y is said representable by quadratures over field F0 when adding
integrals and exponential integrals is allowed.

• 4) Element y is called generalized elementary element over field F0 when one
can add algebraic, exponential and logarithmic elements.

• 5) Element y is said representable by generalized quadratures over field F0 when
one can add algebraic, integral and exponential integral elements.

Theorem 1. (Liouville) A function is elementary (a generalized elementary
function), if and only if it is an elementary (generalized elementary) element over
the field of the rational functions R. A function is representable by quadratures (rep-
resentable by generalized quadratures), if and only if it is representable by quadratures
(representable by generalized quadratures) over the field of the complex numbers C.

For example, it follows from Theorem 1 that the basic elementary function f(x) =
arctanx is representable by quadratures over the field F0 = C. Indeed, this becomes

clear from the equation f ′ ≡ 1

1 + x2
, x′ ≡ 1.

To prove, for example, the part of theorem 1 which concerns functions rep-
resentable by quadratures, it suffices to verify, firstly, that there exist analogous
representations for all the basic elementary functions, and, furthermore, that the
class of functions representable by quadratures over field C is closed with respect to
the composition.

Liouville constructed a nice theory on the solvability of equations. Let us show
two examples of his results.

Theorem 2 (Liouville). The indefinite integral y(x) of the algebraic function
A(x) of one complex variable is representable by generalized elementary functions if
and only if it is representable in the form

y(x) =

∫ x

A(t)dt = A0(x) +
k∑

i=1

λi lnAi(x),
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where the Ai(x)’s, for i = 0, 1 . . . , k, are algebraic functions.
A priori the integral of an algebraic function could be given by a very complicated

formula. It could have the form

y = exp(exp(exp(exp(exp(x))))).

Theorem 2 says that this does not happen. Either the integral of an algebraic func-
tion can be written in a simple way, or in general it is not a generalized elementary
function.

Theorem 3 (Liouville). The differential linear equation

y′′ + p(x)y′ + q(x)y = 0, (2)

where p(x) and q(x) are rational functions, is solvable by generalized quadratures, if
and only if its solution can be written in the form

y = exp(

∫ x

R(t)dt),

where R(x) is an algebraic function.
A priori the solution of equation (2) could be expressed by very complicated

formulae. Theorem 3 says that this is nowhere the case. Either the equation has
sufficiently simple roots, or in general it cannot be solved by generalized quadratures.

Liouville found a series of results of this type. The common idea is the following:
simple equations have either simple solutions, or in general have no solutions in a
given class (by quadratures, by elementary functions etc.)

The strategy of the proof in Liouville’s theory is the following: prove that if a
simple equation has a solution which is represented by a complicate formula, then
this formula can be always simplified.

Liouville, undoubtedly, was inspired by the results by Lagrange, Abel and Ga-
lois on the non solvability by radicals of algebraic equations. Differently from the
Galois theory, Liuoville’s theory does not involve the notion of group of automor-
phisms. Liouville however uses, in order to simplify his formulae, “ infinitely small
automorphisms”.

Let us come back to Theorem 2 on the integrability of algebraic functions. The
following corollary follows from this theorem.

Corollary. If the integral of an algebraic function A is a generalized elemen-
tary function, then the differential form A(x)dx has some unavoidable singularities
on the Riemann surface of the algebraic function A.

It is well known that on every algebraic curve with positive genus there exist non
singular differential forms (the so-called abelian differentials of first type). It follows
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that algebraic functions whose Riemann surfaces have positive genus, are not, in
general, integrable by generalized elementary functions.

This was already known to Abel, who discovered it as he was proving the non
solvability by radicals of the fifth-degree generic equation. Observe also that the Abel
demonstration of the non solvability by radicals id based on topological arguments. I
do not know whether the topological properties of the Riemann surfaces of functions
representable by generalized quadratures are different from those of the Riemann
surfaces of generalized elementary functions. Indeed, I am unable to prove through
topological arguments that the integral of an algebraic function is not an elementary
function: each one of such integrals is by definition a function representable by
generalized quadratures. However, if an algebraic function depends on a parameter,
its integral may depend on the parameter in an arbitrarily complicate manner. One
can prove that the integral of an algebraic function, as function of one parameter,
can be not representable by generalized quadratures and, consequently, can be not a
generalized elementary function of the parameter (cf. example in §9).

3 Picard-Vessiot’s theory

Consider the linear differential equation

y(n) + r1(x)y
(n−1) + · · ·+ rn(x)y = 0, (3)

in which the ri(x)’s are rational functions of complex argument.
Near a non singular point x0 there exist n linearly independent solutions y1, . . . , yn

of equation (3). In this neighbourhood one can consider the functions field R{y1, . . . , yn},
obtained by adding to the field of rational functions R all solutions yi and all their
derivatives y

(p)
i until order (n − 1). (The derivatives of higher order are obtained

from equation (3).
The field of functions R{y1, . . . , yn} is a differential field, i.e., it is closed with

respect to the differentiation, as well as the field of rational functions R. One calls
automorphism of the differential field F an automorphism σ of field F , which pre-
serves also the differentiation, i.e., σ(g′) = [σ(g)]′. Consider an automorphism σ of
the differential field R{y1, . . . , yn}, which fixes all elements of field R. The set of
all automorphisms of this type forms a group, which is called the Galois group of
equation (3). Every automorphism σ of the Galois group sends a solution of the
equation to a solution of the equation. Hence to each one of such automorphisms
there correspond a linear transform Mσ of the space of solutions, V n. The auto-
morphism σ is completely defined by transform Mσ, because field R{y1, . . . , yn} is
generated by functions yi’s. In general, not every linear transform of space V n is
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an automorphism σ of the Galois group. The raison is that the automorphism σ
preserves all differential relations holding among the solutions. The Galois group
can be considered as a special group of linear transforms of solutions. It turns out
that this group is algebraic.

So, the Galois group of an equation is the algebraic group of linear transforms
of the space of solutions preserving all differential relations among the solutions.

Picard began to translate systematically the Galois theory in the case of lin-
ear differential equations. As in the original Galois theory, also here one finds a
one-to-one correspondence (the Galois correspondence) between the intermediate
differential field and the algebraic subgroups of the Galois group.

Picard and Vessiot proved in 1910 that the sole responsible of the solvability of
an equation by quadratures and by generalized quadratures is its Galois group.

Picard-Vessiot’s theorem. A differential equation is solvable by quadratures
if and only if its Galois group is soluble. A differential equation is solvable by
generalized quadratures if and only if the connected component of unity in its Galois
group is soluble.

The reader can find the basic results of the differential Galois theory in book [2].
In [3] he will find a brief exposition of the actual state of this theory together with
a rich bibliography.

Observe that from the Picard-Vessiot theorem it is not difficult to deduce that, if
equation (3) is solvable by generalized quadratures, then it has a solution of the form
y1 = exp(

∫ x
A1(t), dt), where A1(x) is an algebraic function. If the equation has an

explicit solution y1, then one can decrease its order, taking as new unknown function
z = (y/y1)

′. Function z satisfies a differential equation having an explicit form and a
lower order. If the initial equation was solvable, also the new equation for function
z is solvable. It must have therefore, according to the Picard-Vessiot theorem, a
solution of the type z1 = exp

∫
A2(x)dx, where A2 is an algebraic function etc.

We see in this way that if a linear equation is solvable by generalized quadratures,
formulae expressing the solutions are not exceedingly complicate. Here the Picard-
Vessiot approach coincides with the Liouville approach. Moreover, the criterion of
solvability by generalized quadratures can be formulated without mentioning the
Galois group. Indeed, equation (3) of order n is solvable by generalized quadratures
if and only if has a solution of the form y1 = exp

∫ x
A(x)dx and the equation of

order (n− 1) for function z is solvable by generalized quadratures.
This theorem was enounced and proved by Murdakai-Boltovskii exactly in this

form. Murdakai and Boltovskii obtained at the same time this result in 1910 using
the Liouville method, independently of the Picard and Vessiot works. The Mordukai-
Boltovskii theorem is a generalization of the Liouville theorem (cf. Theorem 3 in
the preceding section) to linear differential equations of any order.
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4 Topological obstructions to the representation

of functions by quadratures

There exist a third approach to the problem of the representability of a function by
quadratures. (cf. [4]–[10]). Consider the functions representable by quadratures as
multivalued analytical functions of a complex variable. It turns out that there are
some topological restrictions on the kind of disposition on the complex plane of the
Riemann surface of a function representable by quadratures. If the function does
not satisfy these conditions, it cannot be represented by quadratures.

This approach, besides the geometrical evidence, possesses the following advan-
tage. The topological obstructions are related to the character of the multivalued
function. They hold not only for functions representable by quadratures, but also
for a more wide class of functions. This class is obtained adding to the functions
representable by quadratures all the meromorphic functions and allowing the pres-
ence of such functions in all formulae. Hence the topological results on the non
representability by quadratures are stronger that those of algebraic nature. The
raison of this is that the composition of two functions is not an algebraic operation.
In differential algebra instead of the composition of two functions, one considers the
differential equation that they satisfy. But, for instance, the Euler function Γ does
not satisfy any algebraic differential equation; therefore it is useless to search out
an equation satisfied, for example, from the function Γ(expx). The unique known
results on the non representability of functions by quadratures and, for instance, by
the Euler functions Γ are those obtained by our method.

On the other hand, by this method one cannot prove the non representability by
quadratures of an arbitrary meromorphic single-valued function.

Using the Galois differential theory (and precisely its linear-algebraic part, re-
lated with the matrix algebraic groups and their differential invariants), one can
prove that the sole reason of the non solvability by quadratures of the linear dif-
ferential equations of Fuchs type (cf. §11) is of topological nature. In other words,
when there are no topological obstructions to the solvability by quadratures for a
differential equation of Fuchs type, this equation is solvable by quadratures.

The topological obstructions to the representation of a function by quadratures
and by generalized quadratures are the following.

Firstly, functions representable by generalized quadratures and, as special case,
by quadratures, can have at most a numerable set of singular points in the com-
plex plane. (cf. §5) (whereas already for the simplest functions, representable by
quadratures, the set of singular points may be everywhere dense!).

Secondly, the monodromy group of a function representable by quadratures is
necessarily soluble (cf. §7) (whereas already for the simplest functions, representable
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by quadratures, the monodromy group may contain a continuum of elements!).
There exist also analogous topological restrictions on the disposition of the Rie-

mann surface for functions representable by generalized quadratures. However, these
restrictions cannot be simply formulated: in this case the monodromy group is not
considered as an abstract group, but as the group of permutations of the sheets of
the Riemann surface. In other words, in the formulation of such restrictions not only
the monodromy group intervenes, but also the monodromy pair of the function. The
monodromy pair of a function consists in its monodromy group and in a stationary
subgroup for some germ (cf. §9). We shall see this geometrical approach to the
problem of solvability more precisely.

5 S-functions

We define a class of functions which will be the object of this section.
Definition. One calls S-function an analytical multivalued function of a com-

plex variable, if the set of its singular points is at most numerable.
Let us make this definition more precise. Two regular germs fa and gb, defined at

points a and b on the Riemann sphere S2, are said equivalent, if germ gb is obtained
from the germ fa by a regular continuation along some curve. Every germ gb,
equivalent to germ fa, is called regular germ of the analytical multivalued function
f , generated by germ fa.

A point b ∈ S2 is said singular for the germ fa, if there exists a curve γ [0, 1] →
S2, γ(0) = a, γ(1) = b, such that germ fa cannot be regularly continued along this
curve, but for every t, 0 ≤ t < 1, this germ can be continued along the shortened
curve γ [0, t] → S2. It is easy to see that the sets of singular points for equivalent
germs do coincide.

A regular germ is called S-germ, if the set of its singular points is at most
numerable. An analytical multivalued function is called S-function, if each one of
its regular germs is a S-germ.

We proved the the following theorem.
Theorem on the closure of the class of S-functions ([6],[8],1 0]). The

class S of all the S-functions is closed with respect to the following operations:

• 1) differentiation, i.e., if f ∈ S, then f ′ ∈ S;

• 2) integration, i.e., if f ∈ S, then
∫
f(x)dx ∈ S;

• 3) composition, i.e., if g, f ∈ S, then g ◦ f ∈ S;
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• 4) meromorphic operation, i.e., if fi ∈ S, i = 1, . . . , n, F (x1, . . . , xn) is a
meromorphic function of n variables and f = F (f1, . . . , fn), then f ∈ S1;

• 5) solution of algebraic equations, i.e., if fi ∈ S, i = 1, . . . , n, and fn +
f1f

n−1 + · · ·+ fn = 0, then f ∈ S;

• 6) solution of linear differential equations, i.e., if fi ∈ S, i = 1, . . . , n, and
f (n) + f1f

(n−1) + · · ·+ fn = 0, then f ∈ S.

Corollary. If the multivalued function f can be obtained from single-valued S-
functions by the operations of integration, differentiation, meromorphic operations,
compositions, solutions of algebraic and linear differential equations, then function
f has at most a numerable set of singular points. In particular, a function having a
non numerable set of singular points is not representable by generalized quadratures.

6 Monodromy group

The monodromy group of a S-function f with a set A of singular points is the group
of all permutations of the sheets of the Riemann surface of f which are visited when
one moves round the points of set A.

More precisely, let Fa be the set of all germs of the S-function f at point a, non
belonging to set A of singular points. Consider a closed curve γ in S2 \A beginning
at point a. The continuation of every germ of set Fa along curve γ leads to a germ
of set Fa.

Consequently, to every curve γ there corresponds a mapping of set Fa into itself,
and to homotopic curves in S2 \ A there corresponds the same mapping. To the
composition of curves there corresponds the mapping composition. One has thus
defined an homomorphism τ of the fundamental group of set S2 \ A in the group
S(Fa) of the one-to-one mappings of set Fa into itself. One calls monodromy group
of the S-function f the image of the fundamental group π1(S

2 \A, a) in group S(Fa)
under homomorphism τ .

We show some results, which are useful in the study of functions representable
by quadratures as functions of one complex variable.

Example. Consider the function w(z) = ln(1−zα), where α > 0 is an irrational
number. Function w is an elementary function, given by a very simple formula.
However its Riemann surface is very complicate. The set A of its singular points

1more precisely, the meromorphic operation, defined by the meromorphic function F (x1, . . . , xn),
puts in correspondence of functions f1, . . . , fn a new function F (f1, . . . , fn). The arithmetical
operations and the exponential are examples of meromorphic operations, corresponding to functions
F1(x, y) = x+ y, F2(x, y) = x · y, F3(x, y) = x/y and F4(x) = expx.
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consists of points 0,∞ and of points ak = e
1
α
2kπi, where k is any integer. Since α is

irrational, points ak are densely distributed on the unitary circle. It is not difficult to
prove that the fundamental group π1(S

2 \A) and the monodromy group of function
w are continuous. One can also prove that the image under homomorphism τ of the
fundamental group π1(S

2 \ {A∪ b}) of the complement of A∪ b, where b ̸= ak is an
arbitrary point on the unitary circle, is a proper subgroup of the monodromy group
of function w. (The fact that the elimination of a sole point can produce a radical
change of the monodromy group makes all demonstrations essentially difficult).

7 Obstructions to the representability of functions

by quadratures

We proved the following theorem.
Theorem ([6],[8],[10]). The class of all S-functions, having a soluble monodromy

group, is closed with respect to the composition, the meromorphic operations, the
integration and the differentiation.

We thus obtain the following corollary.
Result on quadratures. The monodromy group of a function f , repre-

sentable by quadratures, is soluble. Moreover, also the monodromy group of every
function f , which is obtained from single-valued S-functions by means of composi-
tions, meromorphic operations, integration and differentiation is soluble.

We see now the application of this result to algebraic equations.

8 Solvability of algebraic equations

Consider the algebraic equation

yn + r1y
n−1 + · · ·+ rn = 0, (4)

where the ri’s are rational functions of complex variable x.
Near to a non singular point x0 there are all solutions y1, . . . , yn of equation

(4). In this neighbourhood one can consider the field of all functions R{y1, . . . , yn},
obtained by adding to field R all solutions yi.

Consider the automorphism σ of the field R{y1, . . . , yn}, which fixes every ele-
ment of field R. The totality of these automorphisms forms a group, which is called
Galois group of equation (4). Every automorphism σ of the Galois group transforms
a solution of the equation into a solution of the equation; consequently, to every
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automorphism σ there corresponds a permutation, Sσ, of the solutions. Automor-
phism σ is completely defined by permutation Sσ, because the field R{y1, . . . , yn} is
generated by functions yi. In general, not all permutations of the solutions can be
continued to an automorphism σ of the Galois group: the reason is that automor-
phisms σ preserve all relations existing among the solutions.

The Galois group of an equation is thus the permutation group of the solutions
which preserves all relations among the solutions.

Every permutation Sγ of the set of solutions can be continued, as automorphism
of the monodromy group, to an automorphism of the entire field R{y1, . . . , yn}.
Indeed, with functions y1, . . . , yn, along curve γ, every element of field R{y1, . . . , yn}
is continued meromorphically. This continuation gives the required automorphism,
because during the continuation the arithmetical operations are preserved and every
rational function comes back to its preceding values because of the univocity.

In this way, the monodromy group of the equation is contained in the Galois
group: in fact, the Galois group coincides with the monodromy group. Indeed,
the functions of the field R{y1, . . . , yn} which are fixed under the action of the
monodromy group are the single-valued functions. These functions are algebraic,
but every algebraic single-valued function is a rational function. Therefore the
monodromy group and the Galois group have the same field of invariants, and thus,
by the Galois theory, they coincide.

According to the Galois theory, equation (4) is solvable by radicals over the field
of rational functions if and only if its Galois group is soluble over this field. In other
words, the Galois theory proves the following facts:

1) An algebraic function y, whose monodromy group is soluble, is representable
by radicals.

2) An algebraic function y, whose monodromy group is not soluble, is not repre-
sentable by radicals.

Our theorem makes stronger result (2).
An algebraic function y, whose monodromy group is not soluble, cannot be repre-

sented though single-valued S-functions by means of meromorphic operations, com-
positions, integrations and differentiations.

If an algebraic equation is not solvable by radicals, then it remains non solvable
using the logarithms, the exponentials and the other meromorphic functions on the
complex plane. A stronger version of this statement in given in §15.
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9 The monodromy pair

The monodromy group of a function is not only an abstract group but is the group
of transitive permutations of the sheets of its Riemann surface. Algebraically this
object is given by a pair of groups: the permutations group and a subgroup of it,
the stationary group of a certain element.

One calls the monodromy pair of a S-function a pair of groups, consisting of the
monodromy group of this function and the stationary subgroup of a sheet of the
Riemann surface. The monodromy pair is defined correctly, i.e., this pair of groups,
up to isomorphisms, does not depend on the choice of the sheet.

Definition. The pair of groups [Γ,Γ0] is called an almost soluble pair of groups
if there exists a sequence of subgroups

Γ = Γ1 ⊇ · · · ⊇ Γm, Γm ⊂ Γ0,

such that for every i, 1 ≤ i ≤ m− 1 group Γi+1 is a normal divisor of group Γi and
the quotient group Γi/Γi+1 is either commutative, or finite.

Any group Γ can be considered as the pair of groups [Γ, e], where e is the unit
subgroup (the group containing only the unit element). We say that group Γ is
almost soluble if pair [Γ, e] is almost soluble.

Theorem ([6],[8],[10]). The class of all S-functions, having a monodromy pair
almost soluble, is closed with respect to the composition, the meromorphic operations,
the integration, the differentiation and the solutions of algebraic equations.

We thus obtain the following corollary.
Result on generalized quadratures. The monodromy pair of a the func-

tion f , representable by generalized quadratures, is almost soluble. Moreover, also
the monodromy pair of every function f , which is obtained from single-valued S-
functions by means of the composition, the meromorphic operations, the integration,
the differentiation and the solutions of algebraic equations is almost soluble.

Let us consider now some examples of functions non representable by generalized
quadratures. Suppose the Riemann surface of a function f be a universal covering
of S2 \ A, where S2 is the Riemann sphere and A is a finite set, containing at least
three points. Thus function f cannot be expressed in terms od S-functions by means
of generalized quadratures, compositions and meromorphic operations. Indeed, the
monodromy pair of this function consists in a free non commutative group, and its
unit subgroup. One sees easily that such a pair of groups is not almost soluble.

Example. Consider the function z, which realizes the conformal transformation
of the upper semi-plane into the triangle with vanishing angles, bounded by three
arcs of circle. Function z is the inverse of the modular Picard function. The Riemann
surface of function z is a universal covering of the sphere without three points;
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consequently function z cannot be expressed in terms od single-valued S-functions
by means of generalized quadratures, compositions and meromorphic operations.

Observe that function z is strictly related to the elliptic integrals

K(k) =

∫ 1

0

dx√
(1− x2)(1− k2x2)

and K ′(k) =

∫ 1
k

0

dx√
(1− x2)(1− k2x2)

.

Every one of functions K(k), K ′(k) and z(w) can be obtained from the others
by quadratures. It follows that no one of the integrals K(k) and K ′(k) can be
expressed in terms of single-valued S-functions by means of generalized quadratures,
compositions and meromorphic operations.

In the following section we will generalize the above example, finding all polygons,
bounded by arcs of circle, to which the upper semi-plane can be sent by functions
representable by generalized quadratures.

10 Mapping of the semi-plane to a polygon, bounded

by arcs of circle

10.1 Application of the symmetry principle.

Consider in the complex plane a polygon G, bounded by arcs of circle. According
to the Riemann theorem, there exists a function fG, sending the upper semi-plane
to polygon G. This mapping was studied by Riemann, Schwarz, Christoffel, Klein
and others (cf, for example, [11]). Let we recall some classical results that shall be
useful.

Denote by B = {bj} the preimage of the set of the vertices of polygon G under
mapping fG, by H(G) the group of conformal transformations of the sphere gen-
erated by the inversions with respect to the sides of the polygon and by L(G) the
subgroup of homographic mappings (quotient of two linear functions). L(G) is a
subgroup of index 2 of group H(G). From the Riemann-Schwarz symmetry principle
one obtains the following results.

Proposition.

• 1) Function fG can be meromorphically continued along any curve avoiding
set B.

• 2) All germs of the multivalued functions fG in a non singular point a /∈ B
are obtained applying to a fixed germ fa the group of homographic mappings
L(G).
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• 3) The monodromy group of function fG is isomorphic to group L(G).

• 4) At points bj, the singularities of function fG are of the following types. If in
vertex aj of polygon G, corresponding to point bj, the angle is equal to αj ̸= 0,
then function fG, through an homographic transformation, is put in the form
fG(z) = (z − bj)

βjφ(z), where βj = αj/2π, and function φ is holomorphic in
a neighbourhood of point bj. If angle αj is equal to zero, then function fG by
an homographic transformation is put in the form fG(z) = ln(z)+φ(z), where
function φ is holomorphic in a neighbourhood of bj.

From our results it follows that if function fG is representable by generalized
quadratures, then group L(G)) and group H(G) are almost soluble.

10.2 Almost soluble groups of homographic and conformal
mappings

Let π be the epimorphism of group SL(2) of the matrices of order 2 with unit
determinant onto the group of the homographic mappings L,

π :

(
a b
c d

)
→ az + b

cz + d
.

Since ker π = Z2, group L̃ ⊆ L and group π−1(L̃) = Γ ⊆ SL(2) are both almost
soluble. Group Γ is a group of matrices: therefore Γ is almost soluble if and only if
it has a normal subgroup Γ0 of finite index which admits a triangular form. (This
version of the Lie theorem is true also in higher dimensions and plays an important
role in differential Galois theory). Since group Γ0 consists of matrices of order 2,
group Γ0 can be put in triangular form in one of the three following cases:

• 1) group Γ0 has only one monodimensional eigenspace;

• 2) group Γ0 has two monodimensional eigenspaces;

• 3) group Γ0 has a two-dimensional eigenspace.

Consider now the group of homographic mappings L̃ = π(Γ). Group L̃ of homo-
graphic mappings is almost soluble if and only it has a normal subgroup L0 = π(Γ0)
of finite index, and the set of the invariant points consists of either a unique point,
or two points, or the whole Riemann sphere.

The group of conformal mappings H̃ contains the group L̃ of index 2 (or of index
1), consisting of the homographic mappings. Hence for the almost soluble group H̃
of conformal mappings an analogous proposition holds.
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Lemma. A group of conformal mappings of the sphere is almost soluble if and
only if it satisfies almost one of these conditions:

• 1) the group has only an invariant point;

• 2) the group has an invariant set consisting of two points;

• 3) the group is finite.

This lemma follows from the preceding propositions, because the set of invariant
points for a normal divisor is invariant under the action of the group. It is well
known that a finite group L̃ of homographic mappings of the sphere is sent by a
homographic transformation of coordinates to a group of rotations.

It is not difficult to prove that if the product of two inversions with respect to
two different circles corresponds, under the stereographic projection, to a rotation
of the sphere, then these circles correspond to great circles. Hence every finite group
H̃ of conformal mappings generated by the inversions with respect to some circles,
is sent by a homographic transformation of coordinates to a group of motions of the
sphere, generated by reflections.

All the finite groups of the motions of the sphere generated by reflections are
well known. They are exactly the symmetry groups of the following objects:

• 1) the regular pyramid with a regular n-gone as basis;

• 2) the n-dihedron, i.e., the solid made from two regular pyramids joining their
bases.

• 3) the tetrahedron;

• 4) the cube or the octahedron;

• 5) the dodecahedron or the icosahedron.

All these groups of symmetries, except the group of the dodecahedron-icosahedron,
are soluble. The sphere, whose centre coincides with the centre of gravity of the
solid, is cut by the symmetry planes of the solid along a net of great circles. Lattices,
corresponding to the mentioned solids, are called finite nets of great circles. The
stereographic projections of these finite nets are shown in Figures 1–5.
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Figure 1: Pyramid

Figure 2: 6-dihedron
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Figure 3: Tetrahedron–Tetrahedron

Figure 4: Cube–Octahedron
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Figure 5: Dodecahedron–Icosahedron
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10.3 The integrable case

Let us come back to the problem of the representability of the function fG by
generalized quadratures.

We consider now the different possible cases and we prove that the condition
we have found is not only necessary but also sufficient for the representability of
function fG by generalized quadratures.

First integrability case. The group H(G) has an invariant point. This
means that the continuations of the edges of polygon G intersect in a point. Sending
this point to infinity by a homographic transformation, we obtain the polygon G,
bounded by segments of straight lines (cf. Fig. 6).

Figure 6: The first case of integrability.

All mappings of L(G) have the form z → az + b. All germs of function f =
fG in a non singular point c are obtained applying to a fixed germ f c the group

L(G), f c → af c + b. The germ Rc = f
′′
c/f

′
c is invariant under the action of group

L(G). This means that germ Rc is the germ of a single-valued function. A singular
point bj of function Rc can be only a pole (cf. proposition in §10.1). Thus function
Rc is rational. The equation f

′′
/f

′
= R is integrable by quadratures. This case

of integrability is well known. Function f in this case is called Christoffel-Schwarz
integral.

Second integrability case. The invariant set of group H(G) consists of two
points. This means that there are two points with the following properties: for every
side of polygon G, these points either are obtained by an inversion with respect to
this side or belong to the continuation of this side. Sending one of these points to
the origin and the other one to infinity by a homographic transformation, we obtain
the polygon G, bounded by arcs of circles with centre at point 0 and by segments
of rays coming from point 0 (cf. Fig. 7).

All transformations of group L(G) are of the form z → az, z → b
z
. All germs of

the function f = fG at a non singular point c are obtained applying to a fixed germ
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Figure 7: The second case of integrability.

f c the transformations of the group L(G)

f c → af c, f c → b/f c.

The germ Rc = (f
′
c/f c)

2 is invariant under the action of group L(G) and it is the
germ of the single-valued function R. The only singularities of function R are poles
(cf. proposition in §10.1). Thus function Rc is rational. The equation R = (f

′′
/f

′
)2

is integrable by quadratures.
Third integrability case. The group H(G) is finite. This means that

polygon G is sent by a homographic transformation to a polygon G, whose sides lie
on a finite net of great circles (see Figures 116-120). Group L(G) is finite, and, as
a consequence, function fG has a finite number of values. Since all singularities of
function fG are of ’jump’ type ((cf. proposition in §10.1), function fG is an algebraic
function.

Let us analyze the case when group H(G) is finite and soluble. This happens
if and only if polygon G is sent by a homographic transformation to a polygon G,
whose sides lie on a net of great circles different from that of the dodecahedron-
icosahedron. In this case group L(G) is soluble, and function fG in expressed in
terms od rational functions by means of arithmetical operations and of radicals (cf.
§8).

From our results a theorem follows:
Theorem on the polygons bounded by of arcs of circles ([6],[8],[10]).

For an arbitrary polygon G, non belonging to the three above cases of integrability,
function fG not only is not representable by generalized quadratures, but it cannot be
expressed in terms od single-valued S-functions by means of generalized quadratures,
compositions and meromorphic operations.
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11 Topological obstructions to the solvability of

differential equations

11.1 The monodromy group of a linear differential equation
and its relation with the Galois group

Consider the linear differential equation

y(n) + r1y
(n−1) + · · ·+ rny = 0, (5)

where the ri’s are rational functions of the complex variable x. The poles of functions
ri and ∞ are called the singular points of equation (5).

Near a non singular point x0 the solutions of the equations form a space V n of
dimension n. Consider now an arbitrary curve γ(t) on the complex plane, beginning
at x0 and ending at point x1 avoiding the singular points ai. The solutions of the
equation can be analytically continued along the curve, remaining solutions of the
equation. Hence to every curve γ there corresponds a linear mapping Mγ of the
space V n

x0
of the solutions at point x0 in the space V n

x1
of the solutions at point x1.

If one changes curve γ, avoiding the singular points and leaving fixed its ends,
mapping Mγ does not vary. To a closed curve there corresponds therefore a linear
transform of the space V n into itself. The totality of these linear transforms of space
V n forms a group, which is called monodromy group of equation (5). So, the mon-
odromy group of an equation is the group of the linear transforms of the solutions,
which correspond to different turns round the singular points. The monodromy
group of an equation characterizes the multivocity of its solutions.

Near a non singular point x0 there are n linearly independent solutions, y1, . . . , yn,
of equation (5). In this neighbourhood one can consider the field of functions
R{y1, . . . , yn}, obtained adding to field of rational functions R all solutions yi and
all their derivatives.

Every transformation Mγ of the monodromy group of the space of solutions can
be continued to an automorphism of the entire field R{y1, . . . , yn}. Indeed, with
functions y1, . . . , yn, along curve γ every element of field R{y1, . . . , yn} can be an-
alytically continued. This continuation gives the required automorphism, because
during the continuation the arithmetical operations and the differentiation are pre-
served, and the rational functions come back to their initial values because of their
univocity.

In this way, the monodromy group of an equation is contained in its Galois group.
The field of the invariants of the monodromy group is a subfield of R{y1, . . . , yn},

consisting of the single-valued functions. Differently from the algebraic case, for
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differential equations the field of invariants under the action of the monodromy
group can be bigger than the field of rational functions.

For example, for differential equation (5), in which all coefficients ri(x)’s are
polynomials, all solutions are single-valued. But, of course, the solutions of such
equations are not always polynomials. The reason is that here the solutions of
differential equations may grow exponentially in approaching the singular points.
One knows an extension of the class of linear differential equations, for which there
are no similar complications, i.e., for which the solutions, while approaching the
singular points, grow at most as some power. Differential equations which possess
this property are called equations of Fuchs type.

For differential equations of Fuchs type the Frobenius theorem holds.
Theorem 1. For the differential equations of Fuchs type, the subfield of the

differential field R{y1, . . . , yn}, consisting of single-valued functions, coincides with
the field of rational functions.

According to the differential Galois theory, from the Frobenius theorem it follows
that the algebraic closure of the monodromy group, M , (i.e., the smallest algebraic
group containing M) coincides with the Galois group.

The differential Galois theory gives thus the following criterion of solvability of
differential equations of Fuchs type.

Theorem 2. A differential equation of Fuchs type is solvable by quadratures or
by generalized quadratures if its monodromy group is, respectively, soluble or almost
soluble.

The differential Galois theory provides at the same time two results:

• 1) if the monodromy group of a differential equation of Fuchs type is soluble
(almost soluble), then this equation is solvable by quadratures (by generalized
quadratures).

• 2) if the monodromy group of a differential equation of Fuchs type is not sol-
uble (almost soluble), then this equation is not solvable by quadratures (by
generalized quadratures).

Our theorem makes stronger result 2. Indeed, it is easy to see that for almost
every solution of differential equation (5) the monodromy pair is [M, e], where M is
the monodromy group of the equation, and e its trivial subgroup. We thus have the
following:

Theorem 3 ([6],[8]). If the monodromy group of differential equation (5) is not
soluble (almost soluble), then almost every solution of this equation is not repre-
sentable in terms of single-valued S-functions by means of compositions, meromor-
phic operations, integrations, differentiations and solutions of algebraic equations.
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Is the monodromy group of a given linear differential equation soluble (almost
soluble)? This question turns out to be quite difficult. However, there exists an
interesting example, where the answer to this question is very simple.

11.2 Systems of differential equations of Fuchs type with
small coefficients

Consider a system of linear differential equations of Fuchs type, i.e., a system of
type

y′ = Ax (6)

where y = y1, . . . , yn is the unknown vectorial function and A is a n × n matrix,
consisting of rational functions of the complex variable x, having the following form:

A(x) =
k∑

i=1

Ai

x− ai
,

where the Ai’s are constant matrices.
If matrices Ai’s are put at the same time in triangular form, then system (6),

as every triangular system, is solvable by quadratures. There are undoubtedly non
triangular systems which are solvable. However, if matrices Ai’s are sufficiently
small, then such systems do not exist. More precisely, we obtained the following
results:

Theorem 4([9]). The non triangular system (6), with matrices Ai’s sufficiently
small, ∥Ai∥ < ε(a1, . . . , ak, n), is strictly non solvable, i.e., it is not solvable even
using all single-valued S-functions, compositions, meromorphic operations, integra-
tions, differentiations and solutions of algebraic equations.

The demonstration of this theorem uses the Lappo-Danilevskij theory [12].

12 Algebraic functions of several variables

Up to now we have considered only single-valued functions. We are ready to make
two observations concerning functions of several variables, whose demonstrations do
not require new notions and are obtained by the same method we used for single-
valued functions.

Consider the algebraic equation

yn + r1y
n−1 + · · ·+ rn = 0, (7)

where the ri’s are rational functions of k complex variables x1, . . . , xk.
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1) According to the Galois theory, equation (7), having a soluble monodromy
group, is solvable by radicals. But if the monodromy group of equation (7) is not
soluble, then not only the equation is not solvable by radicals, but cannot be solved
even using radicals of entire functions of several variables, arithmetical operations
and compositions. This statement can be considered as a variation of the Abel
theorem on the non solvability of algebraic equations of degree higher than four. (A
stronger result is presented in §15).

2) Equation (7) defines an algebraic function of k variables. Which are the
conditions for representing a function of k variables by algebraic functions of a
smaller number of variables, using compositions and arithmetical operations? The
13-th Hilbert problem consists in this question.2. If one excludes the remarkable

2The problem on the composition was formulated by Hilbert for classes of continuous functions,
not for algebraic functions. A.G. Vitushkin considered this problem for smooth functions and
proved the non representability of functions of n variables with continuous derivatives up to order
p by functions of k variables with continuous derivatives up to order q having a lower “complexity”,
i.e., for k/q < n/p [15]. Afterwards he applied his method to the study of the complexity in the
problem of tabularizations [16].
Vitushkin’s results was also proven by Kolmogorov, developing his own theory of the ϵ-entropy

for classes of functions, measuring as well their complexity: this entropy, expressed by the logarithm
of the number of ϵ-different functions, grows, for ϵ decreasing, as (1/ϵ)n/p [17].
Finally, the solution of the problem in the Hilbert initial formulation turned out to be opposed to

that conjectured by Hilbert himself: Kolmogorov [18] was able to represent continuous functions of
n variables by means of continuous functions of 3 variables, Arnold [19] represented the functions
of three variables by means of functions of two, and finally Kolmogorov [20] represented functions
of two variables as composition of functions of a sole variable with the help of the sole addition.
(Note of the translator)
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results [13],[14] on this subject3, up to now there is no proof that there exist algebraic
functions of several variables which are not representable by algebraic functions of
a sole variable.

We know however the following result:
Theorem ([4],[5]). An entire function y of two variables (a, b), defined by the

equation
y5 + ay + b = 0,

cannot be expressed in terms of entire functions of a sole variable by means of com-
positions, additions and subtractions.

The raison is the following. To every singular point p of an algebraic function
one can associate a local monodromy group, i.e. the group of permutations of the
sheets of the Riemann surface which is obtained going round the singularities of the
function along curves lying in an arbitrarily small neighbourhood of point p. For
algebraic functions of one variable this local group is commutative; by consequence
the local monodromy group of an algebraic function which is expressed by means of
sums and differences of integer functions must be soluble. But the local monodromy

3V. I. Arnol’d [13] invented a completely new approach to the demonstration of the non rep-
resentability of an algebraic entire function of several variables as composition of algebraic entire
functions of fewer variables. This approach is based on the study of the cohomology of the com-
plement of the set of the branches of the function, which leads to the study of the cohomology of
the braid groups.
We must remark that here the definition of representability of an algebraic function differs from

the classical definition. Classical formulae for the solutions by radicals of equations of degree 3 and
4 cannot be completely considered mere compositions: these multivalued expressions by radicals
contain, with the required roots, also “parasite” values. The new methods show that these parasite
values are unavoidable: even equations of degree 3 and 4 are not strictly (i.e., without parasite
values) solvable by radicals.
In particular, Arnold proved [13] that if n = 2r (r ≥ 2) the algebraic function λ(z) of n complex

variables z = (z1, . . . , zn) defined by the equation

λn + z1λ
n−1 + · · ·+ zn = 0

is not strictly representable in any neighbourhood of the origin as composition of algebraic entire
functions (division is not allowed) with fewer than n−1 variables and of single-valued holomorphic
functions of any number of variables. V. Ya. Lin [14] proved the same proposition for any n ≥ 3.
The Arnol’d work had a great resonance: the successive calculations of the cohomologies with

other coefficients of the generalized braid groups allowed to find results more and more extended.
The methods of the theory of the cohomologies of the braid groups, elaborated in the study

of compositions of algebraic functions, have been afterward applied by Vassiliev and Smale
[21],[22],[23] to the problem of finding the topologically necessary number of ramifications in the
numeric algorithms for the approximate calculation of roots of polynomials. (The number of ram-
ifications is of order of n for a polynomial of degree n).(Note of the translator)
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group of the function
y5 + ay + b = 0

, near the point (0, 0), is the group S(5) of all permutations of five elements, which
is not soluble. This explains the statement of the theorem.

Observe that if the operation of division is allowed, then the above argument
no longer holds. Indeed, the division is an operation killing the continuity and its
application destroys the locality. In fact, the function y satisfying

y5 + ay + b = 0

can be expressed by means of the division in terms of a function, g(x), of one
variable, defined by the equation

g5 + g + x = 0,

and of the function of one variable f(a) = 4
√
a. It is not difficult to see that

y(a, b) = g(b/
4
√
a5) 4

√
a.

13 Functions of several complex variables repre-

sentable by quadratures and generalized quadra-

tures

The multi-dimensional case is more complicate than the monodimensional one. We
have to reformulate the basic definitions and, in particular, to slightly change the
definition of representability of functions by quadratures and by generalized quadra-
tures. In this section we give a new formulation of the problem.

Suppose to have fixed a class of basic functions and a set of allowed operations.
Is a given function (being, for instance, solution of a given algebraic or differential
equation, or the result of one of the other allowed operation) representable in terms
od the basic functions by means of the allowed operations? First of all, we are
interested exactly in this problem but we give to it a bit different meaning. We con-
sider the distinct single-valued branches of a multivalued function as single-valued
functions on different domains: we consider also every multivalued function as the
set of its single-valued branches. We apply the allowed operations (as the arithmeti-
cal operations or the composition) only to the single-valued branches on different
domains. Since our functions are analytical, it suffices to consider as domains only
small neighbourhoods of points. The problem now is the following: is it possible to
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express a given germ of a function at a given point in terms od the germs of the basic
functions by means of the allowed operations? Of course, here the answer depends
on the choice of the single-valued germ of the multivalued function at that point.
However, it happens that (for the class of basic functions we are interested in) either
the searched representation does not exist for any germ of the single-valued function
at any point, or, on the contrary, all germs of the given multivalued function are
expressed by the same representation at almost all points. In the former case we
say that no branches of the given multivalued function can be expressed in terms od
the branches of the basic functions by means of the allowed operations; in the latter
case that this representation exists.

First of all, observe the difference between this formulation of the problem and
that of the problem exposed in §1. For analytical functions of a sole variable among
the allowed operations there exists, in fact, the operation of analytical continuation.

Consider the following example. Let f1 be an analytical function, defined in
a domain U of the plane C1, which cannot be continued beyond the boundaries of
domain U , and let f2 be the analytical function in domain U , defined by the equation
f2 = −f1. According to the definition in §1, the zero function is representable in
the form f1 + f2 for all the values of the argument. From this new point of view,
equation f1 + f2 = 0 is fulfilled only inside domain U , not outside. Previously
we was not interested in the existence of a unique domain, in which all required
properties should hold on the single-valued branches of the multivalued function: a
result of an operation could hold on a domain, another result in another domain
on the analytical continuations of the obtained functions. For the S-functions of
a sole variable one can obtain the needed topological limitations even with this
extended notion of operation on analytical multivalued functions. For functions of
several variables we can no longer use this extended notion and we must adopt a
new formulation with some restrictions, which can seem less (but which is perhaps
more) natural.

Let us start by giving the exact definitions. Fixe the standard space Cn with
coordinates system x1, . . . , xn.

Definition. 1) The germ of a function φ at point a ∈ Cn can be expressed in
terms od the germs of the functions f1, . . . , fn at point a by means of the integration
if it fulfils the equation dφ = α, where α = f1dx1 + · · · + fndxn. For the germs of
the given functions f1, . . . , fn, germ φ exists if and only if the 1-form α is closed.
Germ φ is thus defined up to additive constants.

2) The germ of a function φ at point a ∈ Cn can be expressed in terms od
the germs of the functions f1, . . . , fn at point a by means of the exponential and of
integrations, if it fulfils the equation dφ = αϕ, where α = f1dx1 + · · ·+ fndxn). For
the germs of the given functions f1, . . . , fn, germ φ exists if and only if the 1-form
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α is closed. The germ φ is thus defined up to multiplicative constants.
3) The germ of a function y at point a ∈ Cn can be expressed in terms od the

germs of the functions f0, . . . , fk at point a by means of a solution of an algebraic
equation, if the germ f0 does not vanish and fulfils the the equation

f0y
k + f1y

k−1 + · · ·+ fk = 0.

Definition.
1) The class of the germs of functions in Cn representable by quadratures (over

the field of the constants) is defined by the following choice: the germs of the basic
functions are the germs of the constant functions (at every point of the space Cn);
the allowed operations are the arithmetical operations, the integration, and raising
to the power of the integral.

2)The class of the germs of functions in Cn representable by generalized quadra-
tures (over the field of the constants) is defined by the following choice: the germs
of the basic functions are the germs of the constant functions (at every point of the
space Cn); the allowed operations are the arithmetical operations, the integration,
the raising to the power of the integral and the solution of algebraic equations.

Remark that the above definitions can be translated almost literally in the case of
abstract differential fields, provided with n commutative differentiation operations
∂

∂x1
, . . . , ∂

∂xn
. In such generalized form these definitions are due to

Kolchin.
Consider now the class of the germs of functions, representable by quadratures

and by generalized quadratures in the spaces Cn of whatever dimension n ≥ 1. Re-
peating the Liouville argument (cf. theorem 1 in §2), it is not difficult to prove that
the class of the germs of functions of several variables representable by quadratures
and by generalized quadratures contains the germs of the rational functions of several
variables and the germs of all elementary basic functions; these classes of germs are
closed with respect to the composition. (The closure with respect to the composition
of a class of germs of functions representable par quadratures means the following:
if f1, . . . , fm are germs of functions representable by quadratures at point a ∈ Cn

and g is a germ of a function representable by quadratures at point b ∈ Cm, where
b = (f1(a), . . . , fm(a)), then the germ g(f1, . . . , fm) at point a ∈ Cn is the germ of a
function representable by quadratures).

14 SC-germs

Does it exists a class of germs of functions of several variables sufficiently wide
(containing the germs of functions representable by generalized quadratures, the
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germs of entire functions of several variables and closed with respect to the natural
operations as the composition) for which the monodromy group is defined? In this
section we define the class of SC-germs and we enounce the theorem on the closure
of this class with respect to the natural operations: this gives an affirmative answer
to the posed question. I discovered the class of SC-germs relatively recently: up to
that time I believed the answer were negative.

In the case of functions of a sole variable it was useful to introduce the class of
the S-functions. Let us start by a direct generalization of the class of S-functions to
the multidimensional case.

A subspace A ⊂ M in a connected k-dimensional analytical manyfold M is said
thin, if there exists a numerable set of open subsets Ui ⊂ M and a numerable set
of analytical subspaces Ai ⊂ Ui in these open subsets such that A ⊆

∪
Ai. An

analytical multivalued function on manyfold M is called a S-function, if the set of
its singular points is thin. Let us make more precise this definition.

Two regular germs fa and gb, given at points a and b of manyfold M , are said
equivalent if germ gb is obtained by a regular continuation of germ fa along some
curve. Every germ gb, equivalent to germ fa, is also called a regular germ of the
analytical multivalued function f , generated by germ fa.

A point b ∈ M is said singular for germ fa, if there exists a curve γ [0, 1] →
M, γ(0) = a, γ(1) = b, such that germ fa cannot be regularly continued along this
curve, but for every t, 0 ≤ t < 1, this germ can be continued along the shortened
curve γ [0, t] → M . It is easy to see that the sets of singular points for equivalent
germs do coincide.

A regular germ is said S-germ, if the set of its singular points is thin. An
analytical multivalued function is called a S-function, if everyone of its regular germs
is a S-germ.

Remark. For functions of one complex variable we had given two definitions
of S-functions. The first one is the above definition, the second one is given by the
theorem in §5. These definitions, evidently, coincide.

For S-functions of several variables the notions of monodromy group and of mon-
odromy pair are automatically translated.

Let us clarify way the multidimensional case is more complicate than the monodi-
mensional one.

Imagine the following situation. Let f(x, y) be a multivalued analytical function
of two variables with a set A of ramification points, where A ⊂ C2 is an analytical
curve on the complex plane. It can happen that at one of the points a ∈ A there
exists an analytical germ fa of the multivalued analytical function f (by the defi-
nition of the set A of ramification points, at point a there exists not every germs
of the function f , but some germ may exist). Let now g1(t) and g2(t) be two an-

31



alytical functions of the complex variable t, given by the mapping of the complex
line C in the complex plane C2, such that the image of line C is contained in A,
i.e., (g1(t), g2(t)) ∈ S for every t ∈ C. Let b be the preimage of point a under this
mapping, i.e., a = (g1(b), g2(b)). What can we say on the multivalued analytical
function on the complex line, generated by the germ of f(g1, g2) at point b, obtained
as result of the composition of the germs of rational function g1, g2 at point b and of
the germ of function f at point a? It is clear that the analytical properties of this
function depend essentially on the continuation of germ fa along singular curve A.

Nothing like this may happen under composition of functions of a sole variable.
Indeed, the set of singularities of a S-function of one variable consists of isolated
points. If the image of the complex space under an analytical mapping g is entirely
contained in the set of the singular points of a function f , then function g is a
constant. It is evident that if function g is a constant, after having defined f on its
set of singular points, function f(g), too, results to be constant.

In the monodimensional case for our purpose it suffices to study the character of
multivocity of the analytical function only in the complement of its singular points.
In the multidimensional case, we have to study the possibility of continuing those
germs of functions which meet along their set of singularities (if, of course, the germ
of the function is defined in an arbitrary point of the set of singularities). It happens
that the germs of multivalued functions sometimes are automatically continued along
their set of singularities [24]: this thus allows us to pass all difficulties.

An important role is played by the following definition:
Definition. The germ fa of an analytical function at point a of space Cn is

called SC-germ if the following condition is satisfied. For every connected complex
analytical manyfold M , every analytical mapping G M → Cn and every preimage
c of point a, G(c) = a, there exists a thin subset A ⊂ M such that for every curve
γ [0, 1] → M , beginning at point c, γ(0) = c, and having no intersection with the
set A, except, at most, at the initial point, i.e., γ(t) /∈ A for t > 0, the germ fa can
be analytically continued along the curve G ◦ γ [0, 1] → Cn.

Proposition. If the set of singular points of a S-function is an analytical set,
then every germ of this function is a SC-germ.

This proposition follows directly from the results exposed in [24].
It is evident that every SC-germ is the germ of a S-function. For the SC-germs

the notions of monodromy group and of monodromy pair are thus well defined.
In the sequel we will need the notion of holonomic system of linear differential

equations. A system of N linear differential equations Lj(y) = 0, j = 1, . . . , N ,

Lj(y) =
∑

aji1,...,in
∂i1+···+iny

∂xi1
1 . . . ∂xin

n

= 0
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for the unknown function y, whose coefficients aji1,...,in are analytical functions of n
complex variables x1, . . . , xn, is said holonomic if the space of its solutions has a
finite dimension.

Theorem on the closure of the class of SC-germs. The class of the
SC-germs in Cn is closed with respect to the following operations:

• 1) differentiation, i.e., if f is a SC-germ at point a ∈ Cn, then for every
i = 1, . . . , n the germs of the partial derivatives ∂f

∂xi
are as well SC-germs at

point a;

• 2) integration, i.e. , if df = f1dx1+ · · ·+fndxn, where f1, . . . , fn are SC-germs
at point a ∈ Cn, then also f is a SC-germ at point a;

• 3) composition with the SC-germs of m variables, i.e., if f1, . . . , fm are SC-
germs at point a ∈ Cn and g is a SC-germ at point (f1(a), . . . , fm(a)) in the
space Cm, then also g(f1, . . . , fm) is a SC-germ at point a;

• 4) solutions of algebraic equations, i.e., if f0, . . . , fk are SC-germs at point
a ∈ Cn, the germ f0 is not zero and the germ y fulfils the equation f0y

k +
f1y

k−1 + · · ·+ fk = 0, then also germ y is a SC-germ at point a;

• 5) solutions of holonomic systems of linear differential equations, i.e., if the
germ of function y at point a ∈ Cn satisfies the holonomic system of N linear
differential equations

Lj(y) =
∑

aji1,...,in
∂i1+···+iny

∂xi1
1 . . . ∂xin

n

= 0,

whose all coefficients aji1,...,in are SC-germs at point a, then also y is a SC-germ
at point a.

Corollary. If the germ of a function f can be obtained from the germs of
single-valued S-functions having an analytical set of singular points by mans of in-
tegrations, of differentiations, meromorphic operations, compositions, solutions of
algebraic equations and solutions of holonomic systems of linear differential equa-
tions, then the germ of f is a SC-germ. In particular, a germ which is not a SC-germ,
cannot be represented by generalized quadratures.
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15 Topological obstructions to the representabil-

ity by quadratures of functions of several vari-

ables

This section is dedicated to the topological obstructions to the representability by
quadratures and by generalized quadratures of functions of several complex vari-
ables. These obstructions are analogous to those holding for functions of one variable
considered in §§7-9.

Theorem 1. The class of all SC-germs in Cn, having a soluble monodromy
group, is closed with respect to the operations of integration and of differentiation.
Moreover, this class is closed with respect to the composition with the SC-germs of
m variables (m ≥ 1) having soluble monodromy groups.

Result on quadratures. The monodromy group of any germ of a function
f , representable by quadratures, is soluble. Moreover, also every germ of a func-
tion, representable by the germs of single-valued S-functions having an analytical
set of singular points, is soluble by means of integrations, of differentiations and
compositions.

Corollary. If the monodromy group of the algebraic equation

yk + r1y
k−1 + · · ·+ rk = 0,

in which the ri’s are rational functions of n variables, is not soluble, then any germ
of its solutions not only is not representable by radicals, but cannot be represented in
terms od the germs of single-valued S-functions having an analytical set of singular
points by means of integrations, of differentiations and compositions.

This corollary represents the strongest version of the Abel theorem.
Theorem 2. The class of all SC-germs in Cn, having a monodromy pair almost

soluble, is closed with respect to the operations of integration, differentiation and
solution of algebraic equations. Moreover, this class is closed with respect to the
composition with the SC-germs of m variables (m ≥ 1) having a monodromy pair
almost soluble.

Result on generalized quadratures. The monodromy pair of a germ of
a function f , representable by generalized quadratures, is almost soluble. Moreover,
also the monodromy pair of every germ of a function f , representable in terms od
the germs of single-valued S-functions having an analytical set of singular points
by means of integrations, differentiations, compositions and solutions of algebraic
equations is almost soluble.
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16 Topological obstruction to the solvability of

the holonomic systems of linear differential equa-

tions

16.1 The monodromy group of a holonomic system of linear
differential equations

Consider a holonomic system of N differential equations Lj(y) = 0, j = 1, . . . , N ,

Lj(y) =
∑

aji1,...,in
∂i1+···+iny

∂xi1
1 . . . ∂xin

n

= 0,

where y is the unknown function, and the coefficients aji1,...,in are rational functions
of the n complex variables x1, . . . , xn.

One knows that,for any holonomic system, there exists a singular algebraic sur-
face Σ in space Cn, having the following properties. Every solution of the system
can be analytically continued along whatever curve avoiding hypersurface Σ. Let
V be the finite-dimensional space of the solutions of a holonomic system near a
point x0, which lies outside the hypersurface Σ. Consider an arbitrary curve γ(t)
in space Cn with initial point x0, non crossing the hypersurface Σ. The solutions
of the system can be analytically continued along curve γ, remaining solutions of
the system. Consequently, to every curve γ of this type there corresponds a linear
transformation Mγ of the space of solutions V in itself. The totality of the linear
transformations Mγ , corresponding to all curves γ, forms a group, which is called
monodromy group of the holonomic system.

Kolchin generalized the Picard-Vessiot theory to the case of holonomic systems of
differential equations. From the Kolchin theory we obtain two corollaries concerning
the solvability by quadratures of the holonomic systems of differential equations. As
in the monodimensional case, a holonomic system is said regular if approaching the
singular set Σ and the infinity its solutions grow at most as some power.

Theorem 1. A regular holonomic system of linear differential equations is
soluble by quadratures and by generalized quadrature if its monodromy group is,
respectively, soluble and almost soluble.

Kolchin theory proves at the same time two results.

• 1) If the monodromy group of a regular holonomic system of linear differential
equations is soluble (almost soluble), then this system is solvable by quadratures
(by generalized quadratures).
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• 2) If the monodromy group of a regular holonomic system of linear differential
equations is not soluble (is not almost soluble), then this system is not solvable
by quadratures (by generalized quadratures).

Our theorem makes stronger result (2).
Theorem 2. If the monodromy group of a holonomic system of equations of

linear differential equations is not soluble (is not almost soluble), then every germ
of almost all solutions of this system cannot be expressed in terms od the germs
of single-valued S-functions having an analytical set of singular points by means of
compositions, meromorphic operations, integrations and differentiations (by means
of compositions, meromorphic operations, integrations, differentiations and solutions
of algebraic equations).

16.2 Holonomic systems of equations of linear differential
equations with small coefficients

Consider a system of linear differential equations completely integrable of the fol-
lowing form

dy = Ay (8)

where y = y1, . . . , yn is the unknown vector-function and A is a (n × n) matrix,
consisting of differential 1-forms with rational coefficients in the space Cn, satisfying
the condition of complete integrability dA + A ∧ A = 0 and having the following
form:

A =
k∑

i=1

Ai
dli
li
,

where the Ai’s are constant matrices and the li’s are linear non homogeneous func-
tions in Cn.

If the matrices Ai can be put at the same time in triangular form, then system (8),
as every completely integrable triangular system, is solvable by quadratures. There
exist undoubtedly integrable non triangular systems. However, if the matrices Ai’s
are sufficiently small, such systems do not exist. More precisely, we proved the
following theorem.

Theorem 3.A completely integrable non triangular system (8), with the modules
of the matrices Ai’s sufficiently small, is strictly not solvable, i.e., its solution cannot
be represented even trough the germs of all single-valued S-functions, having an
analytical set of singular points, by means of compositions, meromorphic operations,
integrations, differentiations and solutions of algebraic equations.

The proof of this theorem uses a multidimensional variation of the Lappo-
Danilevskij theorem [26].
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