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Abstract. The signature of a branched covering over the Riemann
sphere is the set of its branching points together with the orders of local
monodromy operators around them.

What can be said about the monodromy group of a branched cover-
ing if its signature is known? It seems at first that the answer is nothing
or next to nothing. It turns out however that an elliptic signature de-
termines the monodromy group completely and a parabolic signature
determines it up to an abelian factor. For these non-hyperbolic signa-
tures (with one exception) the corresponding monodromy groups turn
out to be solvable.

The algebraic functions related to all (except one) of these signatures
are expressible in radicals. As an example, the inverse of a Chebyshev
polynomial is expressible in radicals. Another example of this kind is
provided by functions related to division theorems for the argument of
elliptic functions. Such functions play a central role in an old article by
Ritt which inspired this work.

Linear differential equations of Fuchs type related to these signatures
are solvable in quadratures (and in algebraic functions in the case of
elliptic signatures). A well-known example of this type is provided by
Euler differential equations, which can be reduced to linear differential
equations with constant coefficients.
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1. Coverings with a Given Signature

1.1. Definitions and examples. The mapping π : Y → S of a connected Rie-
mann surface Y to the Riemann sphere S is called admissible, if the following
conditions hold:

1) π(Y ) = S \B, where B = {b1, . . . bk} is the exceptional set;
2) π : Y →S\B is a branched covering with the branching locus A={a1, . . . , an};
3) For 1 6 j 6 n the order of the local monodromy operator at the point aj is

a finite number rj > 1 (the local monodromy operator at point x is the element
of the monodromy group, defined up to conjugation, that corresponds to a small
path going around the point x). We don’t assume anything about the order of local
monodromy operators at points bj (i.e., points bj ∈ B can be branching points of
infinite order).

Definition 1. The signature of an admissible mapping π : Y → S is the triple
(A, B, R), where R = {r1, . . . , rn, ∞, . . . , ∞} is the set of orders. If B = ∅, we
don’t mention B in the signature. We call an admissible mapping with a given
signature a covering with a given signature.

We assume that the inequality n+ k > 2 holds for the signature (A, B, R). We
also assume that for the signature (A, R) with #A = 2 and R = (k, n) the equality
k = n holds. If a signature does not satisfy these conditions, then any covering
with such signature is either trivial or does not exits.

Example 1. Consider an algebraic function with the branching locus A = {a1, . . . ,
an}. Suppose that the local monodromy operator at the point ai ∈ A has order
ri. Then the Riemann surface of this function is a covering with signature (A, R),
where R = {r1, . . . , rn}.

Example 2. Consider a linear differential equation of Fuchs type with the set of
singular points A∪B, where A = {a1, . . . , an}, B = {b1 . . . , bk}. Suppose that the
local monodromy operator has a finite order ri at each of the points ai ∈ A and an
infinite order at each of the points bj ∈ B. Then the Riemann surface of a generic
solution of this differential equation is a covering with signature (A, B, R), where
R = {r1, . . . , rn, ∞, . . . , ∞}.

We will see below that for all but one of the exceptional signatures the set A∪B
contains two or three points.

Claim 1. If #A∪B 6 3 then up to an automorphism of the sphere S, the signature
(A, B, R) is defined by the set of orders R.

Proof. There exists an automorphism of the sphere that takes any given triple of
points to any other triple. �

1.2. Classification. The covering π : Z → S with signature (A, B, R) is called
universal if: 1) the surface Z is simply-connected, 2) the multiplicity of the mapping
π at points cj ∈ π−1(ak) is rk.
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The universal covering π : Z → S with signature (A, B, R) has the following
universal property.

Theorem 1. Let π1 : Y → S be a covering with signature (A, B, R) and z0 ∈ Z,
y0 ∈ Y be points with π(z0) = π1(y0) = x0 /∈ A. Then there exists a mapping
π2 : Z → Y such that π = π1 ◦ π2 and π2(z0) = y0.

Proof. Let C = π−1(A) ⊂ Z. Since the surface Z is simply-connected, the funda-
mental group of the complement Z \C is generated by the curves τj going around
the points cj ∈ C. Suppose π(cj) = ak. By definition the mapping π has multiplic-
ity rk at point cj . Hence the image of the curve τj under the projection π1 goes
around the point ak exactly rk times. By definition of signature, the lift of the
curve π(γ) to the surface Y based at the point y0 is a closed curve. The theorem
follows. �

Let π1 : Y → S be a covering with signature (A, B, R). Fix a point x0 ∈
S \ (A∪B). A branched covering π : Y → S \A corresponds to a conjugacy class of
subgroups of the fundamental group of the set S\(A∪B) with base point x0. To the
intersection of these subgroups corresponds a branched covering πnor : Ynor → S\A.
This covering will be called the normalization of the original covering.

The following theorem obviously holds.

Theorem 2. The normalization of a covering with a given signature (A, B, R) is
a covering with the same signature and isomorphic monodromy group. If πnor(cj) =
ak, then the multiplicity of the mapping πnor at point cj is rk.

The following Theorem 3 provides an explicit construction of the universal cov-
ering with a given signature if some covering with this signature is given.

Theorem 3. Let πnor : Ynor → S be the normalization of the covering π1 : Y → S
with signature (A, B, R) and let π : Z → Y be the universal covering of Y . Then
πnor ◦ π : Z → S is the universal covering with signature (A, B, R).

Proof. By construction the surface Z is simply-connected. If π ◦ πnor(z) = ak,
then the multiplicity of the mapping π ◦ πnor at point z is equal to rk. Indeed,
the mapping π is a local diffeomorphism at point z, while the mapping πnor has
multiplicity rk at the point π(z). �

Theorems 1–3 provide a way to classify all the coverings with a given signature
(A, B, R) by considering the universal covering with the given signature and its
group of deck transformations.

Let π : Z → S be the universal covering with the signature (A, B, R). The group
G of deck transformations of π acts on Z. The quotient space of Z by the action
of G is isomorphic to S \B. The set of orbits on which G acts freely is isomorphic
to S \ (A ∪ B). If a point c ∈ Z gets mapped to the point ak ∈ A in the quotient
space, then the stabilizer of the point c contains rk elements.

We say that H ⊂ G is a free normal subgroup of the group G if H acts freely on
Z and H is a normal subgroup of G. We say that the subgroup F ⊂ G is admissible
if the intersection H =

⋂
Fi of all the subgroups Fi conjugate to F is a free normal

subgroup of G.
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Corollary 1. Any covering with signature (A, B, R) is isomorphic to a quotient
of Z by an admissible subroup F ⊂ G. Conjugate subgroups Fi correspond to
equivalent coverings. The monodromy group of the covering is isomorphic to the
quotient G/H, where H =

⋂
Fj. A normal covering with signature (A, B, R)

corresponds to a free normal subgroup H. Its group of deck transformations is
isomorphic to the monodromy group G/H.

Admissible mappings can be divided into three natural classes.

Definition 2. The signature of a covering is elliptic, parabolic or hyperbolic if the
universal covering π : Z → S with this signature has total space Z isomorphic to
the Riemann sphere, the line C or the open unit disc respectively.

In Sections 2–3 we discuss coverings with elliptic and parabolic signatures. Now
we turn to a geometric construction of a large class of branched coverings.

1.3. Coverings and classical geometries. By using the geometry of a sphere,
Euclidean and hyperbolic planes one can construct universal coverings with many
signatures. In this section we use realizations of each of these geometries on a subset
E of the Riemann sphere C ∪ {∞}: the sphere is identified with the set C ∪ {∞}
by means of the stereographic projection, the Euclidean plane is identified with the
line C and the hyperbolic plane is identified with its Poincare model in the unit
disc |z| < 1.

We consider polygons in E that may have “vertices at infinity” lying in E. For
the plane C such a vertex is the point ∞ at which two parallel sides meet. For
the hyperbolic plane such vertex is a point on the circle |z| = 1 at which two
neighbouring sides meet. The angle at a vertex at infinity is equal to zero.

Let E be the sphere, plane or hyperbolic plane, and let ∆ ⊂ E be an (n+k)-gon
with finite vertices A′ = {a′1, . . . , a′n} and vertices at infinity B′ = {b′1, . . . , b′k}.
Let R = (r1, . . . , rn+k), where ri > 1 are natural numbers for 1 6 i 6 n and
ri = ∞ for n < i 6 n+ k.

Definition 3. The polygon ∆ ⊂ E has signature (A′, B′, R), if its angle at each
vertex a′i is π/ri and its angle at each vertex b′j is 0.

It is clear that the signature (A′, B′, R) with #A′ ∪B′ 6 2 can be a signature
of a polygon only if R = (k, k) or R = (∞, ∞). We assume that when n + k 6 2
this condition on the set R holds.

Definition 4. The characteristic of the signature R = (r1, . . . , rn+k) is

χ(R) =
∑

16i6n+k

(1− 1/ri).

Definition 5. We say that the set R is elliptic, parabolic or hyperbolic if χ(R) < 2,
χ(R) = 2 or χ(R) > 2 respectively.

Claim 2. Suppose that the polygon ∆ ⊂ E has signature (A′, B′, R). The set R
is elliptic, parabolic or hyperbolic if and only if E is the sphere, Euclidean plane or
the hyperbolic plane respectively.
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Proof. On the sphere the sum of external angles of a polygon is < 2π, on the plane
it is = 2π and on the hyperbolic plane it is > 2π. For ∆ this sum is equal to
π
∑

16i6n+k(1− 1/ki) = πχ(R). �

Definition 6. Given a polygon ∆ ⊂ E with signature (A′, B′, R) define G̃∆ to
be the group of isometries of the space E, generated by reflections in the sides of
the polygon. Define the group G∆ to be the index two subgroup of the group G̃∆,
consisting of orientation preserving isometries.

The condition on the angles of the polygon guarantees that the images g(∆)

of the polygon ∆ under the action of the group G̃∆ cover the space E without
overlaps. Divide the polygons g(∆), g ∈ G̃∆ into two classes: white if g ∈ G∆ and
black otherwise. Let gl be the reflection in the side l of the polygon ∆. Define
the polygon ♦ to be the union of polygons ∆ and gl(∆) sharing the side l. It can
be seen from the construction that the polygon ♦ is a fundamental domain for
the action of the group G∆. The polygon ♦ contains l and l is not its side. The
transformation gl glues each of the sides lj of the polygon ∆ with the side gl(lj).
The following claim can be easily verified.

Claim 3. The stabilizer of the vertex a′i ∈ A′ under the action of the group G∆

contains ri elements. The points of E that do not belong to the orbits of the points
a′i ∈ A′ have trivial stabilizers.

Consider a Riemann mapping f of the polygon ∆ ∈ E with signature (A′, B′, R)
onto the upper half-plane. We introduce the following notations:

A is the set f(A′), ak = f(a′k) for a
′

k ∈ A′,
B is the set f(B′), bj = f(b′j) for b

′

j ∈ B′.

Theorem 4. The mapping f : ∆ → C ∪ {∞} can be extended to E and defines
a universal branched covering with signature (A, B, R) over the Riemann sphere.
The mapping f realizes the quotient of the space E by the action of the group G∆.

Proof. Follows from Riemann–Schwartz reflection principle. �

2. Spherical Case

2.1. Application of Riemann–Hurwitz formula. Suppose that a discrete group
of automorphisms G acts on the sphere Z. Then the group G is finite and the quo-
tient space Z/G is a sphere (since there are no non-constant analytic mappings of
the sphere to a higher-genus Riemann surface). The quotient mapping Z → Z/G
defines (up to a composition with an automorphism of the sphere S) a universal
covering π : Z → S with elliptic signature (A, R).

Claim 4. The signature (A, R) has an elliptic set R.

Proof. Let #G = N . Riemann–Hurwitz formula implies

2 = 2N −
∑

ai∈A

(N −N/ri) = N(2− χ(R)).

Hence χ(R) < 2. �
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Figure 1. The nets of circles for a pyramid, dihedron, tetrahe-
dron, cube/octahedron, icosahedron/dodecahedron

We now give names to the following sets: 1) (k, k), the set of a k-gon, 2) (2, 2, k),
the set of the dihedron Dk, 3) (2, 3, 3), the set of tetrahedron, 4) (2, 3, 4), the set
of cube/octahedron, 5) (2, 3, 5), the set of dodecahedron/icosahedron. The sets 1–5
are elliptic.

Claim 5. If the signature (A, R) is elliptic, then the set R is among the 5 sets
mentioned above.

Proof. It is enough to find all solutions of the inequality χ(R) < 2 satisfying the
restrictions imposed on R for n 6 2. �

2.2. Finite groups of rotations of the sphere. Consider the following polyhe-
dra in R3 having the center of mass at the origin:

(1) a pyramid with a regular k-gon as its base;
(2) dihedron with k vertices, or, equivalently, a polyhedron consisting of two

pyramids like in (1) joined along their base face;
(3) regular tetrahedron;
(4) cube or octahedron;
(5) idodecahedron or icosahedron.

The symmetry planes of each of these polyhedra cut a net of great circles on the
unit sphere. This net divides the sphere into a union of equal spherical polygons ∆
(triangles in cases 2–5 and digons in case 1). The stereographic projections of these
nets are presented in figure 1. One sees that the signatures (A′, R) of polygons ∆
in cases 1–5 have a set R, which is equal to the set having the same name (and the
same parameter k in cases 1 and 2).
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Each polyhedron ∆ defines a group G̃∆ of isometries of the unit sphere generated
by reflections in its sides, and its index 2 subgroup G∆ of orientation-preserving
isometries from G̃∆.

Definition 7. The groups of rotations of the sphere described above are called
as follows: 1) the group of the k-gon, 2) the group of the dihedron Dk, 3) the
group of the tetrahedron, 4) the group of cube/octahedron, 5) the group of icosa-
hedron/dodecahedron.

Claim 6. A spherical polyhedron with signature (A′, R) exists if and only if R is
one of the elliptic sets described above.

Proof. For one of the directions it is enough to find all the solutions of the inequality
χ(R) < 2 (having in mind the restrictions imposed on R when n 6 2). For the
other direction it is enough to exhibit examples of the spherical polygons. All
the examples are given by triangles and dihedrons that appear when the sphere
is divided into equal polygons by the symmetry planes of the polyhedra described
above (see Figure 1). �

Theorem 5. A finite group of automorphisms of the Riemann sphere with a given
signature coincides up to an automorphism of the Riemann sphere with a group of
rotations of the sphere with the same name as its signature.

2.3. Coverings with elliptic signatures. Every automorphism of the sphere
has fixed points and thus the automorphism group of the sphere doesn’t have free
normal subgroups. Fix an elliptic signature. The universal covering with this
signature is the Riemann sphere Z equipped with the deck transformation group
G, the quotient map Z → Z/G and an isomorphism Z/G→̃S.

The coverings with a given elliptic signature are in one to one correspondence
with conjugacy classes of subgroups of G that don’t have nontrivial normal sub-
groups of the group G. Each such covering has normalization that is equivalent to
the universal covering with the same signature and monodromy group isomorphic
to the group G. Thus the monodromy group of a covering with an elliptic signature
is determined by its signature.

2.4. Equations with an elliptic signature

Theorem 6. An algebraic function with an elliptic signature and a set of orders
not equal to the set (2, 3, 5) can be represented in radicals. If the set of orders is
equal to (2, 3, 5), then it can be represented by radicals and solutions of equations
of degree at most 5.

Example 3. The inverse of the Chebyshev polynomial of degree n has signature
A = {1, −1, ∞}, R = (2, 2, n) of elliptic type (the case of the dihedron Dn). This
explains why the Chebyshev polynomials are invertible in radicals.

Theorem 7. A linear differential equation of Fuchs type with elliptic signature
and the set of orders different from the set (2, 3, 5) can be solved in radicals. If the
set of orders is (2, 3, 5), then it can be solved in radicals and solution of algebraic
equations of degree at most 5.
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These theorems follow from the fact that groups 1–4 from Definition 7 are solv-
able, while the group of icosahedron/dodecahedron is 5-solvable and the well-known
connection of solvability equations in (k-)radicals and (k-)solvability of their mon-
odromy groups (Theorem 2.9.7 of [3]).

3. The Case of the Plane

3.1. Discrete groups of affine transformations. Every automorphism of the
complex line is an affine transformation z → az+ b with a 6= 0. The group of affine
transformations has a commutative normal subgroup C consisting of translations
with a commutative factor-group C∗. The group of automorphisms of the line is
thus solvable and hence all its discrete subgroups are solvable as well. The affine
transformations with no fixed points are precisely the translations.

The discrete groups G of the group of affine transformations of the complex line
can be classified up to an affine change of coordinates as having one of the eight
types below. The space C/G for each group G, except the groups in case 4), is
a sphere or a sphere without one or two points. The quotient C → C/G defines
in these cases a covering with parabolic signature. For all the groups except the
group in case 5), the set A∪B for these signatures consists of at most three points.
Hence in this case the signature is defined up to an automorphism of the sphere by
the set of its orders R.

We use the following notation: Sk ⊂ C∗ is the multiplicative subgroup of order k,
Λ2 = (1, c) is the additive group Λ2 ⊂ C generated by the numbers 1 and c, where
c /∈ R is defined up to the action of the modular group; the number λ /∈ {0, 1, ∞}
denotes a number under the equivalence where numbers λ, 1 − λ, λ−1, (1 − λ)−1,
λ(λ − 1)−1, λ−1(λ− 1) are equivalent, τ6 is a primitive root of unity of order 6.

The groups G consist of transformations x → ax+ b, where:

1) a ∈ Sk, b = 0; R = (k, ∞);
2) a = 1, b ∈ Z; R = (∞, ∞);
3) a ∈ S2, b ∈ Z; R = (2, 2, ∞);
4) a = 1, b ∈ Λ2 = (1, c); C/G is a curve of genus one;
5) a ∈ S2, b ∈ Λ2 = (1, c); signature A = {0, 1, ∞, λ, }, R = (2, 2, 2, 2);
6) a ∈ S4, b ∈ Λ2 = (1, i); R = (4, 4, 2);
7) a ∈ S3, b ∈ Λ2 = (1, τ6); R = (3, 3, 3);
8) a ∈ S6, b ∈ Λ2 = (1, τ6); R = (6, 3, 2).

Theorem 8. A discrete group G of affine transformations is up to an affine change
of coordinates one of the groups from the list above. The signature of the coverings
related to the action of the group is defined up to an automorphism of the sphere
by the data from the list.

Below we sketch a proof of this relult. If G does not contain translations and
only one point is fixed under transformations g ∈ G, g 6= e, then G is of type 1. If
G consist of translations only, then G has type 2 or 4. If transformations g1, g2 ∈ G
have different fixed points, then g1g2g

−1
1 g−1

2 6= e and hence G contains a discrete
subgroup of translations ΛG 6= G and hence is of type 2 or of type 4. If g(z) = az+b
and g ∈ G, then the multiplication z → az defines an automorphism of the lattice
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ΛG. The group of automorphisms of a lattice is a group Sk, having at most two
elements linearly independent over Q. Hence the order k of group Sk must be 1, 2,
3, 4, 6. This leads to the remaining cases.

A group of type 4 does not belong to our subject, as C/Λ2 is a torus rather
than a sphere. A group of type 1 is not interesting for our purposes: it uniformizes
functions with sets of orders (k, ∞), among which only the functions with sets of
orders (k, k) are interesting to us. These functions have already been considered
above. All other groups are interesting to us.

These groups (with the exception of the majority of groups of type 5 can be
described geometrically by means of planar polygons.

3.2. Affine groups generated by reflections. We call the sets of orders men-
tioned below as follows: 1) (∞, ∞), the set of a strip, 2) (2, 2, ∞), the set of a
half-strip, 3) (2, 2, 4), the set of a half of a square, 4) (3, 3, 3), the set of a regular
triangle, 5) (2, 3, 6), the set of a half of a regular triangle, 6) (2, 2, 2, 2), the set of
a rectangle. All sets mentioned above are parabolic.

Claim 7. A planar polygon with signature (A′, B′, R) exists if and only if R is
one of the sets mentioned above. The polygon is defined uniquely by R up to affine
transformations in all cases but the last one. A rectangle is defined up to such
transformation by the quotient of its side lengths.

Proof. For the proof it is enough to find all the solutions of the equation χ = 2,
exhibit examples of the required polygons and classify these polygons up to affine
transformations. Here we consider only examples: in case 1 it is a strip between
two parallel lines. In case 2 it is the triangle obtained by cutting the strip from
the first example by a line perpendicular to its sides. In other cases these are the
triangles and quadrilaterals appearing in the names of the cases. �

By comparing the lists in Sections 3.1–3.2 we see that the groups of types 2)–3)
and 6)–8) are subgroups of index two in the groups generated by reflections in a
two- or three-gon with the same set R. For a group of type 5) this is so if λ ∈ R:
in this case the covering is given by the inverse of the elliptic Schwartz-Christoffel
integral

∫
dz√
p(z)

with p(z) = z(z − 1)(z − λ). This integral transforms the upper

half-plane into a rectangle.

3.3. Coverings with parabolic signatures. Let a parabolic signature (A,B,R)
be fixed. The universal covering with this signature consists of the line C equipped
with a discrete group of its transformations G, the factorization mapping C → C/G
and isomorphism C/G

∼→ S. If #A ∪B 6 3 then the position of the points A ∪ B
has no significance, as any configuration of at most three points on the sphere can
be transformed to any other configuration by an automorphism of the sphere. In
this case we know the group G and its geometric description.

Consider the case of signature A = {a1, a2, a3, a4}, R = {2, 2, 2, 2}. If the
points of the set A lie on a circle, they can be transformed into points 0, 1, ∞, λ
with real λ. For such points we have described the universal covering above as
the inverse of the elliptic Schwartz–Christoffel integral of the form

∫
dz
p(z) , p(z) =

z(z − 1)(z − λ). If the points of the set A don’t lie on a circle, the universal
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covering can be described as follows. We can assume that ∞ /∈ A. In this case the
universal covering I−1 : C → S is given by the inverse of the integral I =

∫
dz√
p(z)

with p(z) = (z − a1)(z − a2)(z − a3)(z − a4). The group of deck transformations
of this covering is generated by shifts by the elements of the lattice of periods Λ2

of the integral I and by multiplication by (−1). The quotient of C by the group of
translations from Λ2 is a torus which is a two-sheeted branched covering over the
sphere with branching points A.

We now consider the general case of coverings with parabolic signature. The
commutator of the group of all automorphisms of the complex line consists of all
the translations. The translations are the only transformations that have no fixed
points.

To a given parabolic signature one associates the universal covering with this
signature and a group G of automorphisms of the line acting as the group of the
deck transformations of the covering. Covering with this signature are in one to
one correspondence with conjugacy classes of subgroups of G, whose intersection H
consists only of translations. The monodromy group of this covering π1 : Y → S is
isomorphic to the group G/H and is determined by the signature up to a quotient
by a subgroup H in the commutator of the group G.

3.4. Equations with parabolic signatures

Theorem 9. A linear differential equation of Fuchs type with parabolic signature
can be solved by quadratures. Its monodromy group is a factor group of a group G by
a commutative normal subgroup, where the group G depends only on the signature.

Theorem 10. An algebraic function with parabolic signature is expressible in radi-
cals. Its monodromy group is a factor group of a group G by a commutative normal
subgroup, where the group G depends only on the signature.

Example 4. Coverings with the set of orders (∞, ∞) are uniformized by a group
of type 1. Equations of Euler’s type y(n) + a1y

(n−1)x−1 + · · ·+ anyx
−n = 0 are of

this kind.

Example 5. Coverings with the set of orders (2, 2, ∞) are uniformized by a group
of type 2. Equations of the form

n∑

i=0

ai

(
(1− x2)

d2

d x2
− x

d

d x

)i

y = 0

have this signature. By means of a change of variables x = cos z such equation can

be reduced to an equation with constant coefficients
∑n

i=0 ai
d2iy
d z2i = 0. Hence the

solutions of this equation are of the form

y(x) =
∑

j

pj(arccosx) cos(αj arccosx) + qj(arccosx) sin(αj arccosx),

where pj and qj are polynomials. In particular all the (multivalued) Chebyshev

functions fα defined by the property fα
(
x+x−1

2

)
= xα+x−α

2 are solutions of such
equations. For integer α these are Chebyshev polynomials, for α = 1/n with integer
n these are the inverses of Chebyshev polynomials.
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Example 6. If p4(z) is a fourth degree polynomial with roots z1, . . . , z4, then the

elliptic integral y(z) =
z∫

z0

d z√
p4(z)

has signature (z1, . . . , z4; 2, 2, 2, 2) and it is a

solution of the Fuchs type differential equation y′′ + 1
2
p′

4
(z)

p4(z)
y′ = 0 with the same

signature.

4. Functions with Non-Hyperbolic Signatures in other Contexts

Algebraic functions with elliptic signatures are classical objects. For instance
the first part of Klein’s book [4] is devoted to them. Algebraic functions with non-
hyperbolic signatures play a central role in the works of Ritt on rational mappings of
prime degree invertible in radicals (see [7], [2], [1]). The reason for their appearance
in these works is as follows.

By a result of Galois, an irreducible equation of prime degree p can be solved in
radicals if and only if its Galois group is a subgroup of the metacyclic permutation
group {x → ax + b mod p : a 6≡ 0 mod p}. A permutation x → ax + b mod p

splits as a product of 1 + p−1
n

disjoint cycles, where n is the order of the element
a in the group Zp (we use the convention that the order of the identity element is
∞). According to Riemann-Hurwitz formula, for a function with such monodromy
group the formula

2 = 2p−
∑

p− 1− p− 1

ni

holds, where ni is the branching order, or ∞, if the branching is of order p. In
particular the inequality

∑
1
ñi

> 2 on the branching orders ñi holds. This means
that the signature of such rational functions is non-hyperbolic.

In dynamics Lattès maps are studied as examples of rational mappings with
exceptional (usually exceptionally simple) dynamics: these are rational mappings
induced by an endomorphism of an elliptic curve (see [5], [6]). These mappings have
parabolic signature (but they don’t exhaust all the examples of rational mappings
with parabolic signatures: to describe all such examples one has to include all the
mappings of a sphere to itself induced by a homomorphism between two different
elliptic curves). Lattès maps have provided the first examples of rational mappings
with Julia set equal to the whole Riemann sphere.

5. Hyperbolic Case

Let R be a signature of an algebraic function. If the universal covering with this
signature is the Riemann sphere or the complex line, then the monodromy group
of any algebraic function with signature R can be described explicitly: it contains
a normal subgroup which is an abelian group with at most two generators, and
the quotient by this group is a finite group from a finite list of groups associated
with the given signature. In contrast, if the universal covering with signature R is
the hyperbolic plane then the monodromy group of an algebraic function with such
signature can be arbitrarily complicated as the next theorem shows:
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Theorem 11. Let R be a signature of an algebraic function and let the universal
covering with signature R have the hyperbolic plane as its total space. Let G be an
arbitrary finite group. There exists a covering with signature R and monodromy
group H containing a subgroup H1 which has a normal subgroup such that the quo-
tient of H1 by it is isomorphic to G (i.e., the monodromy group H has a subquotient
isomorphic to G).

Proof. If π : Y → S is the normalization of the covering associated to an algebraic
function with signature R, then the universal covering Z → S with signature R
can be obtained as the composition of π and the universal (unbranched) covering
Z → Y . In particular if Z is the hyperbolic plane, then Y is topologically a sphere
with at least two handles.

Fix a representation of the group G as a factor group of a free group on k
generators. Replace the covering π : Y → S by a covering π1 : Y1 → S where
Y1 is an unbranched covering of Y and has topological type of a sphere with at
least k handles. The fundamental group of the surface Y1 admits a homomorphism
onto the free group with k generators, and hence onto G. Let π1 : Y2 → Y be
the unbranched covering associated to the kernel of this homomorphism. Then the
composition π ◦ π1 : Y2 → S is a covering with signature R, whose monodromy
group contains a subgroup admitting a mapping onto G (more precisely it is the
subgroup of permutations of the fiber corresponding to loops in the base space that
can be lifted to loops in Y1). �

Corollary 2. Let R be a signature of an algebraic function. If the signature is
elliptic or parabolic and different from (2, 3, 5) then any algebraic function with
this signature can be represented by radicals. If the signature is (2, 3, 5), then any
such function can be expressed by radicals and solutions of algebraic equations of
degree at most 5. Finally if the signature is hyperbolic, then for any given integer
k there exists an algebraic function with this signature that cannot be representable
by k-radicals, i.e., radicals and solutions of algebraic equation of degree at most k,
or k-quadratures, i.e., quadratures and solutions of algebraic equations of degree at
most k.

Corollary 3. Let R be a signature of an algebraic function. If the signature is
elliptic and different from (2, 3, 5) then any linear differential equation of Fuchs
type with this signature can be solved in radicals. If the signature is (2, 3, 5), then
any such equation can be solved in radicals and solutions of algebraic equations of
degree at most 5. If the signature is parabolic, then any such equation can be solved
by quadratures. Finally if the signature is hyperbolic, then for any given integer k
there exists a linear differential equation of Fuchs type with this signature that is
not solvable in k-quadratures, i.e., quadratures and solutions of algebraic equations
of degree at most k.

Proof. Follows from Theorems 6, 7, 9, 10, 11 and Theorems 2.9.7, 3.5.2 of [3]. �
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