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Abstract. We associate convex bodies to a wide class of graded G-

algebras where G is a connected reductive group. These convex bodies

give information about the Hilbert function as well as multiplicities of

irreducible representations appearing in the graded algebra. We extend

the notion of Duistermaat–Heckman measure to graded G-algebras and

prove a Fujita type approximation theorem and a Brunn–Minkowski in-

equality for this measure. This in particular applies to arbitrary G-line

bundles giving an equivariant version of the theory of volumes of line

bundles. We generalize the Brion–Kazarnowskii formula for the degree

of a spherical variety to arbitrary G-varieties. Our approach follows

some of the previous works of A. Okounkov. We use the asymptotic

theory of semigroups of integral points and Newton–Okounkov bodies

developed in the authors’ paper ‘Okounkov bodies, semigroups of inte-

gral points, graded algebras and intersection theory’.
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Introduction

Discovered in 1975, the famous Bernstein–Kushnirenko theorem [4], [17] gives
an elegant formula for the number of solutions of a generic system of n equations
in (C∗)n with given Newton polytopes. The discovery of this theorem was greatly
inspired by the rich empirical results which Vladimir Igorevich Arnold obtained in
the course of his research on critical points of functions in several variables. The
Bernstein–Kushnirenko theorem was a starting point for the development of Newton
polytope theory, which became one of the main subjects studied and developed at
the Arnold Seminar. Soon it turned out that this theory is directly related to the
theory of toric varieties.
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In the early 1980s, the second author suggested the problem of generalizing the
Bernstein–Kushnirenko theorem replacing (C∗)n with any reductive algebraic group
over C. Such a generalization was found by B. Kazarnovskii [16], and M. Brion [6].
Unlike the Bernstein–Kushnirenko theorem, Brion–Kazarnovskii’s answer is not in
terms of volumes of convex bodies (i.e., a compact convex subset of the Euclidean
space). In [22], A. Okounkov completes this missing part in the generalization
by constructing (in some important cases) convex bodies whose volumes give the
number of solutions. Moreover, in [21], [23], Okounkov considers a much more
general situation involving reductive group actions.

Following the work of Okounkov, in [13], [19] and [15], the authors associate
convex bodies to linear systems, and line bundles, on varieties without requiring
presence of a group action. These convex bodies encode information about the
intersection theory of divisors (or linear systems). In particular, when we have an
ample line bundle, the volume of the corresponding body gives the self-intersection
number of the divisor class of the line bundle.

In the present paper we adopt the general approach of [15] for varieties equipped
with a reductive group action, extending the original work of Okounkov. Let G
be a connected reductive algebraic group over C.1 Let V be a finite dimensional
G-module and X ⊂ P(V ) a G-invariant projective subvariety. The homogeneous
coordinate ring C[X] = A =

⊕
k>0Ak is a graded G-algebra. Fixing a non-zero

element ℓ ∈ A1, we can regard A as the algebra
⊕

k>0 L
k, where L is the subspace

of rational functions {f/ℓ : f ∈ A1}. (We recall that Lk denotes the subspace of
C(X) spanned by all the products of k elements of L.) Under this identification
the action of G on A corresponds to a twisted action of G on C(X) (Section 2.1).
In this paper we generalize the above situation. Instead of a projective G-variety
we take an arbitrary G-variety X of dimension n, and instead of the homogeneous
coordinate ring, we consider a graded algebra A =

⊕
k>0 Lk, with Lk ⊂ C(X) for

all k. Moreover we assume that A is a G-algebra where the action comes from
a twisted action of G on C(X). We will also assume that the following condition
holds: A is contained in a G-algebra B generated by the constants and finitely many
elements in degree 1. Note that A itself need not be a finitely generated algebra.
We denote the collection of such algebras by AG(X) (Section 2.2).

We would like to mention that, for a normal projective G-variety X, the class
of algebras in AG(X) already contains all the G-linearized graded linear systems
on X (in particular algebras of sections of G-linearized line bundles) (see Example
2.7). Thus all the constructions and results in this paper, in particular, apply to G-
linearized graded linear systems. For the purposes of this paper, the authors prefer
working with the more general setup of G-algebras A in AG(X), instead of graded
G-invariant linear systems. The reader used to the language of linear systems can
think of an algebra A in AG(X) as a G-invariant graded linear system on X.

To A we associate three convex bodies: (1) the moment body ∆(A), (2) the mul-

tiplicity body ∆̂(A) and, (3) the string body ∆̃(A), together with natural linear pro-

jections π̂ : ∆̂(A) → ∆(A) and π̃ : ∆̃(A) → ∆̂(A). These bodies encode information

1Throughout the paper we assume the ground field to be C, although most of the results hold
over an arbitrary algebraically closed field.
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about the asymptotic behavior of respectively: (1) the irreducible representations
appearing in the homogeneous components of A, (2) their multiplicities, and (3)
the Hilbert function of A.

We should point out that the convex bodies constructed in [13], [15] and [19] do
not require a group action and encode information about the Hilbert function. The

convex body ∆̃ can be considered as a special case of these bodies.
The constructions of these bodies are based on the notion of convex body asso-

ciated to a graded semigroup of integral points (Definition 1.3): Let S ⊂ Z>0 ×Z
n

be a semigroup. Let C(S) ⊂ R × Rn denote the cone which is the closure of the
convex hull of S ∪ {0}. Let π : R× Rn → R be the projection onto the first factor
and suppose C(S) intersects the plane π−1(0) only at the origin. Then the slice
∆(S) = C(S) ∩ π−1(1) is a convex body which we call the Newton–Okounkov body
of S. The volume of ∆(S) is responsible for the asymptotic behavior of number of
elements in the level Sk = S ∩ π−1(k), as k → ∞ (Theorem 1.5).

Let A =
⊕

k Lk ∈ AG(X) be a graded G-algebra. The moment body ∆(A) is
the convex body associated to the semigroup of highest weights:

S(A) = {(k, λ) : Vλ appears in Lk},

where Vλ denotes the irreducible representation with highest weight λ. When A
is finitely generated, S(A) is a finitely generated semigroup and ∆(A) is a poly-
tope. This generalizes the notion of moment polytope of a projective G-variety.
In Section 3 we prove some basic results about ∆(A) including a superadditivity
property (Proposition 3.14). We also give lower and upper bounds for the moment
body (Proposition 3.12).

Let v : C(X) \ {0} → Zn be a valuation on the field of rational functions C(X),
satisfying the conditions in Section 4.1. Following [21], we define the multiplicity

body ∆̂(A) to be the convex body associated to the semigroup:

Ŝ(A) =
⋃

k>0

{(k, v(f)) : f ∈ LU
k \ {0}},

where LU
k is the subspace of unipotent invariants in Lk. The multiplicity body ∆̂(A)

encodes information about the asymptotic behavior of multiplicities of irreducible
representations appearing in A. In Section 4, we prove some basic properties of the
multiplicity body including a superadditivity property (Proposition 4.12). We use

the construction of ∆̂(A) to extend the notion of Duistermaat–Heckman measure
of a projective G-variety to graded algebras A ∈ AG(X). Moreover, we prove a
Brunn–Minkowski type inequality for this measure (Corollary 4.13). Section 4.3
proves a Fuijta approximation type theorem for DH measures, namely the DH
measure of a graded algebra A can be approximated arbitrarily closely by the usual
DH measures of projective G-varieties (Theorem 4.14).

In Section 5 we define the string body ∆̃(A) associated to a graded G-algebra

A ∈ AG(X). It is the convex body fibered over the multiplicity body ∆̂(A) whose
fibers are the string polytopes of Littelmann and Berenstein–Zelevinsky associated
to irreducible representations of G (see Section 5.1). The multiplicity body encodes
information about the asymptotic behavior of the Hilbert function of A.
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The idea of constructing the string body goes back to [22] which proposes a sim-
ilar construction when X is a spherical variety, using the Gelfand–Cetlin polytopes
for G = GL(n, C), or other classical groups. (Recall that a G-variety is spherical
if a Borel subgroup has a dense orbit, see Section 6.2.) The idea of using string
polytopes, in the case of spherical varieties of a general reductive group, goes back
to [1].

Extending the intersection theory of divisors on complete varieties, in
[14] the authors develop an intersection theory for vector subspaces of the field
of rational functions C(X). Let L1, . . . , Ln be finite dimensional subspaces of
C(X). The intersection index [L1, . . . , Ln] is defined to be the number of solutions
in X of a generic system of equations f1(x) = · · · = fn(x) = 0, where fi ∈ Li.
When counting the solutions, we ignore the solutions x at which all the functions
in some subspace Li vanish as well as the solutions at which at least one function
from some subspace Li has a pole. In [14], it is shown that this intersection index is
well-defined and enjoys properties analogous to the intersection number of divisors.
An important property of the intersection index is multi-additivity with respect to
a natural product of subspaces.

In Section 6 we use the above convex bodies to give formulae for the intersection
indices of invariant subspaces in terms of volumes or integrals over these bodies
(Theorem 6.4, Corollary 6.5 and Corollary 6.6). These are in fact more concrete
and accessible versions of a more general theorem ([15, Theorem 4.12]) adapted for
the G-invariant subspaces. These in particular give formulae for the intersection
numbers of divisors of G-linearized line bundles.

It is shown in [11] that the string convex bodies are special cases of the convex
bodies considered in [13], [15] and [19], at least when the G-variety under consid-
eration is spherical. In this case, any G-algebra A ∈ AG(X) is multiplicity-free

and the multiplicity body ∆̂(A) coincides with the moment body ∆(A) (see Sec-
tion 6.2). Moreover, if the algebra A is finitely generated (e.g. the homogeneous
coordinate ring of a projective spherical G-variety) we see that the string body of
A is a polytope. These construct a rich class of examples for which it is guaranteed
that the convex bodies in [19] and [13] are polytopes.

In Section 6.2 we address the case of spherical varieties, and recover a formula
of Brion and Kazarnovskii regarding the self-intersection number of divisors on
spherical varieties (this formula itself is a partial generalization of the Bernstein–
Kushnirenko theorem).

Acknowledgement. The authors would like to thank Valentina Kiritchenko for
reading the first draft and giving very useful suggestions, and Megumi Harada for
helpful discussions about the symplectic geometry side of the story.

1. Preliminaries

1.1. Semigroups of integral points and Newton–Okounkov bodies. In this
section we give a brief review of results in [15] on asymptotic behavior of semigroups
of integral points.
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Let S ⊂ Zn be a semigroup of integral points, that is, S is closed under addition.
Let:

– C(S) be the closure of the convex hull of S∪{0}, that is, the smallest closed
convex cone (with apex at the origin) containing S.

– G(S), the subgroup of Zn generated by S.
– L(S), the vector subspace of Rn spanned by S.

The sets C(S) and G(S) lie in L(S). To S we associate its regularization, which
is the semigroup Reg(S) = C(S) ∩ G(S). The regularization Reg(S) is a simpler
semigroup with more points and containing the semigroup S. In [15, Section 1.1]
it is proved that Reg(S) asymptotically approximates S. More precisely:

Theorem 1.1 (Approximation Theorem). Let C ′ ⊂ C(S) be a convex cone which
intersects the boundary (in the topology of the vector space L(S)) of the cone C(S)
only at the origin. Then there exists a constant N > 0 (depending on C ′) such that
each point in the group G(S) which lies in C ′ and whose distance from the origin
is bigger than N , belongs to S.

We now consider semigroups in Z>0 × Zn. Let π : R × Rn → R denote the
projection on the first factor. Let S ⊂ Z>0 × Zn be a semigroup and let Sk =
S ∩ π−1(k) be the set of points in S at level k. Then π(S) consists of k such that
Sk 6= {0}. It is a subsemigroup in Z>0. Let m(S) be the index of the subgroup
generated by π(S) in Z. For sufficiently large k, we have k ∈ π(S) if and only if k
is divisible by m(S).

Definition 1.2. We call a semigroup S ⊂ Z>0 ×Zn a non-negative semigroup if it
is not contained in the hyperplane π−1(0). Moreover we assume for simplicity that
m(S) = 1. (The assumption m(S) = 1 is not crucial and one can slightly modify
all the statements that follow so that they hold without this assumption.)

As above let C(S) be the smallest closed convex cone containing S, G(S) the
subgroup of Zn+1 = Z × Z

n generated by S, and L(S) the rational subspace in
Rn+1 spanned by S. If in addition the cone C(S) intersects the hyperplane π−1(0)
only at the origin, S is called a strongly non-negative semigroup. We denote the
group G(S) ∩ π−1(0) by Λ(S) and call it the lattice associated to the non-negative
semigroup S. The index of this sublattice in {0}×Z

n will be denoted by ind(Λ(S))
or simply ind(S). Finally, the number of points in Sk is denoted by HS(k). The
function HS is called the Hilbert function of the semigroup S.

Definition 1.3 (Newton–Okounkov convex set). We call the projection of the
convex set C(S) ∩ π−1(1) to Rn (under the projection onto the second factor
(1, x) 7→ x), the Newton–Okounkov convex set of the semigroup S and denote
it by ∆(S). In other words,

∆(S) = conv
(⋃

k>0

{x/k : (k, x) ∈ Sk}
)
.

If S is strongly non-negative then ∆(S) is compact and hence a convex body, which
we call the Newton–Okounkov body of S.

Let us define the notion of volume normalized with respect to a lattice.
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Definition 1.4 (Normalized volume). Let Λ ⊂ Rn be a lattice of full rank n.
Let E ⊂ Rn be a rational affine subspace of dimension q. That is, E is parallel
to a vector subspace of dimension q which is rational with respect to Λ. The
Lebesgue measure normalized with respect to the lattice Λ in E is the translation
invariant Lebesgue measure dγ in E normalized so that the smallest measure of
a q-dimensional parallelepiped with vertices in E ∩ Λ is equal to 1. The measure
of a subset A ⊂ E will be called its normalized volume and denoted by Volq(A)
(whenever the lattice Λ is clear from the context).

Let Reg(S) be the regularization of S and let HReg(S) be its Hilbert function. It
follows from the Approximation Theorem (Theorem 1.1) thatHS(k) andHReg(S)(k)
have the same asymptotic behavior as k goes to infinity. This implies that the
Newton–Okounkov convex set ∆(S) is responsible for the asymptotic behavior of
the Hilbert function of S (see [15, Theorem 1.13]):

Theorem 1.5. Let S be a strongly non-negative semigroup.

(1) The function HS(k) grows like aqk
q, where q is the dimension of the convex

body ∆(S) and the q-th growth coefficient aq = limk→∞ HS(k)/k
q is equal

to Volq(∆(S)), where Volq is normalized with respect to the lattice Λ(S).

(2) Let f : Rn → R be a polynomial of degree d and f (d) the homogeneous
component of f of degree d. Then

lim
k→∞

∑
(k,x)∈Sk

f(x)

kq+d
=

∫

∆(S)

f (d)(x) dγ,

where dγ is the Lebesgue measure on ∆(S) normalized with respect to the
lattice Λ(S).

One defines a levelwise addition operation on the subsets of R × Rn: for each
subset A ⊂ R× Rn and k ∈ R, let Ak denote the set of points of A in level k, i.e.,
Ak = A ∩ π−1(k). Let A, B ⊂ R× Rn. Define the set A⊕t B ⊂ R× Rn by:

A⊕t B = {(x+ y, k) : k ∈ R, (x, k) ∈ Ak, (y, k) ∈ Bk}.

Let S′, S′′ ⊂ Z>0 × Z
n be two non-negative semigroups. One sees that S =

S′ ⊕t S
′′ is a non-negative semigroup, and moreover:

∆(S) = ∆(S′) + ∆(S′′),

where the addition in the right-hand side is the Minkowski sum of convex sets
defined by X + Y = {x+ y : x ∈ X, y ∈ Y }.

Example 1.6. (1) Let S be the non-negative semigroup consisting of all the integral
points in Z>0 × Z lying to the right of the broken line |y| = x (where x and y are
the first and second coordinates respectively). The subspace L is the whole R2.
The cone C is the cone generated by the vectors (1, 1) and (1, −1). The Newton–
Okounkov convex body ∆(S) is the line segment [−1, 1].

(2) Let S be the non-negative semigroup consisting of all the integral points

lying to the right of the curve
√
|y| = x. Then the cone C of S is the whole right

half-plane {x > 0} and thus S is not strongly non-negative. The Newton–Okounkov
convex set ∆(S) is the whole line R, which is unbounded.
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1.2. Linear transformations between semigroups. Let T : Rn → Rm be a
linear map, where n > m. Moreover assume T (Zn) ⊂ Zm. Let T̃ = Id ⊕ T : R ×

Rn → R× Rm, that is, for x ∈ Rn, x1 ∈ R we have T̃ (x1, x) = (x1, T (x)).

Let S′ ⊂ Z>0 × Zn be a strongly non-negative semigroup and S = T̃ (S′) its

image under T̃ . Then S is a strongly non-negative semigroup in Z>0 × Zm. Let

q = dim∆(S) and q′ = dim∆(S′). We have T̃ (L(S′)) = L(S), T̃ (C(S′)) = C(S),

T̃ (G(S′)) = G(S), and T (∆(S′)) = ∆(S).
For a point p ∈ Rn, let δp denote the Dirac measure supported at the single

point p. Given k > 0, define the k-th multiplicity measure dµk on ∆(S) by:

dµk =
∑

(k,x)∈Sk

#(T̃−1(k, x) ∩ S′
k)δx/k.

It is a finitely supported measure where a point z has nonzero measure if (k, kz) ∈

Sk, in which case the measure of z is equal to the number of points in T̃−1(k, kz)∩
S′
k. Take a subset U0 ⊂ ∆(S) and let U = {1}×U0 be its shift to level 1. We have:

∫

U0

dµk = #(T̃−1(kU) ∩ S′
k). (1)

It is clear that the total mass of dµk is #S′
k.

Theorem 1.7. The measures dµk/k
q′ weakly converge to a measure dµ supported

on ∆(S). Moreover, dµ is the push-forward of the Lebesgue measure on ∆(S′) to
∆(S) (normalized with respect to the lattice Λ(S′)). Thus:

Volq′(∆(S′)) =

∫

∆(S)

dµ.

Proof. We show that the measures dµk/k
q′ converge to the push-forward of the

normalized Lebesgue measure on ∆(S′). To this end, let U0 ⊂ ∆(S) be a convex
open subset which does not intersect the boundary of ∆(S). Let U = {1} × U0 be

the shift of U0 to the level 1. Let U ′ = T̃−1(U) ∩ C(S′). It suffices to show that

lim
k→∞

(1/kq
′

)

∫

U0

dµk = Volq′(U
′).

One knows that

Volq′(U
′) = lim

k→∞

#(kU ′ ∩G(S′))

kq′
.

Applying the Approximation Theorem (Theorem 1.1) to the semigroup S′ we obtain
that:

Volq′(U
′) = lim

k→∞

#(kU ′ ∩ S′
k)

kq′

= lim
k→∞

∫
U0

dµk

kq′
(from (1)),

which proves the claim. �

Finally, we prove a theorem about the relationship between the measures asso-
ciated to (S, S′) and their finitely generated subsemigroups. Take an integer k > 0
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such that Sk 6= ∅. Let Sk (respectively S
′
k) denote the subsemigroup of S (respec-

tively S′) generated by the level Sk (respectively S′
k). Since T̃ (S′) = S we see that

T̃ (S′
k) = Sk. Similarly to above, let dρk denote the measure associated to the pair

(Sk, S
′
k), that is, for large k:

dρk = lim
ℓ→∞

(1/ℓq
′

)
∑

(kℓ,x)∈Sk

#(T̃−1(kℓ, x) ∩ S
′
k)δx/ℓ.

(As in Theorem 1.7 one shows that the above limit of measures exists.) Note that
for large k, the subspace L(S′

k) coincides with L(S′) and the lattice Λ(S′
k) coincides

with Λ(S′). Let O1/k : R
m → Rm denote multiplication by the scalar 1/k.

Theorem 1.8. As k → ∞, the measures O∗
1/k(dρk)/k

q′ converge weakly to the

measure dµ associated to the pair (S′, S). Here O∗
1/k denote the push-forward

measure by the map O1/k.

Proof. By Theorem 1.7 we know that the measure dµ is the push-forward (under the
linear transformation T ) of the normalized Lebesgue measure on the body ∆(S′)
to ∆(S). Let ∆′

k (respectively ∆k) denote the convex hull of {x′ : (k, x′) ∈ S′
k}

(respectively {x : (k, x) ∈ Sk}). As in the proof of Theorem 1.7 one sees that the

measure O∗
1/k(dρk)/k

q′ is the push-forward of the normalized Lebesgue measure on

(1/k)∆′
k to (1/k)∆k. But as k → ∞, the polytopes (1/k)∆′

k (respectively (1/k)∆k)
converge to the body ∆(S′) (respectively ∆(S)) with respect to the Hausdorff metric
on subsets. The claim follows easily from this. �

2. Generalities on Reductive Group Actions

Notation. Throughout the rest of the paper we will use the following notation:
We denote by G a connected reductive algebraic group over C. A Borel subgroup
of G is denoted by B with T and U the maximal torus and maximal unipotent
subgroups contained in B respectively. The root system of (G, T ) is R and R+

denotes the subset of positive roots for the choice of B. We denote by α1, . . . , αr

the corresponding simple roots, where r is the semi-simple rank of G. The Weyl
group of (G, T ) is denoted by W with w0 ∈ W its longest element. The weight
lattice of G (that is, the character group of T ) is denoted by Λ, and Λ+ is the
subset of dominant weights (for the choice of B). Put ΛR = Λ ⊗Z R. Then the
convex cone generated by Λ+ in ΛR is the positive Weyl chamber Λ+

R
. For a weight

λ ∈ Λ+, the irreducible G-module corresponding to λ will be denoted by Vλ and a
highest weight vector in Vλ will be denoted by vλ.

2.1. G-varieties and invariant subspaces of rational functions. Let X be
an irreducible G-variety, that is, X is equipped with an algebraic action of G. We
will denote the action of g ∈ G on x ∈ X by g · x. The group G acts on C(X), the
field of rational functions on X, by (g · f)(x) = f(g−1 ·x), for g ∈ G and f ∈ C(X).
We refer to this as the natural action of G on C(X). The above action of G on
C(X) restricts to an action of G on the ring of regular functions O(X). With this
action, the ring O(X) is a rational G-module, that is, every f ∈ O(X) lies in a finite
dimensional G-submodule. In general the field C(X) is not a rational G-module.
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Let X be any irreducible G-variety (not necessarily projective) with the field of
rational functions C(X). Let ϕ : G → C(X)∗ := C(X) \ {0} be a map satisfying
the following condition: for all g1, g2 ∈ G we have

ϕg1g2 = (g1 · ϕg2)ϕg1 .

Moreover, assume that for every x ∈ X, g 7→ ϕg(x) gives a rational function on
G. Such a function is called a group cocycle. The cocycles form a group under
multiplication. Given a group cocycle as above one defines an action of G on C(X)
twisted by the cocycle ϕ: Let f ∈ C(X) and g ∈ G, define the ϕ-twisted action
g ∗ϕ f by:

g ∗ϕ f = (g · f)ϕg,

where in the right-hand side we have the multiplication of rational functions g · f
and ϕg.

Example 2.1. Let L be a G-linearized line bundle on a normal G-variety X. Fix a
nonzero section τ ∈ H0(X, L) with divisor D (throughout the paper we work only
with line bundles which have nonzero global sections, although this assumption is
not crucial and the statements can be slightly modified to hold in a more general
setting). One verifies that ϕ : G → C(X)∗ defined by ϕg = (g · τ )/τ is a cocycle.
Let L(D) = {f ∈ C(X) : (f)+D > 0} be the subspace associated to the divisor D.
Under the identification L(D) ∼= H0(X, L) given by f 7→ fτ , the ϕ-twisted action
of G on L(D) ⊂ C(X) corresponds to the action of G on H0(X, L).

Let Z(G, X) denote the group of all cocycles ϕ : G → C(X)∗ and let B(G, X)
denote the subgroup of coboundaries, i.e. cocycles of the form ϕg = g ·h/h for some
function h ∈ C(X)∗. The quotient Z(X, G)/B(X, G) is usually called the first
group cohomology of G with coefficients in C(X)∗ and denoted by H1(G, C(X)∗).

Definition 2.2. Let L ⊂ C(X) be a finite dimensional subspace of rational func-
tions. If L is stable under the action of G twisted by a cocycle ϕ, we call L a
ϕ-invariant subspace. We denote the collection of all the pairs (L, ϕ), where L is a
finite dimensional ϕ-invariant subspace, by KG(X). By abuse of terminology, we
call a pair (L, ϕ) ∈ KG(X) an invariant subspace.

If L is a ϕ-invariant subspace and h ∈ C(X)∗ then the subspace h−1L is ϕ′-
invariant, where ϕ′ = (g · h/h)ϕ.

For two subspaces L1, L2 of rational functions, let L1L2 denote the subspace
spanned by all the products f1f2, where f1 ∈ L1 and f2 ∈ L2. The following is
straightforward:

Proposition 2.3. Let (L1, ϕ1), (L2, ϕ2) ∈ KG(X), then (L1L2, ϕ1ϕ2) ∈ KG(X).
That is, KG(X) is a semigroup with respect to this multiplication of pairs.

To a finite dimensional subspace L of rational functions one can assign its Ko-
daira map ΦL which is a rational map from X to P(L∗), the projectivization of the
dual space L∗: Let x ∈ X be such that f(x) is defined for all f ∈ L. Then Φ(x) is
represented by the linear functional in L∗ which sends f to f(x).

Now let (L, ϕ) ∈ KG(X) be an invariant subspace and ΦL : X 99K P(L∗) its
Kodaira map. The ϕ-twisted action of G on L induces an action of G on L∗ and
hence on P(L∗). We have the following:



378 K. KAVEH AND A. KHOVANSKII

Proposition 2.4. The Kodaira map ΦL is G-equivariant.

Let L1, . . . , Ln ⊂ C(X) be nonzero finite dimensional subspaces of rational
functions. The intersection index [L1, . . . , Ln] is the number of solutions in X of
a generic system of equations f1 = · · · = fn = 0, where f1 ∈ L1, . . . , fn ∈ Ln. In
counting the solutions, we neglect the solutions x at which all the functions in some
space Li vanish as well as the solutions at which at least one function from some
space Li has a pole. In [14] it is proven that the intersection index of subspaces
is well-defined and is multi-additive with respect to the product of subspaces. We
view the intersection index of subspaces of rational functions as an extension of the
intersection theory of (Cartier) divisors (more generally linear systems).

Let YL denote the closure of the image of the Kodaira map ΦL. From definition
one sees that if dim(YL) < n, then the self-intersection index [L, . . . , L] is equal to
zero. On the other hand, if dim(YL) = n then the self-intersection index [L, . . . , L]
is equal to the mapping degree of ΦL times the degree of YL as a subvariety of the
projective space P(L∗).

Definition 2.5. To an invariant subspace (L, ϕ) we associate the graded algebra

AL =
⊕

k>0

Lk.

The group G acts on AL by acting on each Lk via ϕk. One verifies that AL

is isomorphic, as a graded G-algebra, to the homogeneous coordinate ring of the
projective variety YL.

2.2. Graded G-algebras. An algebra A is called a G-algebra if G acts on A
respecting the algebra operations. If A is graded we require that the action of G
respects the grading. Let X be a G-variety with the field of rational functions
F = C(X). We will deal with graded algebras A =

⊕
k>0 Lk, where for each k, the

k-th homogeneous component Lk is a subspace of F (one can regard such A as a
graded subalgebra of the ring of polynomials F [t]).

Definition 2.6. Let A =
⊕

k>0 Lk, Lk ⊂ F be a graded algebra. We say A is a
graded G-algebra with G-action twisted by ϕ, if for each k > 0, the subspace Lk is
ϕk-invariant. Moreover, we let AG(X) denote the collection of all the pairs (A, ϕ)
satisfying the following conditions:

(1) A is a graded G-algebra with the action twisted by ϕ.
(2) There is an invariant subspace (L, ϕ) ∈ KG(X) such that A ⊂ AL. In

particular, for every k > 0 we have dimLk < ∞.
(3) For large k, Lk 6= {0}.

By abuse of terminology we call a pair (A, ϕ) ∈ AG(X) a graded algebra of almost
G-integral type. Assumption (3) is not crucial and is made to make the statements
in the rest of paper simpler. One can slightly modify the statements so that they
hold without this assumption.

Example 2.7. (1) (G-algebra associated to an invariant subspace.) Let (L, ϕ) ∈
KG(X) be an invariant subspace of rational functions on X. Then (AL, ϕ) ∈
AG(X).
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(2) (Integral closure.) Let (A, ϕ) ∈ AG(X) be a graded algebra of almost G-
integral type. Let A denote the integral closure of A in F (t), where we regard A as
a graded subalgebra of the polynomial ring F [t]. One verifies that (A, ϕ) ∈ AG(X).
For a subspace (L, ϕ) ∈ KG(X), in Section 6, the integral closure AL is used in
computing the self-intersection index of L. The algebra AL and its connection with
the so-called completion L of the subspace L is discussed in detail in [14, Section
6]. This is related to the notion of a complete linear system.

(3) (Algebra of sections of a G-line bundle.) Let X be a normal projective
irreducible G-variety and let L be a G-linearized line bundle on X. To L one
associates the algebra of sections :

R(L) =
⊕

k>0

H0(X, L⊗k).

Fix a nonzero section τ ∈ H0(X, L) with divisor D. As in Example 2.1, one
identifies the algebra R(L) with the algebra

R(D) =
⊕

k>0

L(kD),

where L(kD) = {f ∈ C(X) : (f)+kD > 0}. With abuse of terminology we also call
R(D) the algebra of sections of D. Let the cocycle ϕ : G → C(X)∗ be defined by
ϕg = (g ·τ )/τ . Then the action of G on R(L) corresponds to the ϕ-twisted action of
G on R(D). One also shows that (R(D), ϕ) is a graded algebra of almost G-integral
type, i.e., (R(D), ϕ) ∈ AG(X). Suppose L is very ample and let L = L(D). Then
one can identify the algebra of sections R(D) and the integral closure AL of the
homogeneous coordinate ring AL (see [10, Ch. 2, Proof of Theorem 5.19]).

(4) (Componentwise product of algebras.) Let A′ =
⊕

k L
′
k, A

′′ =
⊕

k L
′′
k be two

graded algebars with L′
k, L

′′
k ⊂ F . One defines the componentwise product A′A′′ to

be the graded algebra A′A′′ =
⊕

k L
′
kL

′′
k . Now let (A′, ϕ′), (A′′, ϕ′′) ∈ AG(X). It

is easy to see that (A′A′′, ϕ′ϕ′′) ∈ AG(X), i.e., the componentwise product A′A′′

is a G-algebra with the action twisted by ϕ′ϕ′′ and is of almost G-integral type.

3. Moment Convex Body of a G-Algebra

3.1. Semigroup of highest weights and moment convex body. In this sec-
tion we discuss the semigroup of highest weights and moment convex body for a
graded G-algebra (A, ϕ) ∈ AG(X), where as before X is an irreducible G-variety.

One associates a lattice and a semigroup of weights to X which measure the
highest weights that can appear in the G-modules consisting of functions on X.

Definition 3.1. For any variety X let Λ(X) ⊂ Λ denote the lattice of weights
of B-eigenfunctions of C(X) for the natural action of G. It is called the weight
lattice of X. Also if X is quasi-affine let Λ+(X) denote the semigroup of weights of
B-eigenfunctions in the algebra of regular functions O(X). It is called the weight
semigroup of X. The rank of the lattice Λ(X) is denoted by r(X) and is called the
rank of the G-variety X. The linear span of Λ(X) will be denoted by ΛR(X).
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Now let A =
⊕

k>0 Lk be a graded G-algebra. Let us write Lk as the sum of its
isotypic components

Lk =
⊕

λ∈Λ+

Lk,λ,

where Lk,λ is the sum of all the copies of the irreducible representation Vλ in Lk.
The following statement about the product of isotypic components is well-known:

Theorem 3.2 (Multiplication of isotypic components). Let λ, µ be dominant
weights and k, ℓ > 0. If Lk,λ and Lℓ,µ are nonzero then Vλ+µ appears in Lk,λLℓ,µ

with nonzero multiplicity. Moreover, if Vν appears in Lk,λLℓ,µ with nonzero mul-
tiplicity then ν lies in the convex hull of the W -orbit of λ + µ intersected with the
positive Weyl chamber Λ+

R
.

Definition 3.3 (Semigroup of highest weights and moment convex set). (1) Define
the set SG(A) ⊂ Z>0 × Λ+ by:

SG(A) = {(k, λ) : Lk,λ 6= {0}}.

From Theorem 3.2, SG(A) is a semigroup (under addition). We call SG(A) the
semigroup of highest weights of A or simply weight semigroup of A. When there
is no chance of confusion we will drop the subscript G and write S(A) instead of
SG(A).

(2) We call the Newton–Okounkov convex set of the semigroup S(A) the moment
convex set or simply the moment set of A and denote it by ∆G(A) or simply ∆(A).

(3) We call the lattice Λ(S(A)) associated to the semigroup S(A), the weight
lattice of A and denote it by Λ(A). Also the vector subspace spanned by Λ(A) will
be denoted by ΛR(A).

Remark 3.4. Consider the subalgebra AU of U -invariants in A. Since the action of U
respects the grading we have AU =

⊕
k>0 L

U
k . Because T normalizes U , the algebra

AU is stable under the action of T , i.e., is a T -algebra. One can alternatively define
S(A) to be the semigroup of T -weights of the subalgebra AU , i.e., ST (A

U ) = SG(A).

Remark 3.5 (Connection with moment polytope in symplectic geometry). Let K
be a compact Lie group and let X be a compact Hamiltonian K-manifold with the
moment map µ : X → Lie(K)∗. It is a well-known result due to F. Kirwan that
the intersection of the image of the moment map with the positive Weyl chamber
is a convex polytope usually called the moment polytope or Kirwan polytope of the
Hamiltonian K-space X.

Let (L, ϕ) ∈ KG(X) be an invariant subspace of rational functions with the
Kodaira map ΦL : X → P(L∗). Let YL ⊂ P(L∗) denote the closure of the image
of the Kodaira map ΦL. It is a closed irreducible G-invariant subvariety of the
projective space P(L∗) with homogeneous coordinate ring AL. Let us assume that
YL is smooth. Fix a K-invariant inner product on L∗, where K is a maximal
compact subgroup of G. This induces a K-invariant symplectic structure on P(L∗)
and hence on YL.

(1) With this symplectic structure, YL is a Hamiltonian K-manifold.
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(2) From the principle quantization commutes with reduction it follows that this
convex polytope coincides with ∆(AL) (see [9] and [5]). More precisely, the
Kirwan polytope identifies with ∆(AL) after taking the involution λ 7→ λ∗,
where λ∗ = −w0λ.

The following proposition shows that the weight lattices of all the graded G-
algebras are in fact contained in the weight lattice of X. We skip the proof.

Proposition 3.6. (1) Let (A, ϕ) be a graded G-algebra. Then the lattice of weights
Λ(A) associated to A is contained in the lattice of weights Λ(X). It follows that the
moment body ∆(A) is parallel to the subspace ΛR(X).

(2) Suppose L ∈ KG(X) is such that the Kodaira map ΦL gives a birational
isomorphism between X and its image. Then the weight lattice Λ(AL) coincides
with Λ(X).

The following is well-known (see [24]):

Theorem 3.7. (1) If A is a finitely generated G-algebra then AU is also finitely
generated.

(2) If A is a finitely generated graded G-algebra then the semigroup S(A) is a
finitely generated semigroup.

Corollary 3.8. (1) If A is a finitely generated G-algebra then the moment convex
body ∆(A) is in fact a polytope which we call the moment polytope of A. In
particular for any invariant subspace (L, ϕ) ∈ KG(X), the moment convex set
∆(AL) is a polytope.

(2) Let (A, ϕ) ∈ AG(X), i.e., A is an algebra of almost G-integral type. Then
S(A) is a strongly non-negative semigroup. It follows that the moment convex
set ∆(A) is a convex body, which we call the moment convex body or simply the
moment body of A.

Proof. (1) Follows from Theorem 3.7(2). (2) Let (A, ϕ) ∈ AG(X) be an algebra
of almost G-integral type. From definition there is an invariant subspace (L, ϕ) ∈
KG(X) such that A ⊂ AL. By (1) we know that S(AL) is finitely generated. As
none of the generators lie in ΛR × {0}, the semigroup S(AL) is a strongly non-
negative semigroup. Now since S(A) ⊂ S(AL) we conclude that S(A) is also a
strongly non-negative semigroup. �

The following example concerns the situation in the Bernstein–Kushnirenko the-
orem on the number of solutions of a system of Laurent polynomials in (C∗)n.

Example 3.9 (T -invariant subspaces of Laurent polynomials). Let T = X = (C∗)n

be the algebraic torus acting on itself by multiplication. In T , the weight lattice
Λ and the semigroup of dominant weights Λ+ both coincide with the lattice χ(T )
of characters of T . Fixing a set of coordinates (x1, . . . , xn) on X we identify χ(T )
with Z

n. Let I ⊂ Z
n be a finite set of characters. To I we can associate a subspace

L(I) consisting of all the Laurent polynomials with exponents in I. The subspace
L(I) is a T -invariant finite dimensional subspace of rational functions on X for the
natural action of T . The dimension of L(I) is equal to #I. Let A = AL(I) be the
corresponding graded algebra. One sees that the semigroup of weights S(A) is the
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semigroup in Z>0 × Zn generated by {1} × I and the moment convex body ∆(A)
is the convex hull of the points in I.

From another point of view, the above example describes the moment polytope
of an equivariant very ample line bundle on a toric variety.

The next example concerns the generalized Plücker embedding of the flag variety
into a projective space.

Example 3.10 (Line bundles on flag variety). (1) Let X = G/B be the complete
flag variety of G. Let λ ∈ Λ+ be a dominant weight and let Lλ denote the G-
linearized line bundle on X associated to λ. By the Borel–Weil–Bott theorem,
for any integer k > 0, the G-module H0(X, L⊗k

λ ) is isomorphic to V ∗
kλ. Let τλ

be a highest weight section in H0(X, Lλ) with divisor Dλ. As in Example 2.7(3)
consider the algebra:

A = R(Dλ) =
⊕

k>0

L(kDλ) ∼=
⊕

>0

V ∗
kλ.

Let us regard A as a graded G-algebra. For a dominant weight λ let λ∗ be the
dominant weight −w0λ. Then one knows that V ∗

kλ
∼= Vkλ∗ (as G-modules) and

hence the semigroup SG(A) is given by

SG(A) = {(kλ∗, k) : k ∈ N}.

Thus the moment convex body ∆G(A) coincides with the single point {λ∗}.
(2) On the other hand let us regard the algebra A above as a T -algebra and

describe the moment body ∆T (A). It is well-known that the convex hull of T -
weights in Vλ coincides with the convex hull of the Weyl group orbit {wλ : w ∈ W}.
It thus follows that the moment convex body ∆T (A) is the convex hull of the Weyl
group orbit {wλ∗ : w ∈ W}.

The following is related to the situation addressed in [16] generalizing the Bern-
stein–Kushnirenko theorem to representations of reductive groups. ([16] uses a
symplectic geometry approach.)

Example 3.11 (Moment polytope of a representation). Let π : H → GL(n, C) ⊂
Mat(n, C) be a finite dimensional representation of a connected reductive group
H. Let πij : H → C, i, j = 1, . . . , n be the matrix elements, i.e., the entries of π.
Let L be the subspace of regular functions on H spanned by the πij . Consider the
action of G = H ×H on H by the multiplication from left and right. The subspace
L is a G-invariant subspace. Let Λ+

R
(respectively W ) denote the positive Weyl

chamber (respectively the Weyl group) of H. As in [16], one can show that the
moment polytope of the G-algebra AL (which lives in Λ+

R
× Λ+

R
) can be identified

with the convex hull of the W -orbit of the highest weights of the representation π
intersected with the positive Weyl chamber Λ+

R
.

We now give lower and upper estimates for the moment polytope of an algebra
AL associated to an invariant subspace (L, ϕ) ∈ KG(X). Note that AL is finitely
generated and hence its moment body is a polytope (Corollary 3.8). We define two
polytopes which are lower and upper estimates for the moment polytope ∆(AL).
Let I ⊂ Λ+ be the finite set of all dominant weights λ where Vλ appears in the
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G-module L with nonzero multiplicity. Let P (I) be the convex hull of I. It is a
convex polytope in Λ+

R
(X). Also let PW (I) be the intersection of Λ+

R
(X) with the

convex polytope obtained by taking the convex hull of the union of W -orbits of all
the λ ∈ I.

Proposition 3.12. With notation as above, we have

P (I) ⊂ ∆(AL) ⊂ PW (I).

Proof. Follows immediately from Theorem 3.2. �

There are two well-known classes of G-varieties for which the two extremes of
P (I) and PW (I) are obtained. For the homogeneous coordinate ring of a so-called
horospherical G-variety the moment polytope is equal to P (I). On the other hand,
the upper estimate PW (I) is attained for symmetric varieties. It turns out that
in both cases the moment polytope is additive, in the sense which is explained in
Section 3.2 (see [12] for the case of symmetric varieties).

3.2. Superadditivity of the moment convex body. Let X be an irreducible
G-variety. In this section we address the additivity of the mapping A 7→ ∆(A) with
respect to the componentwise product of G-algebras in AG(X). We will show that
in general this map is superadditive but in the case of a torus action G = T is
additive.

Let us start with the case of a torus action. Let T be a torus andX an irreducible
T -variety.

Proposition 3.13. (1) Let (A′, ϕ′), (A′′, ϕ′′) ∈ AT (X) be two graded T -algebras.
Then ∆T (A) = ∆T (A

′) +∆T (A
′′), where (A, ϕ) = (A′A′′, ϕ′ϕ′′) is the componen-

twise product of A′, A′′, and the addition in the right-hand side is the Minkowski
sum of convex bodies.

(2) Let (L, ϕ) be a T -invariant subspace of rational functions and let I be the
finite set of T -weights of L. Then the moment convex body of the algebra AL

coincides with the convex hull of I.
(3) The map L 7→ ∆T (AL) is additive with respect to the multiplication of sub-

spaces. That is, if L1, L2 are two T -invariant subspaces then

∆T (AL1L2
) = ∆T (AL1

) + ∆T (AL2
).

Proof. (1) If f and g are T -eigenfunctions of weights λ and γ respectively then
fg is a T -eigenfunction of weight λ + γ. It implies that the semigroup ST (A)
is the levelwise addition of semigroups ST (A

′) and ST (A
′′). It then follows that

∆T (A) = ∆T (A
′) + ∆T (A

′′) (see Section 1.1).
(2) The semigroup S(AL) is generated by the finite set {1} × I ⊂ Z>0 × χ(T )

and hence its moment convex body coincides with the convex hull of I.
(3) Follows immediately from (1). �

Now we address the case of a reductive group action. Let (A′, ϕ), (A′′, ϕ′′) ∈
AG(X) be two graded G-algebras. We have the following inclusion of the algebras
of U -invariants:

(A′U )(A′′U ) ⊂ (A′A′′)U .
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In general (A′U )(A′′U ) might be strictly smaller than (A′A′′)U , and hence the map
A 7→ ∆(A) is only superadditive with respect to the componentwise product of
algebras (see Remark 3.4):

Proposition 3.14 (Superadditivity). With notation as above, we have

∆(A′) + ∆(A′′) ⊂ ∆(A).

In particular, if (L′, ϕ′), (L′′, ϕ′′) ∈ KG(X) are invariant subspaces then we have

∆(AL′) + ∆(AL′′) ⊂ ∆(AL′L′′).

4. Multiplicity Convex Body and Duistermaat–Heckman Measure

4.1. Multiplicity convex body of a G-algebra. As usual let X be an irre-
ducible G-variety with dimX = n. Following Okounkov [21], in this section we

define a larger semigroup Ŝ(A) lying over the weight semigroup S(A) such that it
encodes information about the multiplicities of irreducible representations appear-
ing in A.

In [21] the author deals with the homogeneous coordinate rings of projective G-
varieties. Here we deal with the larger class of graded algebras of almost G-integral
type.

Equip Zn with a total order which respects addition. Fix a valuation v : C(X)∗ →
Zn with the following properties: (1) The image of v is the whole Zn, (2) v has
one-dimensional leaves, i.e. if for f, g ∈ C(X)∗, v(f) = v(g) then there is c ∈ C

with v(f − cg) < v(f) or f − cg = 0, 3) v is invariant under the action of the Borel
subgroup B.

When X is a projective G-variety, from the Lie-Kolchin theorem it follows that
a valuation with the above properties exists (see [21]). On the other hand, if X is
a normal G-variety, by a theorem of Sumihiro, X is G-equivariantly birational to a
projective G-variety.

Definition 4.1. Let Λ̂(X) = v(C(X)U \ {0}) be the image of the subfield of

rational U -invariants under the valuation v. It is a lattice in Zn. The rank of Λ̂(X)
is equal to the transcendence degree of the field C(X)U . We will denote this rank

by r̂ = r̂(X). We also denote the linear span of Λ̂(X) by Λ̂R(X).

Let (A, ϕ) be a graded G-algebra and write A =
⊕

k>0 Lk.

Definition 4.2. (1) Define the set ŜG(A) ⊂ Z>0 × Zn by

ŜG(A) =
⋃

k>0

{(k, v(f)) : f ∈ LU
k \ {0}}.

We call the semigroup ŜG(A), the multiplicity semigroup of the algebra A. When

there is no ambiguity we will simply write Ŝ(A) instead of ŜG(A).

(2) Denote the Newton–Okounkov convex set of the semigroup ŜG(A) by ∆̂G(A)

or simply ∆̂(A) and call it the multiplicity convex set of A.

(3) Denote the lattice Λ(Ŝ(A)) associated to the semigroup Ŝ(A) by Λ̂(A).
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The following are some basic properties of the semigroup Ŝ(A). To keep the
paper short we skip the proof.

Proposition 4.3. (1) If A is a graded algebra of almost G-integral type then Ŝ(A)

is a strongly non-negative semigroup and hence the multiplicity convex set ∆̂(A) is
a convex body.

(2) The lattice Λ̂(A) associated to the semigroup Ŝ(A) is contained in the lattice

Λ̂(X). It follows that the multiplicity body ∆̂(A) is parallel to the subspace Λ̂R(X).
(3) Suppose L ∈ KG(X) is such that the Kodaira map ΦL gives a birational

isomorphism between X and its image. Then the lattice Λ̂(AL) coincides with Λ̂(X).

Next we will show that the semigroup Ŝ(A) contains information about the
multiplicities of the irreducible representations appearing in A and hence the name.

Following Okounkov, we show that there is a natural projection from Ŝ(A) onto
the weight semigroup S(A). Write

A =
⊕

k>0

⊕

λ∈Λ+

Lk,λ,

where Lk,λ is the λ-isotypic component in Lk, i.e., the sum of all copies of the
irreducible representation Vλ in Lk. Let us recall the following well-known facts:
(1) The subspace of U-invariants V U

λ in an irreducible representation Vλ is one-
dimensional (the highest weight vectors). (2) The dimension of the subspace LU

k,λ

is equal to the multiplicity mk,λ of the highest weight λ in the G-module Lk.

Lemma 4.4. Let k > 0 be an integer.
(1) Let f ∈ Lk,λ, g ∈ Lk,µ be two B-eigenfunctions of weights λ, µ respectively

and assume that λ 6= µ. Then v(f) 6= v(g).
(2) For any value a ∈ v(LU

k \ {0}) there is a dominant weight λ ∈ Λ+ and a
B-eigenfunction f ∈ LU

k,λ such that v(f) = a.

Proof. (1) By contradiction suppose that a = v(f) = v(g). Consider the leaf

Fa = {h : v(h) > a}/{h : v(h) > a}.

Since v has one-dimensional leaves, Fa has dimension 1. On the other hand, since
the valuation v is B-invariant, Fa is a B-module. But then Fa can not have two
distinct weights λ and µ. The contradiction proves the claim.

(2) We know that dimLU
k =

∑
λ∈Λ+ dimLU

k,λ, moreover (since v has one-dimen-

sional leaves) dimLU
k = #v(LU

k \ {0}) and dimLU
k,λ = #v(LU

k,λ \ {0}). But by (1)

if λ 6= µ then v(LU
k,λ \ {0}) ∩ v(LU

k,µ \ {0}) = ∅. Thus v(LU
k \ {0}) is equal to⋃

λ∈Λ+ v(LU
k,λ \ {0}). This proves (2). �

Let a ∈ v(LU
k \ {0}) be a value of the valuation. By Lemma 4.4(2) there exists

a unique weight λ(a) such that a = v(f) for some B-eigenfunction f of weight
λ(a). Consider the map (k, a) 7→ (k, λ(a)). It is a surjective additive map π̂ from

the semigroup Ŝ(A) onto S(A): Let f , g be two B-eigenfunctions of weights λ, µ
respectively. Also let v(f) = a and v(g) = b. Then clearly fg is a B-eigenfunction
of weight λ + µ and v(fg) = a + b. That is, λ(a + b) = λ + µ = λ(a) + λ(b). The
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map π̂ then extends to a linear map from L(Ŝ(A)) to L(S(A)), which by abuse of
notation we denote again by π̂.

The number of points in the fibre of π̂ over a point (k, λ) ∈ S(A) gives the
multiplicity of the corresponding highest weight in Lk:

Proposition 4.5. For each (k, λ) ∈ S(A), the number of points in π̂−1(k, λ)∩Ŝ(A)
is equal to the multiplicity mk,λ of the irreducible representation Vλ in Lk.

Proof. From definition, the number of points in π̂−1(λ, k) ∩ Ŝ(A) is equal to the
number of points in the image of LU

λ,k \{0} under the valuation v. But this is equal

to the dimension of LU
k,λ, which is in turn equal to the λ-multiplicity of Lk. �

Let M(k) =
∑

λ∈Λ+ mk,λ be the sum of multiplicities in Lk (i.e. M(k) is the

Hilbert function of the graded algebra AU ). Then M(k) is equal to the number of

points in the semigroup Ŝ(A) at level k. Applying Theorem 1.5 to the semigroup

Ŝ(A) we obtain:

Corollary 4.6. Let A ∈ AG(X) be a graded algebra of almost G-integral type. Let

p̂ = dim ∆̂(A) be the dimension of the multiplicity body of A. Then the function
M(k) has growth degree p̂, moreover :

lim
k→∞

M(k)

kp̂
= Volp̂(∆̂(A)),

where the volume is normalized with respect to the lattice Λ̂(A).

In Section 6 we will give a formula for the self-intersection index of an invariant
subspace L of rational functions in terms of the integral of an (explicitly defined)
polynomial function over the multiplicity convex body of the algebra A = AL.

Remark 4.7. One can describe the asymptotic behavior of the multiplicities mk,kλ,
as k → ∞, in terms of the dimension and volume of the fibres π̂−1(λ) of the

projection π̂ : ∆̂(A) → ∆(A).

Example 4.8. As in Example 3.10, let X = G/B and let A be the ring of sections
of a G-linearized line bundle Lλ associated to a dominant weight λ. Let us regard
X as a T -variety and hence A as a T -algebra. It is shown in [11] that for a choice of

a natural T -invariant valuation v on C(X), the multiplicity body ∆̂T (A) coincides
with a so-called string polytope corresponding to the weight λ (see Section 5.1).
The well-known Gelfand–Cetlin polytopes of G = GL(n, C) are special cases of
string polytopes.

4.2. Duistermaat–Heckman measure for graded G-algebras. Let X be an
irreducible G-variety. In this section we extend the definition of the Duistermaat–
Heckman measure (for projective G-varieties and G-linearized very ample line bun-
dles) to graded G-algebras A ∈ AG(X).

Let us recall the Duistermaat–Heckman measure for a Hamiltonian action from
symplectic geometry: Let K be a compact Lie group and X a compact Hamiltonian
K-manifold with the moment map φ : X → Lie(K)∗. Let us denote the moment
polytope which is the intersection of φ(X) with the positive Weyl chamber by
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∆(X). Let λ ∈ ∆(X) be a regular value for the moment map and let Kλ denote
its K-stabilizer. The reduced space Xλ = φ−1(λ)/Kλ is a symplectic manifold
with respect to a natural symplectic form. The Duistermaat–Heckman measure on
the polytope ∆(X) is the measure Vol(Xλ)dγ, where Vol is the symplectic volume
and dγ is the Lebesgue measure on ∆(X) (normalized with respect to the weight
lattice Λ).

Let (A, ϕ) ∈ AG(X) be a graded algebra of almost G-integral type. Let p =

dim∆(A) and p̂ = dim ∆̂(A) be the dimensions of the moment body ∆(A) and the

multiplicity body ∆̂(A) respectively. From Corollary 4.6 we know that M(k), the
sum of multiplicities in Lk, has growth degree equal to p̂. For each integer k > 0
consider the measure dµk with finite support defined on the positive Weyl chamber
Λ+
R
by

dµk =
∑

λ∈Λ+

mk,λδλ/k,

where δx denotes the Dirac measure centered at the point x. Let dγ̂ be the Lebesgue

measure on the multiplicity body ∆̂(A) normalized with respect to the lattice Λ̂(A)

associated to the semigroup Ŝ(A).

Consider the linear map π̂ : Ŝ(A) → S(A) from Section 4.1. With notations as
in Section 1.2, the measures dµk are the measures associated to the pair (S(A),

Ŝ(A)) and the linear map π̂. Applying Theorem 1.7, we obtain the following:

Theorem 4.9. (1) The sequence dµk/k
p̂ weakly converges (as k → ∞) to a (finite)

measure dµA supported on the moment convex body ∆(A).
(2) The measure dµA is equal to the push-forward, under π̂, of the Lebesgue

measure dγ̂ on ∆̂(A) to the moment body ∆(A).

Remark 4.10 (Duistermaat–Heckman measure for projective G-subvarieties). Let
(L, ϕ) ∈ KG(X) be an invariant subspace of rational functions with the Kodaira
map ΦL : X → P(L∗). As usual let YL ⊂ P(L∗) denote the closure of the image of
ΦL. It is a closed irreducible G-invariant subvariety of the projective space P(L∗).
Let us assume YL is smooth. As in Remark 3.5, fix a K-invariant Hermitian inner
product on L∗, where K is a maximal compact subgroup of G. This induces a K-
invariant symplectic structure on P(L∗) and hence on YL. With this YL becomes a
Hamiltonian K-space. Using the principle of quantization commutes with reduction
one proves that (up to multiplication by a constant) the Duistermaat–Heckman
measure of the Hamiltonian space YL coincides with the measure dµAL

(see [9,
Theorem 6.5]).

Definition 4.11 (Duistermaat–Heckman measure for G-algebras). Let (A, ϕ) ∈
AG(X) be a graded algebra of almost G-integral type. In analogy with the case of
Hamiltonian spaces, we call dµA the Duistermaat–Heckman measure associated to
the G-algebra A.

In Section 6.1 we will give a formula for the self-intersection index of an invariant
subspace L of rational functions in terms of the integral of an (explicitly defined)
polynomial over the moment body of A = AL with respect to the Duistermaat–
Heckman measure of the algebra A.
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Similarly to the moment body, the multiplicity body also enjoys a superadditivity
property. Let (A′, ϕ′), (A′′, ϕ′′) ∈ AG(X) be two graded G-algebras. As in Section
3.2, we have (A′U )(A′′U ) ⊂ (A′A′′)U . In general (A′U )(A′′U ) might be strictly

smaller than (A′A′′)U and thus the map A 7→ ∆̂(A) is in general only superadditive:

Proposition 4.12 (Superadditivity for multiplicity body). With notation as above,
we have

∆̂(A′) + ∆̂(A′′) ⊂ ∆̂(A′A′′).

In particular, if (L′, ϕ′), (L′′, ϕ′′) ∈ KG(X) are invariant subspaces then we have

∆̂(AL′) + ∆̂(AL′′) ⊂ ∆̂(AL′L′′).

Proof. The inclusion (A′U )(A′′U ) ⊂ (A′A′′)U implies that the levelwise addition of

Ŝ(A′) and Ŝ(A′′) is contained in Ŝ(A′A′′). The superadditivity immediately follows
from this inclusion. �

Recall that by Proposition 4.3(1), the multiplicity body ∆̂(A) is parallel to the

subspace Λ̂R(X). Also r̂ = r̂(X) denotes the dimension of Λ̂R(X). Applying the
superadditivity (Proposition 4.12) and the classical Brunn–Minkowski inequality
we obtain the following:

Corollary 4.13 (Brunn–Minkowski inequality for DH measure of algebras). Let

(A′, ϕ), (A′′, ϕ′′) ∈ AG(X) be two graded G-algebras. Also assume that Λ̂(A′) =

Λ̂(A′′) = Λ̂(X). Let dµA′ = fA′dγ, dµA′′ = fA′′dγ and dµA = fAdγ denote the
Duistermaat–Heckman functions for the algebras A′, A′′ and A = A′A′′ respectively.

Here dγ is the Lebesgue measure on Λ̂(X)R (or its parallel shifts) normalized with

respect to Λ̂(X). Then for λ′ ∈ ∆(A′), λ′′ ∈ ∆(A′′) we have

fA′(λ′)1/r̂ + fA′′(λ′′)1/r̂ 6 fA(λ
′ + λ′′)1/r̂.

In particular, applied to to the homogeneous coordinate rings, the above corollary
implies a Brunn–Minkowski inequality for the Duistermaat–Heckman measures of
projective G-varieties.

4.3. Fujita approximation for Duistermaat–Heckman measure. The Fu-
jita approximation theorem in the theory of divisors states that the so-called vol-
ume of a big divisor can be approximated arbitrarily closely by the self-intersection
numbers of very ample divisors (see [7], [18]). In [19] it is shown that this theo-
rem can be deduced from a statement about semigroups of integral points and it
is extended to a large class of graded linear systems. Motivated by [19], in [15] an
abstract version of this theorem is proved for general semigroups of integral points.
This then gives a Fujita type approximation for graded algebras, which in turn im-
plies a slight extension of the Fujita approximation theorem of Lazarsfeld–Mustata
to arbitrary graded linear systems.

Now we apply Theorem 1.8 to prove a version of the Fujita approximation the-
orem for the Duistermaat–Heckman measures of graded G-algebras. That is, we
prove that the Duistermaat–Heckman measure of a gradedG-algebra can be approx-
imated arbitrarily closely by the Duistermaat–Heckman measures of the G-algebras
of type AL for finite dimensional invariant subspaces L. This will follow from the
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analogous statement (Theorem 1.8) for semigroups. In the case of algebra of sec-
tions of G-line bundles, it implies that the Duistermaat–Heckman measure of a
G-line bundle can be approximated arbitrarily closely by that of very ample G-line
bundles. (The Duistermaat–Heckman measures of very ample line bundles are the
usual ones defined by symplectic geometry, i.e., regarding X as a K-Hamiltonain
space, see Remark 4.10 .)

Take an integer k > 0 such that Lk 6= {0}. Consider the graded G-algebra ALk

associated to Lk. Let dρk be the Duistermaat–Heckman measure associated to
ALk

. In other words, dρk is the Duistermaat–Heckmann measure of the projective
G-subvariety YLk

⊂ P(L∗
k), where YLk

is the closure of the image of the Kodaira
map of Lk. Let m̂k,ℓ,λ be the multiplicity of the irreducible representation Vλ in
(Lk)

ℓ, i.e. the ℓ-th subspace of the algebra ALk
. Then:

dρk = lim
ℓ→∞

(1/ℓp̂)
∑

λ∈Λ+

m̂k,ℓ,λδλ/ℓ.

The DH measure dρk is supported on the convex polytope ∆(ALk
) (which is con-

tained in the convex body k∆(A)).
Let O1/k : ΛR → ΛR denote the multiplication by the scalar 1/k.

Theorem 4.14 (Fujita approximation type theorem for Duistermaat–Heckman
measure of algebras). Let (A, ϕ) ∈ AG(X) be a graded algebra of almost G-
integral type. Then, as k → ∞, the measures O∗

1/k(dρk)/k
p̂ converge weakly to

the Duistermaat–Heckman measure dµA associated to the G-algebra A. Here O∗
1/k

denotes the push-forward of the measure dρk on ∆(ALk
) to the convex body ∆(A).

Proof. The claim follows from Theorem 1.8 applied to π̂ : Ŝ(A) → S(A). �

5. String Convex Body of a G-Algebra

Let A ∈ AG(X) be a graded G-algebra. As in Section 4, fix a B-invariant
valuation v on C(X) (with one-dimensional leaves and values in Z

n). To the G-

algebra A we associated the multiplicity convex body ∆̂G(A), which is constructed
out of the value semigroup of v on the subalgebra AU . We can also consider A as a

T -algebra and consider the convex body ∆̂T (A) which is constructed out of the value

semigroup of v on the whole A. In general, since AU ⊂ A we have ∆̂G(A) ⊂ ∆̂T (A).

Moreover, for each k > 0, the number of points in ŜG(A) at level k is equal to
the sum of multiplicities of different highest weights in Lk, while the number of

points in ŜT (A) at level k is equal to the dimension of Lk and hence ∆̂T (A) is
responsible for the asymptotic growth of the Hilbert function of A. In this section

we give a more canonical construction of a convex body ∆̃(A) which resembles

∆̂T (A), and projects onto the multiplicity body ∆̂G(A). In particular, ∆̃(A) is
responsible for the asymptotic growth of the Hilbert function of A. For this we
use the so-called string polytopes of Littelmann–Berenstein–Zelevinsky associated
to irreducible representations of a reductive group.

5.1. String polytopes for irreducible representations. In this section we
recall the definition of string polytopes for a reductive group G.
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Consider the algebra
A = C[G]U

of regular functions on G that are invariant under the right multiplication by U .
The group G×T acts on A, where G acts on the left and T acts on the right, since
it normalizes U . It is well-known that as a G× T -module A decomposes into:

A ∼=
⊕

λ∈Λ+

V ∗
λ ,

where V ∗
λ = Vλ∗ is the irreducible representation with highest weight λ∗ = −w0(λ),

and T acts on each V ∗
λ via the character λ.

The vector space A has a remarkable basis B = (bλ,φ), usually called the dual
canonical basis, such that each bλ,φ is an eigenvector of T×T ⊂ G×T , of weight λ for
the right T -action. For fixed λ, the vectors bλ,φ form a basis for V ∗

λ . For a reduced
decomposition of w0, the longest element of W , one can define a parametrization
of B called the string parametrization [20], [3]. Recall that an N -tuple of simple
reflections

w0 = (si1 , si2 , . . . , siN )

is a reduced decomposition for w0 if w0 = si1si2 · · · siN , N = ℓ(w0). The string
parametrization associated to w0 is an injective map

ιw0
: B → Λ+ × N

N ,

ι(bλ,φ) = (λ, t1, . . . , tN ).

The string parameters have to do with the weight of a basis element as an eigen-
vector for the T × T -action: the weight of bλ,φ ∈ B for the left T -action is

−λ+ t1αi1 + · · ·+ tNαiN .

A remarkable property of the string parameterization is that its image consists
of all the integral points in a certain rational convex polyhedral cone C in ΛR ×RN

[20].

Definition 5.1. The string polytope ∆w0
(λ) is the polytope in RN obtained by

slicing the cone C at λ, that is,

∆w0
(λ) = {(t1, . . . , tN ) : (λ, t1, . . . , tN ) ∈ C}.

Note that: (1) ∆w0
(λ) is defined for any λ ∈ Λ+

R
. (2) From the definition it

follows that ∆w0
(kλ) = k∆w0

(λ) for any positive integer k. (3) The fact that

C is a convex cone implies that for λ1, λ2 ∈ Λ+
R

we have ∆w0
(λ1) + ∆w0

(λ2) ⊂

∆w0
(λ1 + λ2).

By what was said above, when λ is a dominant weight, the lattice points in
∆w0

(λ), i.e., the points in ∆w0
(λ) ∩ ZN , are in bijection with the elements of the

basis bλ,φ for V ∗
λ (and hence in bijection with the basis for Vλ). Thus,

#(∆w0
(λ) ∩ Z

N ) = dim(Vλ). (2)

Let vλ ∈ Vλ be a highest weight vector and Pλ the parabolic subgroup associated
to the weight λ, that is, Pλ is the stabilizer of the point [vλ] ∈ P(Vλ). Then we have
an embedding i : G/Pλ →֒ P(Vλ), given by gPλ 7→ g · [vλ]. Let Lλ = i∗(O(1)) be the
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line bundle on G/Pλ induced by this embedding. By Borel–Weil one knows that for

k > 0, H0(X, L⊗k
λ ) ∼= V ∗

kλ as G-modules. Put m = dim(G/Pλ). From (2) it follows
that the degree of G/Pλ, as a subvariety of P(Vλ) is equal to m! Volm(∆w0

(λ)).

Remark 5.2. The Gelfand–Cetlin polytopes [8], [2] are special cases of the string
polytopes. More precisely, let G = GL(n, C). The Weyl group is W = Sn. Let us
take the nice reduced decomposition

w0 = (s1)(s2s1)(s3s2s1) · · · (sn−1 · · · s1)

for w0, where si denotes the transposition exchanging i and i + 1. Then ∆w0
(λ)

can be identified with the well-known Gelfand–Cetlin polytope corresponding to λ.
Similarly, when G = SP(2n, C) or SO(n, C), for a similar choice of a reduced de-
composition, one can recover the Gelfand–Cetlin polytopes as the string polytopes
[20].

5.2. String convex body of a G-algebra. Let (A, ϕ) be a graded G-algebra.
Using the string polytopes we now define a semigroup lying over the multiplic-

ity semigroup Ŝ(A) which encodes information both about multiplicities and the
dimensions of the isotypic components.

Fix a reduced decomposition w0 for the longest element w0 in the Weyl group.

Let a ∈ v(LU
k \ {0}) be a value of the valuation. Recall that we associate a weight

λ(a) to a. The linear projection π̂ : Ŝ(A) → S(A) is then defined by (k, a) 7→
(k, λ(a)) (paragraph before Proposition 4.5).

Definition 5.3. Define the set S̃G(A) ⊂ Z>0 × Zn+N by

S̃G(A) = {(k, a, b) : (k, a) ∈ Ŝ(A), b ∈ ∆w0
(λ(a)) ∩ Z

N},

where ∆w0
(λ) is the string polytope associated to the weight λ and the reduced

decomposition w0. When there is no ambiguity we will write S̃(A) instead of S̃G(A).

The map (k, a, b) 7→ (k, a) induces a surjective map π̃ : S̃(A) → Ŝ(A).

Proposition 5.4. (1) The set S̃G(A) is a semigroup (under addition).

(2) For every (k, a) ∈ Ŝ(A), the number of points in π̃−1(k, a) is equal to the
dimension of the irreducible representation Vλ, where λ = λ(a).

(3) Consider the linear map π̂ ◦ π̃ : S̃(A) → S(A). For every (k, λ) ∈ S(A), the
number of points in (π̂◦π̃)−1(k, λ) is equal to the dimension of λ-isotypic component

Lλ,k in Lk. If A is an algebra of almost G-integral type then the semigroup S̃(A)
is a strongly non-negative semigroup and hence its Newton–Okounkov convex set is
a convex body.

Proof. (1) We know that for any two λ1, λ2 ∈Λ+
R
, ∆w0

(λ1)+∆w0
(λ2)⊂∆w0

(λ1+λ2)

(the paragraph after Definition 5.1). This implies that S̃(A) is a semigroup.
(2) The number of points in π̃−1(k, a) is equal to the number of integral points

in the string polytope ∆w0
(λ) (where λ = λ(a)), and the latter is equal to dimVλ.

(3) By Proposition 4.3(1) we know that the semigroup Ŝ(A) is a strongly non-
negative semigroup. Also the cone Cw0

is strongly convex. These two facts imply
the claim. �
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Definition 5.5. We denote the Newton–Okounkov convex set of the semigroup

S̃(A) by ∆̃(A) and call it the string convex set of (A, ϕ). By above, when A is of

almost G-integral type, ∆̃(A) is a convex body.

Proposition 5.6 (Superadditivity of the string body). Let (A′, ϕ′), (A′′, ϕ′′) ∈
AG(X) be two graded G-algebras. Then we have:

∆̃(A′) + ∆̃(A′′) ⊂ ∆̃(A).

In particular, if (L′, ϕ′), (L′′, ϕ′′) ∈ KG(X) are invariant subspaces then:

∆̃(AL′) + ∆̃(AL′′) ⊂ ∆̃(AL′L′′).

Proof. It follows immediately from the superadditivity of the string polytope (the
paragraph after Definition 5.1) and the superadditivity of the multiplicity body
(Proposition 4.12). �

Finally, analogously to the weight lattice Λ(X) and the multiplicity lattice Λ̂(X),

we can associate a sublattice Λ̃(X) of Zn+N to the variety X which is the largest

possible lattice that can appear as Λ̃(A) for a G-algebra A: Define the lattice Λ̃(X)

to be the lattice generated by all the (a, b), where a ∈ Λ̂(X) is such that λ(a) is
dominant, and b ∈ ∆w0

(λ(a))∩ZN . The next proposition follows from the definition

and Proposition 4.3(2) and (3).

Proposition 5.7. (1) Let (A, ϕ) ∈ AG(X) be a G-algebra. Then the lattice Λ̃(A)

is contained in Λ̃(X).
(2) Suppose (L, ϕ) ∈ KG(X) is an invariant subspace such that the Kodaira map

ΦL is a birational isomorphism between X and its image. Then Λ̃(AL) coincides

with Λ̃(X).

6. Self-Intersection Index of Invariant Subspaces

In this section we give formulae for the growth of the Hilbert function of a

graded G-algebra in terms of the convex bodies ∆(A), ∆̂(A) and ∆̃(A). When
A = AL, for an invariant subspace (L, ϕ) ∈ KG(X), this implies formulae for the
self-intersection index of L.

6.1. Formulae for the growth of Hilbert function and self-intersection

index. Let X be an irreducible G-variety of dimension n. Let (A, ϕ) ∈ AG(X) be
a graded algebra of almost G-integral type, and let HA denote the Hilbert function
of A.

We start with the largest of the three convex bodies namely ∆̃. Let S̃k denote

the points at level k in the semigroup S̃. As in Section 5.2 we have dimLk = #S̃k.

Applying Theorem 1.5 to the semigroup S̃ we obtain:

Theorem 6.1. (1) The growth degree q is equal to the dimension of the convex

body ∆̃.

(2) The q-th growth coefficient aq = limk→∞ HA(k)/k
q is equal to Volq(∆̃), where

the volume is normalized with respect to the lattice Λ̃(A) associated to the semi-

group S̃.
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Let λ ∈ Λ+ be a dominant weight. By the Weyl dimension formula we have

F (λ) = dimVλ =
∏

α∈R+

〈λ+ ρ, α〉/〈ρ, α〉,

where R+ is the set of positive roots and ρ is half the sum of positive roots. Consider
F as a function on the lattice of weights Λ(A) (consisting of all the differences λ−µ
for all k > 0 and λ, µ ∈ Sk). Then the homogeneous component of the highest
degree of F , as a function on the subspace ΛR(A) spanned by the lattice Λ(A), is
given by:

f(λ) =
∏

α∈R+\E

〈λ, α〉

〈ρ, α〉
. (3)

Here E is the set of positive roots which are orthogonal to the moment polytope ∆.

Let π̂∗F and π̂∗f denote the pull-backs of F and f to the semigroup Ŝ via the

projection π̂ : Ŝ → S respectively. Applying Theorem 1.5 to the semigroup Ŝ and
the polynomial π̂∗F we get:

Corollary 6.2. The q-th growth coefficient aq of the Hilbert function HA is equal
to the integral ∫

∆̂

π̂∗f dγ̂,

where dγ̂ is the Lebesgue measure on the real span of the convex body ∆̂ normalized

with respect to the lattice Λ̂(A).

Finally we can give a formula for the growth coefficient aq as an integral over
the moment convex body ∆. Recall that dµ denotes the Duistermaat–Heckman
measure for the G-algebra A.

Corollary 6.3. The q-th growth coefficient aq of the Hilbert function HA is equal
to the integral ∫

∆

f dµ.

Using the above results we can get formulae for the self-intersection number of
an invariant subspace. Let (L, ϕ) ∈ KG(X) be an invariant subspace of rational
functions on X. Let AL =

⊕
k L

k be the algebra associated to L. Also, as in

Example 2.7(2), let A = AL denote the integral closure of this algebra regarded as

a subalgebra of F [t]. As above, let ∆, ∆̂ and ∆̃ denote respectively the moment
body, multiplicity body and string body of the algebra A. Note that since AL is
finitely generated, A is also finitely generated and hence ∆ is a polytope.

From Hilbert’s theorem on the dimension and degree of a projective variety, it
follows that the self-intersection index [L, . . . , L] is equal to n! times the coefficient
of degree n in the Hilbert polynomial of the algebra A (see [15, Section 4]).

Suppose the Kodaira map ΦL has finite mapping degree, that is, dim(YL) = n.
Then one can show that for any large enough k, the Kodaira map ΦLk

is a birational
isomorphism, where Lk denotes the k-th homogeneous piece of A (see [15, Section
4.3]). From this it follows that the lattices corresponding to the algebra A are the

largest possible, that is, Λ(A) = Λ(X), Λ̂(A) = Λ̂(X) and Λ̃(A) = Λ̃(X). Putting
these together we obtain the following:



394 K. KAVEH AND A. KHOVANSKII

Theorem 6.4. We have the following formula for the self-intersection index of an
invariant subspace (L, ϕ):

[L, . . . , L] = n! Voln(∆̃),

where Voln is the Lebesgue measure in Λ̃R(X) = Λ̃(X)⊗R normalized with respect

to the lattice Λ̃(X).

Proof. It follows from Theorem 6.1, as in the proof of [15, Theorem 4.12]. �

Corollary 6.5.

(1) [L, . . . , L] = n!

∫

∆̂

π̂∗f dγ̂,

where the measure dγ̂ is the Lebesgue measure in Λ̂R(X) normalized with respect to

the lattice Λ̂(X).

(2) [L, . . . , L] = n!

∫

∆

f dµ,

where the measure dµ is the Duistermaat–Heckman measure of the algebra AL.

Proof. Follows directly from Theorem 6.4. �

We have analogous statements for the self-intersection index of divisors on a
projective G-variety X.

Corollary 6.6. Let X be a normal projective G-variety of dimension n and let
L be a G-linearized very ample line bundle on X. Let D be a divisor of L and
let R(D) be the corresponding algebra of sections regarded as a G-algebra (as in
Example 2.7). Then the self-intersection index Dn of the divisor D is equal to

n!

∫

∆

f dµ,

where dµ is the Duistermaat–Heckman measure.

6.2. Case of a spherical variety. A G-variety X is called spherical if a Borel
subgroup (and hence every Borel subgroup) has a dense orbit. Some authors require
that a spherical variety be normal. Here we do not need the normality assumption.

Remark 6.7. (1) When G = T is a torus, spherical varieties are exactly toric
varieties.

(2) By Bruhat decomposition, partial flag varieties G/P are spherical.
(3) Again by Bruhat decomposition, G is a spherical variety for the action of

G×G given by multiplication from left and right.

It is well-known that the spaces of sections of G-line bundles over spherical
varieties are multiplicity-free G-modules. The following is the analogous statement
for the invariant subspaces of rational functions.

Proposition 6.8. If X is spherical and (L, ϕ) ∈ KG(X) then L is a multiplicity-
free G-module.
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Proof. For a dominant weight λ let f, g ∈ L be two B-eigenvectors with weight λ
in the G-module L. Then f/g ∈ C(X) is a B-invariant function, for the natural
(non-twisted) action of G on C(X). But as X is spherical it has a dense B-orbit,
which then implies that f/g is a constant function. Thus f is a scalar multiple
of g, which shows that every highest weight representation Vλ appears in L with
multiplicity at most 1. �

Since invariant subspaces of functions over spherical varieties are always multi-
plicity-free, we observe that, when X is spherical, for any algebra (A, ϕ) ∈ AG(X)

the multiplicity body ∆̂(A) coincides with the moment body ∆(X). In this case,
Theorem 6.4 and Corollary 6.5 get nicer and more explicit forms.

Corollary 6.9 (Self-intersection index of invariant subspaces for spherical vari-
eties). Let X be a spherical variety of dimension n and let (L, ϕ) ∈ KG(X) be an
invariant subspace of rational functions. We have

[L, . . . , L] = n! Voln(∆̃(AL)) = n!

∫

∆(AL)

f dγ,

where dγ is the Lebesgue measure (normalized with respect to Λ(X)) and f is as in
the paragraph preceding Corollary 6.2.

Corollary 6.10 (Self-intersection index of divisors for spherical varieties). Let X be
a normal projective spherical variety of dimension n and let L be a G-linearized very
ample line bundle on X. Let D be a divisor of L and let R(D) be the corresponding
algebra of sections regarded as a G-algebra (as in Example 2.7). Then the self-
intersection index Dn of the divisor D is equal to:

n! Voln(∆̃(R(D))) = n!

∫

∆(R(D))

f dγ,

where dγ and f are as above.

Remark 6.11. The algebras R(D) and AL are both finitely generated and hence
both their moment bodies are convex polytopes. Also since for spherical varieties,
the multiplicity body coincide with the moment body, it follows that their string
convex bodies are also convex polytopes. This makes the formulae for the growth
of Hilbert functions and self-intersection indices much more concrete.

For the case of X = G, with the left-right (G ×G)-action, Corollary 6.9 is due
to B. Kazarnovskii (see [16]). Corollary 6.10 is due to M. Brion (see [6]).
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