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The Hilbert polynomial for systems of linear
partial differential equations with analytic coefficients

A. G. Khovanskii, S. P. Chulkov

Abstract. We consider systems of linear partial differential equations with
analytic coefficients and discuss existence and uniqueness theorems for their
formal and analytic solutions. Using elementary methods, we define and
describe an analogue of the Hilbert polynomial for such systems.

§ 1. Introduction

In this paper we consider systems of linear partial differential equations with
analytic coefficients for one unknown function z in a domain U of the space Cn.
We study the spaces of germs of formal and analytic solutions at a point u of U .
The following questions are discussed.

1) How to prescribe the initial data for formal and analytic solutions of such
systems? More precisely, which sets of derivatives of z at u must be fixed in order
to guarantee that there is a unique formal (analytic) solution with these data?

2) How does the dimension of the space formed by the k-jets of germs of formal
and analytic solutions behave for various positive integers k and points u of U ?

The following results are obtained. It is shown that there is a “bad” hypersur-
face Σ such that the space of germs of formal and analytic solutions has the same
structure (in some sense) at every point of the complement U \ Σ. Namely, there
is a set of partial derivatives (independent of the point u in the complement) that
can be taken as the initial data for the formal solution at u (Theorem 1). The
convergence of the formal solution is equivalent to that of the part of its Taylor
series determined by the fixed derivatives (Theorem 3).

For every point u in U \ Σ and every positive integer k we denote by Fu(k)
(resp. Au(k)) the space of k-jets at u of the germs of the formal (resp. analytic)
solutions at this point. For each k, the dimensions of Au(k) and Fu(k) coincide
and are independent of the point u (Corollary 4). For sufficiently large k, the func-
tion H(k) = dimAu(k) = dimFu(k) is a polynomial in k (Corollary 3). Moreover,
the algebraic meaning of the function H is clarified. Using the system of differ-
ential equations, one constructs a family of affine algebraic varieties which depend
analytically on a parameter: the point u of U . When the parameter lies in the
complement U \ Σ of the hypersurface Σ, the Hilbert functions of these varieties
coincide with H (see § 6.4).
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These questions are classical, and the results discussed are not absolutely new.
The most important results in this field were obtained by Riquier [1] (an exposition
of Riquier’s theory in Russian is given in [2]) and Palamodov [3]. The question of
the correct initial data for formal and analytic solutions of non-linear systems
is considered in [1]. This remarkable work introduces a total ordering on the set
of partial derivatives of a function of many variables. In the case of linear sys-
tems with constant coefficients, Riquier’s method contains what was later given
the name of Gröbner bases and caused a revolution in computational commuta-
tive algebra. However, since the problems considered in [1] are very general, the
solutions obtained there are not definitive.

The simpler case of linear systems was considered by Palamodov, who was able
to prove the existence and uniqueness of formal and analytic solutions in a general
situation not covered by Riquier’s approach. It is proved in [3] that the “bad” set
for linear systems is smaller than the “bad” hypersurface Σ arising in Riquier’s
method. The work of Palamodov is technically much more involved and is based
on ad hoc methods developed by him.

In this paper we use Riquier’s approach. However, we apply it only to linear
systems, where it gives rather good results.

The second author of this paper has recently realized that the more general
theorems of Palamodov can also be proved by a modification of Riquier’s method,
thus avoiding the delicate techniques developed by Palamodov. This result will be
published in a separate paper.

§ 2. Properties of the semigroup Zn
>0

We consider the semigroup Zn
>0 = {(α1, . . . , αn) | αi ∈ Z, αi > 0}. Given

an element α of the semigroup, we define its modulus |α| as the non-negative
integer

∑
αi.

This section contains the necessary information on the semigroup Zn
>0.

2.1. The ordered semigroup Zn
>0. We fix an ordering ≺ on the semigroup Zn

>0

such that the following conditions hold.
a) If α, β are any elements of the semigroup whose moduli satisfy |α| < |β|, then

α ≺ β.
b) The ordering ≺ is compatible with addition in Zn

>0. In other words, if α, β,
γ belong to the semigroup and α ≺ β, then α+ γ ≺ β + γ.

It turns out that the restriction of any such order ≺ to any finite subset of the
semigroup Zn

>0 is determined by one linear functional. More precisely, we have
the following lemma.

Lemma 1. Let A be a finite subset of the semigroup Zn
>0. Then there is a linear

functional

ΠA : Zn
>0 → R>0, ΠA(α) =

n∑
i=1

πiαi,

with positive real πi and α = (α1, . . . , αn) ∈ Zn
>0 such that the following condition

holds. If α, β ∈ A are any elements with α ≺ β, then

ΠA(α) < ΠA(β).
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Proof. We consider the chain of natural inclusions Zn
>0 ⊂ Zn ⊂ Rn. Let B be the

following finite subset of the group Zn:

B = {δ ∈ Zn | ∃α, β ∈ A : α ≺ β, δ = β − α}.

Let conv(B) be the convex hull of B in the space Rn. Since ≺ is compatible with
addition in Zn

>0, the set conv(B) does not contain 0. Indeed, assume the opposite.
Write

N∑
i=1

piδ
i = 0, (1)

where δi ∈ B ⊂ Zn, δi = βi − αi, βi, αi ∈ A and pi ∈ R, pi > 0. We can
regard (1) as a system of homogeneous linear equations with integer coefficients,
where the unknowns are the coordinates of the vector p = (p1, . . . , pN ) ∈ RN . The
existence of a non-trivial solution implies that this system has a non-trivial vector
subspace of solutions. Since the coefficients of the equations in (1) are integers, the
rational vectors are dense in the space of solutions. Therefore one can find rational
(and hence also integral) positive numbers p̃i such that

N∑
i=1

p̃iδ
i = 0.

Then we have
N∑

i=1

p̃iβ
i =

N∑
i=1

p̃iα
i.

On the other hand, αi ≺ βi, whence
∑N

i=1 p̃iαi ≺
∑N

i=1 p̃iβi. This is a contradiction.
Since the closed bounded convex set conv(B) does not contain 0, there is a

functional

L : Rn → R, L(x) =
n∑

i=1

lixi,

such that L(x) is positive for all x ∈ conv(B). To get the desired functional ΠA,
we put πi = S + li, where S is a sufficiently large positive integer.

Remark 1. By generalizing this argument, one can easily prove the following
well-known fact (see, for example, [4] or [5]).

Proposition 1. Suppose that ≺ is an ordering on the semigroup Zn
>0 that is com-

patible with addition. Then there are linear functionals Π1, . . . ,Πj with j 6 n
and

Πi : Zn
>0 → R

such that ≺ is lexicographic with respect to this set of functionals, that is, the
assertion α ≺ β holds if and only if we have

Π1(α) = Π1(β), . . . , Πi(α) = Πi(β), Πi+1(α) < Πi+1(β)

for some i belonging to the set {0, . . . , j − 1}.

Given a positive integer k, we denote by Πk the functional satisfying the
conditions of Lemma 1 for the set Ak =

{
α ∈ Zn

>0 | |α| 6 k
}
. Put µk =

min{α,β∈Ak, α 6=β} |Πk(β)−Πk(α)| and note that µk > 0.
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2.2. Properties of Zn
>0-ideals. We define the octant On(a) ⊂ Zn

>0 with vertex
a ∈ Zn

>0 to be the set of integer points b ∈ Zn
>0 such that a � b.

A subset of the semigroup Zn
>0 is called an ideal in Zn

>0 (or a Zn
>0-ideal) if, for

each of its points, it contains the octant with vertex at this point. Clearly, every
octant is an ideal in Zn

>0.
We have the following two assertions (see, for example, [6]) about ideals in the

semigroup Zn
>0.

Proposition 2 (Zn
>0 is Noetherian). Every Zn

>0-ideal is a union of finitely many
octants. (In other words, every union of infinitely many octants is also a union of
finitely many.)

The semigroup Zn
>0 contains 2n coordinate semigroups: for every subset I of

the set {1, . . . , n} we have a subsemigroup Z>0(I) consisting of all integer points
a = (a1, . . . , an) such that ai = 0 for i ∈ I and ai > 0 for i /∈ I. Among the
semigroups Z>0(I), we have the zero semigroup (with I = {1, . . . , n}) and
the semigroup Zn

>0 (with I = ∅).
A subset of Zn

>0 is called a shifted coordinate subsemigroup if it has the form
a+ Z>0(I) for some element a ∈ Zn

>0.

Proposition 3. The complement of every ideal in Zn
>0 consists of finitely many

disjoint shifted coordinate semigroups.

§ 3. The Gröbner map and bases of differential ideals

In this section we define the Gröbner map for the ring of linear differential
operators and use it to study ideals in this ring.

Consider an arbitrary domain U in the space Cn with coordinates x1, . . . , xn.
Let B be a subring of the ring O(U) of all holomorphic functions on U such that
B contains 1 and is closed under differentiation.

We denote by DifB the ring of linear differential operators on U whose coefficients
lie in B. Take d ∈ DifB . Then

d =
∑

α∈supp d

bα∂α,

where bα(6≡ 0) ∈ B and supp d is a finite subset of Zn
>0. Here ∂α is the differentiation

operator ∂|α|

∂x
α1
1 ...∂xαn

n
. The finite set supp d is called the support of d.

Definition 1. The Gröbner map is given by

Grb: DifB \{0} → Zn
>0, Grb(d) = max

α∈supp d
α,

where the maximum is taken with respect to ≺.

The following remarkable property of the Gröbner map is crucial for our con-
structions.

Lemma 2. For any non-zero elements D, d of the ring DifB we have

Grb(D ◦ d) = Grb(d ◦D) = Grb(D) + Grb(d). (2)
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The coefficients of the leading derivatives (with respect to the ordering introduced)
in the decompositions of D◦d and d◦D are equal to the products of the coefficients
of the leading derivatives in d and D.

Proof. We denote the leading homogeneous parts of D and d by
∑

|α|=N(D)Dα∂α

and
∑

|α|=N(d) dα∂α respectively, where Dα, dα ∈ A. The leading homogeneous
parts of the operators D ◦ d and d ◦D are equal to∑

|α|=N(D)+N(d)

∑
{|β|=N(D), |γ|=N(d), β+γ=α}

Dβdγ∂α. (3)

However, by condition a) on the ordering ≺, the image of any operator under the
Gröbner map coincides with the image of its leading homogeneous part.

Corollary 1. The image of any ideal of the ring DifB under the Gröbner map is
an ideal of the semigroup Zn

>0.

Let I be a left ideal of the ring DifB . By Corollary 1, its image Grb(I ) is an
ideal in the semigroup Zn

>0. Hence, by Proposition 2, it is a union of finitely many
octants. We write

Grb(I ) =
N⋃

i=1

O(γi). (4)

Take elements l1, . . . , lN of I such that Grb(li) = γi. For every i with 1 6 i 6 N
we denote by aγi

∈ B the coefficient of ∂γi
in the decomposition of the operator li.

Let M be the multiplicative system generated by the functions 1, aγ1 , . . . , aγN
in

the ring B, that is, M is the minimal subset of B which is closed under multiplica-
tion and contains 1, aγ1 , . . . , aγN

. We consider the localization M−1B of the ring B
with respect to the multiplicative system M. The elements of the ring M−1B are
the equivalence classes of formal quotients b

m , where b is any element of B and m
is an element of the multiplicative system M. It is natural to regard M−1B as a
subring of the ring OU\M of holomorphic functions on the domain U \M , where
M = {aγ1 . . . aγN

= 0}. The ring M−1B is obviously closed under differentiation.
Consider the ring DifM−1B . We regard the elements of the ring DifB as elements

of DifM−1B , having in mind their images in DifM−1B under the natural embedding

π : DifB → DifM−1B , (5)∑
α

bα∂α 7→
∑
α

bα
1
∂α.

Proposition 4. The elements l1, ..., lN form a basis of the ideal DifM−1B ·I in the
ring DifM−1B .

Here DifM−1B · I is the minimal left ideal of the ring DifM−1B containing the
image of I under the embedding (5).

Remark 2. Geometrically, Proposition 4 means that the elements l1, . . . , lN form
a basis of the ideal I if we restrict the coefficients of the differential operators
to U \M .
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Proof of Proposition 4. The Gröbner map Grb is defined for the ring DifM−1B as
well as for DifB , and we have Grb(π(d)) = Grb(d) for every element d of DifB .
Therefore we have Grb(DifM−1B · I ) = Grb(I ).

Consider any non-zero element u of the ideal DifM−1B · I and write u =
fu∂Grb(u) + r, where r denotes lower terms. The image Grb(u) belongs to the
octant On(γk) for some k = 1, . . . , N . Therefore Grb(u) = γk + α, where α ∈ Zn

>0.
We put

u1 = u− fu

aγk

∂α ◦ lk.

We have either u1 = 0 or Grb(u1) ≺ Grb(u) by Lemma 2. If the element u1 of the
ideal DifM−1B · I is non-zero, the process can be repeated. However there is no
infinite chain u, u1, u2, . . . ∈ DifM−1B · I with Grb(u) � Grb(u1) � Grb(u2) � · · · .
Indeed, condition a) on ≺ guarantees that there are only finitely many elements
of Zn

>0 smaller than a given one, and (Zn
>0,�) is a totally ordered set. Hence there

is an l such that ul = 0. Replacing the element ul by its expression in terms of u
and li, we get the desired result.

Remark 3. The decomposition u =
∑k

i=1 pi ◦ li (constructed in the proof of Propo-
sition 4) of elements of the ideal is such that the inequality Grb(pi ◦ li) � Grb(u)
holds for each i.

In the proof of the last assertion, we constructed a system of generators of the
ideal. This system is induced by the Gröbner map and is called a Gröbner basis of
the ideal.

Consider the submodule MI ⊂ DifM−1B which is generated over M−1B by the
generators {∂α}, α ∈ Zn

>0 \Grb(I ).

Proposition 5. We have a direct sum decomposition

DifM−1B = MI⊕DifM−1B · I. (6)

Proof. We must prove that every element d of the ring DifM−1B can be uniquely
written as a sum

d = m(d) + i(d), (7)

where i(d) ∈ DifM−1B · I and m(d) ∈ MI, that is, suppm(d) ⊂ Zn
>0 \Grb(I ). To

prove the uniqueness, we assume that there are two decompositions

d = i1 +m1 = i2 +m2,

where i1, i2∈I and m1,m2∈MI. Then 0 6= i1− i2 =m2−m1, whence Grb(i1− i2) =
Grb(m2 − m1). However, (i1 − i2) ∈ I and, therefore, Grb(i1 − i2) ∈ Grb(I ).
On the other hand, supp(m2−m1) ⊂ Zn

>0\Grb(I ), whence Grb(m2−m1) /∈ Grb(I ),
a contradiction.

Let us now prove the existence of such a decomposition. We use the following
algorithm. Take d ∈ DifM−1B . If supp d ∩ Grb(I ) = ∅, then we put m(d) = d
and i(d) = 0. Otherwise we consider µ(d) = maxα∈supp d∩Grb(I ) α. Write µ(d) =
γk +α for some 1 6 k 6 N and α ∈ Zn

>0. We consider the difference d− a∂α

(
lk

aαk

)
,

where the coefficient a ∈ B is chosen in such a way that either

supp
(
d− a∂α

(
lk
aαk

))
∩Grb(I ) = ∅,
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and then we put m(d) = d− a∂α

(
lk

aαk

)
and i(d) = a∂α

(
lk

aαk

)
, or

supp
(
d− a∂α

(
lk
aαk

))
∩Grb(I ) 6= ∅,

and then we repeat the process. Note that the following inequality holds:

µ

(
d− a∂α

(
lk
aαk

))
≺ µ(d).

Since (Zn
>0,�) is a totally ordered set, we get the desired decomposition after

finitely many steps.

§ 4. Formal solutions of systems of linear partial differential equations

Let us introduce some notation. We fix a domain U in the space Cn of indepen-
dent variables and fix a subring A of the ring O(U) of holomorphic functions on U
such that A contains 1 and is closed under differentiation.

Consider a system of homogeneous linear differential equations in U :

D1z = 0,
. . . . . . . .
Dkz = 0,
. . . . . . . .

(8)

where Di ∈ DifA, i = 1, 2, . . . .
The system (8) may contain infinitely many equations. In this section we describe

the space of formal solutions of (8) in a neighbourhood of u, where u is any point
of some open dense subset of U .

4.1. Formal solutions of the system as functionals on the ring of differ-
ential operators. Let u be a point of U . We consider a subring B of the ring Ou

of germs of functions holomorphic at u.

Definition 2. A map ϕ : M 7→ C of a B-module M is said to be u-linear if

ϕ

( N∑
j=1

fjLj

)
=

N∑
j=1

fj(u)ϕ(Lj) (9)

for any Li ∈M and fi ∈ B.

Let Lu(M) be the space of u-linear maps of the module M .

Lemma 3. For every point u in U there is a natural isomorphism of vector spaces :

Lu(DifA) ∼= C[[x− u]]. (10)

Proof. It is easy to verify that the following map determines an isomorphism:

C[[x− u]] → Lu(DifA), (11)
f(d) = d(f)|x=u, (12)

where d ∈ DifA, f, d(f) ∈ C[[x−u]] and d(f)|x=u denotes the constant term of the
series d(f).
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We denote by I(S) the left ideal in the ring DifA generated by the operators on
the left-hand sides of the equations in (8).

Proposition 6. Consider the u-linear map of DifA determined by a formal series
f ∈ C[[x − u]]. This map vanishes identically on the ideal I(S) if and only if we
have d(f) = 0 for every operator d ∈ I(S), that is, if and only if f is a formal
solution of (8).

Proof. Take any operator d ∈ DifA. Then the equation d(f) = 0 holds if and only
if ∂α(d(f))|x=u = (∂α ◦ d)(f)|x=u = 0 for all α ∈ Zn

>0. This proves the desired
assertion.

We denote by Fu(S) the space of formal solutions of the system (8) at the point u.

Corollary 2. We have a natural isomorphism

Fu(S) = Lu(DifA /I(S)). (13)

We use the following lemma to describe spaces of u-linear maps. Let M be a
multiplicative system in A, that is, a subset of A which contains 1 and is closed
under multiplication (see § 3). As mentioned above, the ring of quotients M−1A is
closed under differentiation.

We consider an arbitrary left ideal I in the ring DifA and denote by M−1I the
minimal left ideal in the ring DifM−1A containing the image π∗(I ) of I under
the embedding

π : DifA → DifM−1A . (14)

Lemma 4. Let u be a point of U . If every function of the multiplicative sys-
tem M takes a non-zero value at u, then the vector spaces Lu(DifA /I ) and
Lu(DifM−1A /M−1I ) of u-linear maps are naturally isomorphic.

Proof. The embedding π induces a map

π∗ : Lu(DifM−1A /M−1I ) → Lu(DifA /I ). (15)

The following formula shows that π∗ is an isomorphism:

(π∗)−1(l)
([ N∑

j=1

dα

xα
∂α

])
=

N∑
j=1

dα(u)
xα(u)

l([∂α]), (16)

where dαj
∈ A, xαj

∈ M. For every element d of the ring DifA, we denote by [d]
the element of DifM−1A /M−1I whose representative is d.

4.2. Existence of formal solutions. We consider the Zn
>0-ideal Grb(I(S)). By

Proposition 2 it can be written as a finite union of octants:

Grb(I(S)) =
l⋃

i=1

O(γi). (17)

Choose elements s1, . . . , sl of I(S) such that Grb(si) = γi for each i. Denote by Γ
the multiplicative system in the ring A generated by 1 and the leading coefficients
of the operators si (that is, the coefficients sγi

of the derivatives ∂γi
). We also

denote by Σ the analytic hypersurface given by the equation sγ1 . . . sγl
= 0.

Clearly, Proposition 4 can be restated in the following geometric form.
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Proposition 7. The elements s1, . . . , sl generate the ideal DifΓ−1A · I(S). In other
words, the system (8) is equivalent in the domain U\Σ to the finite system consisting
only of the equations siz = 0 where i runs from 1 to l.

We define the support supp f of a formal (convergent) series

f =
∑

α∈Zn
>0

fα(x− u)α

to be the following subset of the semigroup:

supp f = {α ∈ Zn
>0 | fα 6= 0}. (18)

Theorem 1. Suppose that u ∈ U \ Σ. Then there is an isomorphism of vector
spaces

Fu(S) ∼=
{
f ∈ C[[x− u]] | supp f ⊂ Zn

>0 \Grb(I(S))
}
. (19)

Proof. Consider the free Γ−1A-module MI(S) with basis {∂α}, α∈Zn
>0\Grb(I(S)).

Clearly,
Lu(MI) ∼=

{
f ∈ C[[x− u]] | supp f ⊂ Zn

>0 \Grb(I(S))
}
. (20)

By Proposition 5 there is an isomorphism of Γ−1A-modules:

MI ∼= DifΓ−1A /Γ−1I(S). (21)

Since u ∈ U \ Σ, all the functions of the multiplicative system Γ ⊂ A are different
from zero at u. Hence, by Lemma 4,

Fu(S) ∼= Lu(DifA /I(S)) ∼= Lu(DifΓ−1A /Γ−1I(S)). (22)

Combining (20)–(22), we get a proof of the theorem.

For every non-negative integer i we consider the space

Fu,i(S) = Fu(S)/
(
f ∼ g

def⇔ f − g = o((x− u)i)
)

(23)

of i-jets of formal solutions at u ∈ U . The function H(u, i) = dimFu,i(S) of the
integer argument i is called the Hilbert function of the system (8) at the point u.

Corollary 3. The Hilbert function H(u, i) is the same for all u ∈ U \ Σ and is a
polynomial for all sufficiently large i.

Proof. By (19) we have an equation

dimFu,i(S) =
∣∣{α ∈ Zn

>0 \Grb(I(S)) | |α| 6 i
}∣∣, (24)

which yields the first assertion. (Given a finite set A, we denote by |A| the number
of its elements.) By Proposition 3 we can represent Zn

>0 \Grb(I(S)) as

Zn
>0 \Grb(I(S)) =

l⋃
k=1

{ak + Z>0(Ik)}. (25)
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However, for each shifted coordinate semigroup ak + Z>0(Ik), the function

H(ak,Ik)(i) =
∣∣{α ∈ ak + Z>0(Ik) | |α| 6 i

}∣∣
is a polynomial for i > |ak|.

(
It is easy to verify that H(ak,Ik)(i) =

(
n−|I|+i−ak

i−ak

)
for

i > |ak|.
)

Hence the Hilbert function

H(u, i) =
l∑

j=1

H(aj ,Ij)(i)

is a polynomial for i > maxk |ak|.

§ 5. The convergence theorem

5.1. The convergence theorem and its corollaries. To prove existence and
uniqueness theorems for germs of analytic solutions we need the following assertion.
Suppose that the formal series

z(x) =
∑

α∈Zn
>0

aαx
α

satisfies the following finite system of differential relations:

∂γ1z = F1(x, ∂αz), α ≺ γ1,

. . . . . . . . . . . . . . . . . . . . . . . . .
∂γk

z = Fk(x, ∂αz), α ≺ γk,

(26)

where F1, . . . , Fk are holomorphic functions of the variables x1, . . . , xn and the
derivatives ∂αz whose exponents α satisfy the inequalities in the right column of
the system. We consider the subset I =

⋃k
i=1O(γi) of the semigroup Zn

>0.

Theorem 2. Suppose that the truncation z̃(x) =
∑

α∈Zn
>0\I aαx

α of the series z

has non-zero radius of convergence. Then so does the formal solution z.

A proof of this theorem is given in § 5.2 below.
Let Au(S) be the space of germs of analytic solutions of the system at the point u.

Combining Theorems 2 and 1, we get the following theorem.

Theorem 3. For every point u ∈ U \ Σ there is an isomorphism of vector spaces

Au
∼=

{
f ∈ C{(x− u)} | supp f ⊂ Zn

>0 \Grb(I )
}
. (27)

Proof. Consider the system of linear differential equations consisting of the equa-
tions s1z = 0, . . . , slz = 0, where the si are the elements of I(S) chosen above.
(They satisfy Grb(si) = γi for each i.) By Proposition 7, this system is equivalent
to the original system (8) in the domain U \ Σ. We resolve each equation siz = 0
with respect to the leading (in our order) derivative γi. (This is possible by the
choice of the hypersurface Σ.) We can now apply Theorem 2 to the resolved system.
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We fix a partition of the set Zn
>0 \Grb(I ) into shifted coordinate semigroups:

Zn
>0 \Grb(I ) =

l⋃
k=1

{ak + Z>0(Ik)}. (28)

The following theorem is a corollary of Theorem 3.

Theorem 4. For every point u ∈ U \ Σ there is a unique solution z(x) of the
system (8) such that z(x) is holomorphic in a neighbourhood of u and satisfies
the following l initial conditions :

∂ak
z(x)|{xi=ui, i∈Ik} = ψk(xi1 , . . . , xim

), 1 6 k 6 l,

where {i1, . . . , im} = {1, . . . , n}\ Ik and the ψi are arbitrary holomorphic functions
of their arguments in a neighbourhood of u. (If Ik = {1, . . . , n} for some k, then
ψk is simply a complex number.)

Proof. To deduce this theorem from the previous one, it suffices to note that every
convergent series consisting of monomials whose exponents belong to some coor-
dinate semigroup Z>0(I), where I = {1, . . . , n} \ {i1, . . . , im}, is a holomorphic
function of the variables xi1 , . . . , xim

.

Let Au,i(S) be the space of i-jets of germs of analytic solutions at the point u.

Corollary 4. For every point u ∈ U \ Σ, the following dimensions coincide for
every i:

dimFu,i(S) = dimAu,i(S). (29)

5.2. Proof of Theorem 2. The proof is based on the majorant method. We
consider the ring C[[y1, . . . , yl]] of formal series in some variables y1, . . . , yl. Take
A,B ∈ C[[y1, . . . , yl]].

Definition 3. The formal series A(y) =
∑

α∈Zl
>0
aαy

α majorizes the series B(y) =∑
α∈Zl

>0
bαy

α if the following conditions hold for every element α of the semi-

group Zl
>0:

aα ∈ R>0 and |bα| 6 aα.

The idea of the proof is to construct a convergent series that majorizes the given
formal solution. This majorizing series is constructed from a solution of some equa-
tion that majorizes every equation of the original system in some informal sense.
The majorizing equation turns out to be an ordinary differential equation, and the
existence of solutions follows from standard existence and uniqueness theorems.

In § 5.2.1 we prove lemmas on majorization. In §§ 5.2.2–5.2.5 we prove the
theorem in the special case when the equations of the system are linear in
the derivatives of highest order and the main derivatives have the same order.
The conditions of this special case are stated in § 5.2.2. In § 5.2.3 we change the
coordinates in such a way that the majorizing equation can easily be obtained for
the transformed system. In § 5.2.4 we present the majorizing equation and prove
that it has an analytic solution. In § 5.2.5 we construct a convergent series from
the solution of the majorizing equation and use Lemma 5 to prove that this series
majorizes the original formal solution of the system. In § 5.2.6 we reduce the general
case to this special case and thus prove the theorem.
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5.2.1. The majorization lemmas. In the first lemma we state the necessary version
of the fact that the majorization property is preserved under composition.

Consider holomorphic functions f1 and f2 on a neighbourhood of zero in the
space Cn+m = {(x1, . . . , xn, ξ1, . . . , ξm) | xi, ξj ∈ C}. Suppose that the series
expansion of f2 majorizes that of f1.

We fix a set α1 ≺ · · · ≺ αm ≺ α0 of m+ 1 elements of the semigroup Zn
>0.

Let w =
∑
wαx

α ∈ R>0[[x]] and z =
∑
zαx

α ∈ C[[x]] be some series. We
assume that the following conditions hold:

1) we have |zα| 6 wα for all α ≺ α0,
2) we have wαi = zαi = 0 for every i with 1 6 i 6 m.
Let W ∈ R>0[[x]] be the well-defined series obtained by replacing the variables

ξi in the decomposition of f2 by the series ∂αi
w (1 6 i 6 m), and let Z ∈ C[[x]] be

obtained from the decomposition of f1 by replacing the variables ξi by the series
∂αiz (1 6 i 6 m).

Lemma 5. We have
∣∣∂βZ|0

∣∣ 6 ∂βW |0 for every β ≺ α0.

Proof. Write Z =
∑

α Zαx
α and W =

∑
αWαx

α. The values of the derivatives
∂βZ|0 = β!Zβ and ∂βW |0 = β!Wβ are sums (over the same set of indices) of
products of the forms

β! f1
(α,δ)

m∏
i=1

(αi!)δizθ1+αi · · · zθδi
+αi (30)

and

β! f2
(α,δ)

m∏
i=1

(αi!)δiwθ1+αi
· · · zθδi

+αi
(31)

respectively. In (30) and (31) we have α, θ ∈ Zn
>0, δ = (δ1, . . . , δm) ∈ Zm

>0, and the
f j
(α,δ), j = 1, 2, are the coefficients of the series expansions of the f j . We note that
α+

∑
θi = β ≺ α0 in (30) and (31). Hence, by conditions 1) and 2), every product

in (31) is greater than or equal to the modulus of the corresponding product (30).
This proves the lemma.

The following easy lemma is proved, for example, in [2].

Lemma 6. Suppose that the series A(x) =
∑

α∈Zn
>0
aαx

α converges absolutely at
the point x1 = · · · = xn = ρ > 0. Let M be a positive number which is larger
than the absolute value of every term of the series A(ρ). Then the power series
expansions of the functions F1(x) = M

(1−x1/ρ)...(1−xn/ρ) and F2 = M
(1−(x1+···+xn)/ρ)

in a neighbourhood of zero majorize the series A(x).

5.2.2. Statement of conditions of the special case. There is no loss of generality
in assuming that the coefficients zα of the series z are equal to 0 for α ∈ Zn

>0 \ I
because the series naturally composed from them determines an analytic function
in a neighbourhood of the origin.

We consider the following special case. Suppose that the system (26) is linear in
the highest-order derivatives, and all the main derivatives (that is, those that appear
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on the left-hand sides of the equations) are of the same order. More precisely, the
system is given by

∂γ1z =
∑

|α|=N, α≺γ1

f1
α ∂αz + f1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂γk
z =

∑
|α|=N,α≺γk

fk
α ∂αz + fk,

(32)

where |γ1| = · · · = |γk| = N > 0, and f i
α, f i are holomorphic functions of the

variables x1, . . . , xn and the derivatives ∂βz with |β| < N .

5.2.3. A change of coordinates. Here we make a change of coordinates such that the
leading derivatives become “main”. Under this coordinate change, the coefficients
of the other derivatives are multiplied by small numbers.

By assumption, f i
α and f i are holomorphic functions of their arguments in a

neighbourhood of zero. For all admissible values of i and α we expand the functions
f i

α, f i and Mα
i into power series in the neighbourhood of zero. Suppose that all

these series converge absolutely at the point x1 = · · · = xn = ∂αz = ρ, where the
parameter α is an arbitrary element of the semigroup Zn

>0 with |α| < N . Using
Lemma 6, we choose a positive real constant C such that the expansion of the
function

C

1− (x1 + · · ·+ xn +
∑

|α|<N ∂αz)/ρ

majorizes the corresponding expansions of f i
α, f i.

We denote by Π the functional ΠN (see § 2.1). Put µ = µN and consider a
positive real number θ < 1 such that

θ µ < ε =
1
2

1
∆NC

,

where ∆i (i ∈ Z>0) is the number of elements α in Zn
>0 such that |α| = i.

We put yi = θ−πixi, 1 6 i 6 n. Then

∂|α|z

∂xα
(x) = θ−Π(α) ∂

|α|z

∂yα
(y(x)).

Making the change of coordinates and dividing by the coefficient of the leading
derivative, we rewrite equations (32) in the form

∂γi
z =

∑
|α|=N

f i
α

(
y, θ−Π(γ)∂γz(y)

)
θΠ(γi)−Π(α)∂αz

+ f i
(
y, θ−Π(γ)∂γz(y)

)
θΠ(γi), (33)

where i runs from 1 to k.
Here and in what follows we consider operators of partial differentiation in the

new system of coordinates. The formal series z(y) = z(x(y)) satisfies the differential
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equations (33) in the new system of coordinates (with “identically vanishing initial
conditions”). For all admissible α, i we put

f̃ i
α(y, ∂γz) = f i

α

(
y, θ−Π(γ)∂γz

)
θΠ(γi)−Π(α),

f̃ i(y, ∂γz) = f i
(
y, θ−Π(γ)∂γz

)
θΠ(γi).

Note that in (33) we have

θΠ(γi) 6 θΠ(γi)−Π(α) 6 θΠ(γ) 6 θµ < ε

since |γ| < |α| = |γi| = N . Hence the following lemma is proved.

Lemma 7. For some 0 < ρ1 � ρ, the power series expansion of

εC

1− (y1 + · · ·+ yn +
∑

|α|<N ∂αz)/ρ1

majorizes the corresponding expansions of the functions f̃ i
α, f̃ i that depend on the

variables yi and some partial derivatives with respect to these variables, for all
admissible values of i and α.

5.2.4. The construction of a majorizing equation. Consider the ordinary differential
equation

Y (N)(t) =
εC

1−
(
t+

∑N−1
j=1 ∆jY (j)(t)

)
/ρ1

(
∆NY

(N)(t) + 1
)
. (34)

Resolving this equation with respect to the leading derivative, we get

Y (N)(t) =
2εC

1− 2
(
t+

∑N−1
j=1 ∆jY (j)(t)

)
/ρ1

. (35)

In (35) we took into account the fact that ε∆NC = 1/2. By the existence and
uniqueness theorem for ordinary differential equations, the equation (35) ((34)) has
a unique solution Z(t) with initial conditions Z(0) = · · · = Z(N−1) = 0. It is clear
that the power series expansion of Z(t) in a neighbourhood of zero has strictly
positive coefficients. We put

G(Y, t) =
εC

1−
(
t+

∑N−1
j=1 ∆jY (j)(t)

)
/ρ1

.

5.2.5. The construction of a majorizing series.

Lemma 8. The power series expansion of the function Z
( ∑n

i=1 yi

)
in a neighbour-

hood of zero majorizes the formal solution z(y). Hence the series z(y) converges in
a neighbourhood of zero.

Proof. Write Z
( ∑

i yi

)
=

∑
α∈Zn

>0
Zαy

α. We use induction on α ∈ Zn
>0 to establish

the inequality
|zα| 6 Zα. (36)
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Indeed, (36) holds for α ∈ Zn
>0 \ I and, therefore, for α = 0. Suppose that (36)

holds for all α ≺ α0 and let us prove it for α0. We write α0 = β + γi for some i,
1 6 i 6 k.

Then

α0! |zα0 | =
∣∣∂α0z|0

∣∣ =
∣∣∣∣(∂β

( ∑
|α|=N, α≺γi

f̃ i
α∂αz + f̃ i

)∣∣∣∣
0

)∣∣∣∣.
Using Lemma 5 and the equation

∂αF
( ∑

yi

)
= F (|α|)

( ∑
yi

)
, (37)

where F is an arbitrary holomorphic function, we get∣∣∣∣(∂β

[ ∑
|α|=N,α≺γi

f̃ i
α∂αz + f̃ i

])∣∣∣∣
0

)∣∣∣∣
6

(
∂β

[
G

(
Z,

∑
i

yi

)(
∆NZ

(N)

( ∑
i

yi

)
+ 1

)])∣∣∣∣
y=0

.

Indeed, Lemma 7 and the induction hypothesis show that every term of the form

f̃ i
α∂αz (38)

is majorized by

G

(
Z,

∑
i

yi

)
Z(N)

( ∑
i

yi

)
, (39)

and the number of terms of the form (38) does not exceed ∆N . We get the necessary
estimate for the other terms and then apply Lemma 5. By (34) and (37) we have(

∂β

[
G

(
Z,

∑
i

yi

)(
∆NZ

(N)

( ∑
i

yi

)
+ 1

)])∣∣∣∣
y=0

= ∂α0Z

( ∑
i

yi

)∣∣∣∣
0

= α0!Zα0 ,

which proves the lemma.

5.2.6. Completion of the proof of the theorem. It remains to note that the case of
arbitrary differential equations reduces to the case studied above. Indeed, we can
replace the original equations by the finite set of all their consequences of the form

∂β∂γi
z = ∂βfi(x, ∂αz),

where |β|+ |γi| = N and N is sufficiently large (say, N = maxi |γi|+1). Using this
transformation, we get a set of differential equations of the form (32). The formal
series z(x) satisfies the new system of equations. The set Zn

>0 \ I is increased by
finitely many elements. This does not influence the convergence of the series z̃(x)
that determines the truncation of z(x).
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§ 6. Examples and remarks

6.1. On the conditions imposed on the ordering ≺ . It turns out that the
following condition (which is weaker than condition a)) also enables one to construct
formal solutions of the system.

a′) We have 0 ≺ α for every element α of the semigroup.
All the lemmas on the ordered semigroup and the properties of the Gröbner map

remain valid if we replace condition a) by a′). In particular, if condition a′) holds,
then the ordered semigroup (Zn

>0,�) is a totally ordered set. The statement and
proof of Theorem 1 do not change in this case.

The following example of Kowalevsky (see [7] or [2]) shows that condition a′)
does not guarantee that an analogue of Theorem 3 holds. Consider the equation

∂z

∂y
=
∂2z

∂x2
.

It is easy to construct an ordering ≺ such that conditions a′), b) hold and ∂2

∂x2 ≺ ∂
∂y .

One easily verifies that the formal series constructed from the initial data

z|y=y0 = φ(x),

where φ(x) is an arbitrary holomorphic function, may have zero radius of conver-
gence.

6.2. The case of several unknown functions. It is important to note that our
theorems on the existence and uniqueness of formal and analytic solutions can easily
be extended to the case of linear systems with several unknown functions z1, . . . , zp.

The set of derivatives of z1, . . . , zp is parametrized by points of the product
Z = Zn

>0 × {1, . . . , p}. Let ≺Zn
>0

be an ordering on the semigroup Zn
>0 satisfying

conditions a), b) of § 2.1. Consider the following total ordering ≺ on Z. Given any
elements (α, i), (β, j) of Z, we compare the elements α, β of the semigroup Zn

>0

with respect to the order ≺Zn
>0

. If they coincide, then we compare the numbers i
and j (as integers). In this case, one can carry out analogues of all the constructions
in this paper and prove direct analogues of Theorems 1–4.

6.3. On spaces of solutions at points of the “bad” hypersurface Σ. The
techniques described above enable one to study the spaces of formal and (germs of)
analytic solutions of the system at points of the complement of an analytic hyper-
surface Σ (see § 4.2). The following example shows that the structure of spaces of
formal and analytic solutions at some points of Σ may differ from their structure
at points of the complement.

Consider an equation of the form
n∑

i=1

aixi
∂z

∂xi
= 0,

where the ai are integers. Then the “bad” hypersurface Σ is one of the hyperplanes
xi = 0, depending on the choice of the ordering ≺. It is easy to choose the ai in
such a way that Theorems 1–4 do not hold for the point 0 of Σ. In particular, the
function H(0, i) may fail to be a polynomial on a set of sufficiently large positive
integers.
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6.4. The algebraic meaning of the Hilbert function. Consider the space Cn

with coordinates ξ1, . . . , ξn. We recall that the principal symbol of the system is a
family M(u) of algebraic varieties (more precisely, ideals in the ring C[ξ1, . . . , ξn] of
polynomials), where the parameter u belongs to the domain U . The family M(u)
is defined as follows. For the operator

Di =
∑

α∈supp Di

dα∂α (40)

on the left-hand side of the ith equation of (8), we consider the family of homoge-
neous polynomials

D̃i(u, ξ) =
∑

α∈supp Di

|α|=r(Di)

dα(u)ξα, (41)

where ξα is the monomial ξα1
1 . . . ξαn

n and r(Di) is the order of the operator Di.
Then M(u) is the family of ideals in C[ξ1, . . . , ξn] generated by all the polynomi-
als D̃i.

Using the construction of Gröbner bases, one can easily prove the following
assertion on the Hilbert function of the system (8).

Proposition 8. For every point u ∈ U \ Σ and every non-negative integer i we
have

HM(u)(i) = H(u, i), (42)

where HM(u) is the Hilbert function of the algebraic variety M(u).
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