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To Vladimir Igorevich Arnold,
mathematical idol of my generation

Abstract—We discuss the problem of representability and nonrepresentability of algebraic
functions by radicals. We show that the Riemann surfaces of functions that are the inverses
of Chebyshev polynomials are determined by their local behavior near branch points. We find
lower bounds on the degrees of equations to which sufficiently general algebraic functions can be
reduced by radicals. We also begin to classify rational functions of prime degree whose inverses
are representable by radicals.
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Forty one years ago, in the spring of 1966, Vladimir Igorevich agreed to become my scientific
adviser. I was nineteen years old, and Arnold was twenty nine. He started to deliver his “Classical
Mechanics” in the fall of 1966. The students of our year were the first listeners. The first impression
was that Arnold is a mathematician with extraordinarily broad interests and with his own view of
a subject. Mathematics is a whole entity to him, which is permeated by a network of links known
only to him.

His seminar on singularity theory dealt with virtually everything. For example, just about that
time, the seminar intensively discussed the resolvent problem, which is a variant of Hilbert’s 13th
problem for algebraic, rather than continuous, functions. Arnold initiated a topological approach
to this problem. He suggested considering an algebraic function as a multivalued analytic function
of several variables and seeking topological obstacles to the representability of such functions as a
composition of algebraic functions of a smaller number of variables.

A few years before that time, as he was training gifted schoolchildren in the Kolmogorov school,
Arnold proved, using topological arguments, that a sufficiently general algebraic function of de-
gree ≥ 5 of one variable cannot be represented by radicals. The reason is as follows. It was known
even to Frobenius that the monodromy group of an algebraic function is isomorphic to the Galois
group of the field of rational functions extended by adding all branches of the algebraic function to
this field. According to the Galois theory, an algebraic equation is solvable by radicals if and only
if its Galois group is solvable.

Arnold noted that since the monodromy group is a topological invariant, only topology can be
responsible for the representability of algebraic functions by radicals. By means of purely topological
arguments, without using the Galois theory, he proved that algebraic functions with nonsolvable
monodromy group cannot be represented by radicals. Arnold gave a course of lectures on his proof
in the Kolmogorov school. Later this course was revised and published by V.B. Alekseev [1].
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VARIATIONS ON THE THEME OF SOLVABILITY BY RADICALS 83

According to Arnold, topological proofs of the unsolvability of some analytic problems are, as a
rule, stronger than the proofs of unsolvability obtained by classical means [2–9].

Developing Arnold’s approach, I have constructed a topological variant of the Galois theory
that yields new, stronger, results on the unsolvability of algebraic and differential equations in an
explicit form [10, 11].

In this paper, I present new theorems on the solvability and unsolvability of algebraic equations
by radicals. I found these theorems in the fall of 2006 when giving a course of lectures on the Galois
theory at the University of Toronto.

The paper is organized as follows. In Section 1, we give explicit formulas for inverting the
Chebyshev polynomial of degree n that involve only arithmetic operations and radicals. In Section 2,
following Euler, we solve a cubic equation using a formula for inverting the Chebyshev polynomial
of degree 3. In Section 3, we recall how a fourth-degree equation can be reduced to a cubic equation.

In Sections 4–6, we calculate the monodromy groups of the functions Fn and Fn ◦ σ that are
the inverses of the Chebyshev polynomial Tn of degree n and of the polynomial −Tn, respectively.
We show that the Riemann surfaces of these functions are completely determined by their local
behavior near the branch points.

In Section 7, we discuss transitive permutation groups. We show that a transitive permutation
group of a set of n elements that contains at least one transposition is no less complicated than a
symmetric group of p elements, where p is the least prime divisor of the number n. We formulate
Galois theorems on a solvable transitive group that acts on a set containing a prime number of
elements. These facts are used in the next sections.

In Section 8, we show that an algebraic function of degree n whose discriminant has at least
one simple root cannot be reduced, by means of radicals and arithmetic operations, to algebraic
functions of degree p − 1, where p is the least prime divisor of the number n (here, it is assumed
that p ≥ 5).

The Galois theorems on a transitive solvable group acting on a set that contains a prime number p
of elements imply very strong constraints on the local behavior of degree p algebraic functions that
can be represented by radicals. These constraints affect the global invariants and are discussed in
Section 9. For example, we show in Section 9 that all algebraic functions of degree 23 with Riemann
surfaces of genus g = 1 cannot be represented by radicals.

In Section 10, we show that the inverse of a polynomial of a prime degree p is representable
by radicals if and only if, by affine changes of coordinates in the target and source spaces, the
polynomial can be reduced either to the Chebyshev polynomial Tp or to the function xp.

In Section 11, we start a topological classification of rational functions of a prime degree p whose
inverses are representable by radicals. In Section 12, we complete this classification for the case of
p ≡ −1 mod 12.

1. CHEBYSHEV POLYNOMIALS AND THEIR INVERSES

The following propositions were likely to be known even to Moivre1:
(1) cos nx can be represented as a polynomial in cos x;
(2) cos x can be expressed in terms of cos nx by means of arithmetic operations and radicals.
Let us dwell on these propositions in more detail.
It follows from de Moivre’s formula cos nx + i sin nx = (cos x + i sin x)n that

cos nx =
∑

(−1)kC2k
n cosn−2k x · sin2k x. (∗)

1Abraham de Moivre (1667–1754), an English mathematician and a friend of Newton and Halley. He is the author
of the rule for raising to power and taking the nth root of a complex number.
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Definition. By a normalized Chebyshev polynomial of degree n we mean the polynomial Tn

defined by the formula

Tn(u) =
∑

(−1)kC2k
n un−2k(1 − u2)k.

On the interval −1 < u < 1 the polynomial Tn has n − 1 critical points with critical values 1
and −1. The equalities Tn(1) = 1 and Tn(−1) = (−1)n are valid. These properties define the
polynomial Tn. It differs form the classical Chebyshev polynomial of degree n by the factor 2n−1.
In what follows, we will refer to the polynomial Tn simply as the Chebyshev polynomial of degree n,
omitting the world “normalized.” Formula (∗) implies the following proposition.

Proposition 1. The equality cos nx = Tn(cos x) holds.

Definition. By the inverse of the Chebyshev polynomial of degree n we mean the multivalued
algebraic function Fn defined by the formula

Fn(v) =

(
v + i

√
1 − v2

)1/n +
(
v − i

√
1 − v2

)1/n

2
. (∗∗)

Clearly, the function Fn is representable by radicals.

Proposition 2. For any point x, there exists a branch of the function Fn such that the equality
cos x = Fn(cos nx) holds.

Proof. Let v = cos nx and u = cos x. By de Moivre’s formula,

(
v + i

√
1 − v2

)1/n = u + i
√

1 − u2,
(
v − i

√
1 − v2

)1/n = u − i
√

1 − u2;

hence u = Fn(v).

Corollary 3. The function Fn defines the inverse of the polynomial Tn: if v = Tn(u), then,
for any point v, the equality u = Fn(v) holds for a certain branch of the function Fn.

2. FUNCTION F3 AND SOLUTION OF A CUBIC EQUATION

Applying the function F3, Euler solved a general cubic equation by radicals. Let us reproduce
his arguments (in a modified form).

The Chebyshev polynomial T3 = 4u3 − 3u has two critical points u1,2 = ±1/2, at which the
derivative T ′

3(u) = 12(u2 − 1/4) vanishes.

Proposition 4. By affine changes of variables, the polynomial T3 can be transformed into
any third-degree polynomial Q with two critical points. More precisely, the identity Q(x) ≡
AT3(B(x + x0)) + C holds, where the parameters A, B, C, and x0 can be explicitly expressed
in terms of the coefficients of the polynomial Q by arithmetic operations and square rooting.

Proof. If Q(x) = ax3 + bx2 + cx + d, then Q′ = 3a(x2 + px + q), where p = 2b/3a and
q = c/3a. By assumption, the discriminant D of the polynomial x2 + px + q is different from
zero. The polynomial T3(B(x + x0)), where B = 1/

√
D and x0 = p/2, has the same critical

points as the polynomial Q. Therefore, the derivatives of these polynomials differ by a constant
factor. Comparing the leading coefficients and the free terms of these polynomials, we see that
Q(x) ≡ AT3(B(x + x0)) + C, where A = a/4B3 and C = d − AT3(B(x0)).

Corollary 5. The cubic equation Q(x) = ax3 +bx2 +cx+d = 0, where Q is a polynomial with
two critical points, can be solved by means of arithmetic operations, square rooting, and composition
with the function F3.
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Proof. By Proposition 4, using only arithmetic operations and the operation of square rooting,
one can choose the parameters A, B, C, and x0 so that the identity Q(x) ≡ AT3(B(x + x0)) + C
holds. By virtue of this identity, the roots of the equation Q(x) = 0 can be represented as x =
B−1F3(−C/A) − x0.

Proposition 6. By affine changes of variables, the polynomial x3 can be transformed into any
third-degree polynomial Q with one multiple critical point. More precisely, the identity Q(x) ≡
A(x + x0)3 + B holds, where the parameters A, B, and x0 can be explicitly expressed in terms of
the coefficients of the polynomial Q by means of arithmetic operations.

Proof. By assumption, the derivative of the polynomial Q(x) = ax3+bx2+cx+d has a multiple
root. This root is equal to −b/3a. The polynomials Q and (x + x0)3, where x0 = −b/3a, have
proportional derivatives. Comparing the leading coefficients and the free terms of these polynomials,
we see that Q(x) ≡ A(x + x0)3 + B for A = a and B = d − ax3

0.
Corollary 7. The cubic equation Q(x) = ax3 + bx2 + cx + d = 0, where Q is a polynomial

with one multiple critical point, is solvable by means of arithmetic operations and composition with
the function v1/3.

Proof. By Proposition 6, using only arithmetic operations, one can choose parameters A, B,
and x0 so that the identity Q(x) ≡ A(x + x0)3 + B holds. By virtue of this identity, the roots of
the equation Q(x) = 0 can be represented as x = (−B/A)1/3 − x0.

Thus, a general cubic equation can be explicitly reduced either to the equation T3(x) = C or
to the equation x3 = C and is solvable by radicals. It is well known that a general fourth-degree
equation reduces to a cubic equation. Let us recall the corresponding procedure.

3. REDUCTION OF A FOURTH-DEGREE EQUATION
TO A THIRD-DEGREE EQUATION

A fourth-degree equation can be reduced to a third-degree equation by considering a pencil of
planar quadrics [12].

Proposition 8. The coordinates of the intersection points of two planar quadrics P = 0 and
Q = 0, where P and Q are given second-degree polynomials in x and y, can be found by solving one
cubic and several quadratic equations.

Proof. Each quadric of the pencil P + λQ = 0, where λ is an arbitrary parameter, passes
through the required points. For a certain value λ0 of the parameter λ, the quadric P + λQ = 0
splits into two straight lines. This value satisfies the cubic equation det(P̃ + λQ̃) = 0, where P̃
and Q̃ are the 3×3 matrices of the quadratic forms corresponding to the equations of the quadrics in
homogeneous coordinates. The equation of each of the two straight lines that constitute the quadric
P + λ0Q = 0 can be found by solving a quadratic equation: each straight line passes through the
symmetry center of the quadric and through one of the points of intersection of the quadric with any
fixed straight line. To determine the coordinates of the latter point, one should solve a quadratic
equation; and the coordinates of the symmetry center are expressed in terms of the coefficients of
the quadric by arithmetic operations. The equation of the straight line that passes through two
given points can be found by arithmetic operations. If the equations of the straight lines into which
the quadric P + λ0Q = 0 splits are known, then the required points are determined by solving
quadratic equations for the points of intersection of the quadric P = 0 with each of the two straight
lines that constitute the quadric.

Corollary 9. A general fourth-degree equation can be reduced to a cubic equation by arithmetic
operations and square rooting.

Proof. The roots of the equation a0x
4 + a1x

3 + a2x
2 + a3x + a4 = 0 are the projections of the

intersection points of the quadrics y = x2 and a0y
2 + a1xy + a2y + a3x + a4 = 0 onto the x-axis.
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4. PERMUTATION GROUP GENERATED BY TWO INVOLUTIONS
WHOSE PRODUCT IS A CYCLIC ELEMENT

Let us represent the group S(n) as the permutation group of a set A of n elements. In this
section, we describe all possible triples a, b, c of elements of the group S(n) such that

(1) a2 = b2 = e,
(2) c = ab,
(3) the element c defines a transformation of A that has a unique orbit of length n.
Consider two examples in which the set A is the ring Z/nZ of residues modulo n.
Example 1. Let a1 and b1 be permutations of the set Z/nZ that take any element x ∈ Z/nZ

to the elements a1(x) ≡ −x mod n and b1(x) ≡ −x − 1 mod n, respectively. It is obvious that the
permutations a2

1 and b2
1 are the identities, while the permutation c1(x) = a1(b1(x)) is defined by the

formula c1(x) ≡ x + 1 mod n and is cyclic.
If we interchange the permutations a1 and b1 in Example 1, then their product is still a cyclic

permutation. Indeed, b1a1 = (a1b1)−1. Example 2 is obtained from Example 1 by changing the
order of permutations and reversing the cyclic order in the set A.

Example 2. Let a2 and b2 be permutations of the set Z/nZ that take any element x ∈ Z/nZ

to the elements a2(x) ≡ −x + 1 mod n and b2(x) ≡ −x mod n, respectively. It is easily seen that
the permutations a2

2 and b2
2 are the identities, while the permutation c2(x) = a2(b2(x)) is defined

by the formula c2(x) ≡ x + 1 mod n and is cyclic.
Naturally, Example 1 is also obtained from Example 2 by changing the order of permutations

and reversing the cyclic order. For odd n, each involution in Examples 1 and 2 has exactly one
fixed point. It can easily be shown (see the proof of Theorem 10) that for any odd n there exists a
one-to-one transformation of the ring Z/nZ that takes the involutions a1 and b1 from Example 1 to
the involutions a2 and b2 from Example 2. For even n the situation is different: the involution a1

has two fixed points, while the involution a2 has none.
Theorem 10. Suppose that permutations a, b, and c in the group S(n) satisfy the conditions

listed at the beginning of this section.

(1) If n is odd, then A can be identified with Z/nZ so that the permutations a, b, and c corre-
spond to the elements a1, b1, and c1 from Example 1, as well as so that they correspond to
the elements a2, b2, and c2 from Example 2.

(2) If n is even, then either a has two fixed points and b has none, or b has two fixed points and
a has none. In the first case, A can be identified with Z/nZ so that the permutations a, b,
and c correspond to the elements a1, b1, and c1 from Example 1, and in the second case, so
that the permutations a, b, and c correspond to the elements a2, b2, and c2 from Example 2.

Proof. By assumption, the element c defines a cyclic transformation of the set A. Therefore,
the set A can be identified with the ring Z/nZ so that c(x) ≡ x + 1 mod n. Then cb(x) ≡ b(x) + 1
mod n and (cb)2(x) ≡ b(b(x) + 1) + 1 mod n. However, by assumption, cb = a and a2 = e; hence,
(cb)2(x) ≡ x mod n. Taking into account that c(x) ≡ x + 1 mod n, we obtain b(b(x) + 1) ≡ x − 1
mod n. Since b2 = e, we have b(x) + 1 ≡ b(x − 1), or b(x) + x ≡ b(x − 1) + (x − 1) mod n. The
last equality implies that b(x) + x mod n does not depend on x. Denote b(x) + x by l. We have
b(x) ≡ −x + l mod n. For any q ∈ Z/nZ, consider a new variable u = x − q mod n, x = u + q
mod n. In terms of the variable u, the mapping c is defined, as before, by the formula c(u) ≡ u + 1
mod n. The mapping b is expressed as b(u) ≡ −u − 2q + l mod n. For odd n, the residue 2 is
invertible in the ring Z/nZ; therefore, we can choose q such that 2q ≡ l + 1 mod n or 2q ≡ l
mod n. Accordingly, the mapping b is defined by the formula b(u) ≡ −u− 1 mod n or the formula
b(u) ≡ −u mod n. The formulas for the transformations b and c are identical to the formulas for b1
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and c1 from Example 1 and to the formulas for b2 and c2 from Example 2, respectively. Therefore,
for odd n, we can establish a one-to-one correspondence between the set A and the ring Z/nZ so
that the elements a, b, and c correspond to the elements a1, b1, and c1 from Example 1, as well as
so that they correspond to the elements a2, b2, and c2 from Example 2.

If n is even, then we can choose q so that 2q ≡ l + 1 mod n for odd l and so that 2q ≡ l mod n
for even l. Under the change of the variable x = u + q mod n, u = x − q mod n, the formulas for
the transformations b and c become identical to the formulas for b1 and c1 from Example 1 and to
the formulas for b2 and c2 from Example 2, respectively.

The theorem implies the following
Corollary 11. Under the conditions of Theorem 10, the transformation group of A generated

by the elements a, b, and c is isomorphic to the group of self-mappings of the ring Z/nZ that have
the form x → ax + b mod n, where a = ±1 and b is an arbitrary element of the ring Z/nZ.

Let us rewrite Examples 1 and 2 in a different form that will be used below.
Example 3. Consider a set A = {V0, . . . , Vn−1} and the following two involutions a and b of A

whose product ab defines a cyclic permutation of A:

(1) under the involution a, the point V0 is fixed; the points V2m−1 and V2m, where 0 < 2m < n,
change places; for even n, the last point Vn−1 is fixed;

(2) under the involution b, the points V2m and V2m+1, where 0 ≤ 2m < n− 1, change places; for
odd n, the last point Vn−1 is fixed.

Corollary 12. There exists an identification of the set A from Example 3 with the ring Z/nZ

such that the involutions a and b correspond to the involutions a1 and b1 from Example 1. For odd n,
there also exists an identification such that the involutions a and b correspond to the involutions a2

and b2 from Example 2.
The following example is obtained from Example 3 by interchanging the involutions a and b.
Example 4. Consider a set Ã = {Ṽ0, . . . , Ṽn−1} and the following two involutions ã and b̃ of Ã

whose product ã b̃ defines a cyclic permutation of Ã:

(1) under the involution ã, the points Ṽ2m and Ṽ2m+1, where 0 ≤ 2m < n − 1, change places;
for odd n, the last point Ṽn−1 is fixed;

(2) under the involution b̃, the point Ṽ0 is fixed; the points Ṽ2m−1 and V2m, where 0 < 2m < n,
change places; for even n, the last point Ṽn−1 is fixed.

Corollary 13. There exists an identification of the set Ã from Example 3 with the ring Z/nZ

such that the involutions ã and b̃ correspond to the involutions a2 and b2 from Example 1. For odd n,
there also exists an identification such that the involutions ã and b̃ correspond to the involutions a1

and b1 from Example 1.

5. MONODROMY REPRESENTATIONS OF THE FUNCTIONS Fn AND Fn ◦ σ

Consider the algebraic function Fn, which is the inverse of the Chebyshev polynomial Tn of
degree n (see Section 1). The polynomial Tn has two critical values: 1 and −1. Therefore, the
algebraic function Fn has three branch points on the Riemann sphere C: +1, −1, and ∞. Let
σ : C → C be the involution defined by the formula σ(x) = −x. The algebraic function Fn ◦ σ has
the same branch points as Fn. For odd n, the Chebyshev polynomial is an odd function. Therefore,
for odd n, the functions Fn and Fn ◦ σ differ only by sign, Fn ◦ σ = −Fn.

Let U be the complement C \ {1,−1,∞} of the branch points of the functions Fn and Fn ◦σ on
the Riemann sphere. Consider the fundamental group π1(U, 0) of the domain U with the marked
point 0. Take the loops γ1 and γ2 described below as generators in the group π1(U, 0).
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The loop γ1 : [0, 1] → U corresponds to the following motion of the point γ1(t): first, the point
moves along the real line segment I1 = [0, 1− ε], where ε > 0 is a small positive number, from zero
to the point 1− ε, then it goes around the point 1 in the counterclockwise direction along the circle
of radius ε, and then returns to zero along the segment I1.

The loop γ2 : [0, 1] → U is defined by the formula γ2(t) = −γ1(t).
The definitions of the loops γ1 and γ2 show that in the fundamental group π1(U, 0) the loop

γ3 = γ2γ1 is equal to the loop that winds around the point ∞ in the clockwise direction.

Proposition 14. After going around the loop γ2γ1,

(1) the branches of the function Fn are cyclically permuted,

(2) the branches of the function Fn ◦ σ are cyclically permuted.

Proof. The functions Fn and Fn ◦ σ are the inverses of the polynomials Tn and −Tn, and the
loop γ2γ1 in the domain U is homotopic to the loop that winds once around the point ∞.

The restriction of the polynomial Tn to the interval −1 ≤ u ≤ 1 has two boundary and n − 1
internal extremum points ui, where −1 = u0 < . . . < un = 1. If n − i ≡ 0 mod 2, then Tn(ui) = 1.
If n − i ≡ 1 mod 2, then Tn(ui) = −1. The points ui divide the interval [−1, 1] into n segments
with common endpoints. On the segments I2m = [un−2m−1, un−2m], where 0 ≤ 2m < n, the
function Tn increases monotonically from −1 to +1. On the segments I2m−1 = [un−2m, un−2m+1],
where 0 < 2m ≤ n, it decreases monotonically from +1 to −1.

On the segments I0, . . . , In−1 defined above, the function Tn is monotonic and takes all values
between −1 and 1; therefore, the inverse function Fn has n real branches on the interval −1 ≤ v ≤ 1.
We will call a branch of Fn that takes values on the segment Ij the j th branch and denote it by Vj .
Theorems 15 and 16 given below describe the monodromy group of the function Fn for odd and
even n, respectively.

Theorem 15. After going around the loops γ1 and γ2, the permutation of the set V0, . . . , Vn−1

of branches of the function Fn is given by the involutions a and b described in Example 3.

Proof. Let us describe the monodromy transformation of the branches of the function Fn after
going around the loop γ1. When moving along the segment [0, 1], the branch V2m increases to
un−2m, while the branch V2m−1 decreases to un−2m. For 0 < 2m < n, the point un−2m is a point
of nondegenerate local maximum of the function Tn, and the two branches V2m and V2m−1 of the
inverse function Fn, which take the value un−2m at the point 1, permute after going around the
point 1 (just as the two branches of the function

√
z permute when z winds once around the point 0).

At the point un = 1, the derivative T ′
n(1) is different from zero; therefore, the branch V0 of the

function Fn is analytically continued to a neighborhood of the point 1 and preserves its value after
going around the point 1. Similarly, for even n, the branch Vn−1 is equal to 1 at the point 1, is
regular at this point, and returns to its previous value after going around this point.

For the monodromy transformation corresponding to the loop γ2, the assertion of the theorem
is proved in a similar way.

Denote by Ṽj the branch of the function Fn ◦ σ on [−1, 1] defined by the formula Ṽj = Vj ◦ σ,
where j = 0, . . . , n − 1.

Theorem 16. After going around the loops γ1 and γ2, the permutation of the set Ṽ0, . . . , Ṽn−1

of branches of the function Fn ◦ σ is given by the involutions ã and b̃ described in Example 4.

Theorem 16 is a direct corollary to Theorem 15.

Corollary 17. The monodromy groups of the functions Fn and Fn ◦ σ are isomorphic to the
group of all transformations of the form x → ±x + b mod n of the ring Z/nZ.
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6. RIEMANN SURFACES OF THE FUNCTIONS Fn AND Fn ◦ σ
ARE DEFINED BY LOCAL DATA

In this section, we describe the Riemann surfaces of the algebraic functions Fn and Fn ◦ σ in
terms of their local behavior in a neighborhood of the branch points.

Consider a triple (π,R, C) consisting of a connected Riemann surface R of some n-valued alge-
braic function and its natural projection π : R → C onto the Riemann sphere C. Suppose that the
n-sheeted branched covering π : R → C has three branch points −1, 1, and ∞. Suppose that

(1) after going around each of the points 1 and −1, one obtains an involution of the set of sheets
of the algebraic function in the monodromy group of the covering;

(2) after going around ∞, the sheets of the algebraic function are cyclically permuted.

Theorem 18. Under conditions (1) and (2), the triple (π,R, C) is either the Riemann surface
of the function Fn or the Riemann surface of the function Fn ◦ σ.

More precisely, either there exists a biholomorphic map h1 : C → R such that π ◦ h1 = Tn,
or there exists a biholomorphic map h2 : C → R such that π ◦ h2 = −Tn. For odd n these two
possibilities hold simultaneously, while for even n only one of them holds.

Proof. Let U be the complement of the branch point set of the covering π : R → C on the
Riemann sphere and M : π1(U, 0) → S(n) be the monodromy homomorphism. According to Theo-
rem 10, if n is odd, then up to conjugation of the group S(n) there exists a unique homomorphism M
satisfying the conditions of Theorems 18. By Theorems 15 and 16, the functions Fn and Fn ◦σ have
precisely such a monodromy homomorphism. For even n, according to Theorem 10, there are two
such homomorphisms. By Theorems 15 and 16, the monodromy homomorphisms of the functions
Fn and Fn ◦ σ correspond precisely to these two homomorphisms. (The difference between them
is as follows: the monodromy transformation corresponding to the loop γ1 has two fixed points for
the function Fn and no fixed point for the function Fn ◦ σ.)

The following classical theorem is known (see, for example, [12]): If the monodromy homomor-
phisms of two n-sheeted branched coverings π1 : R1 → C and π2 : R2 → C with identical branch
point sets coincide up to conjugation of the group S(n), then there exists a biholomorphic mapping
h : R1 → R2 such that π1 = π2 ◦ h. The coverings Tn : C → C and −Tn : C → C represent the
Riemann surfaces of the functions Fn and Fn ◦ σ, respectively. Theorem 18 is proved.

We will need one (obvious) proposition of the same nature as Theorem 18. Consider a triple
(π,R, C) consisting of a connected Riemann surface R of some n-valued algebraic function and its
natural projection π : R → C onto the Riemann sphere C. Suppose that the n-sheeted branched
covering π : R → C has two branch points 0 and ∞.

Proposition 19. Under the above-listed conditions, the triple (π,R, C) is the Riemann surface
of the function v1/n. More precisely, there exists a biholomorphic mapping h1 : C → R such that
π ◦ h1 = un.

Proof. The fundamental group of the domain U = C \ {0,∞} is isomorphic to the additive
group of integers Z. Up to conjugation of the group S(n), there exists a unique homomorphism of
the group Z to the group S(n) such that the image of the group Z is transitive. Therefore, any two
n-sheeted branched coverings with branch points 0 and ∞ are equivalent to each other and, hence,
to the Riemann surface of the function v1/n.

7. TRANSITIVE GROUPS OF PERMUTATIONS OF FINITE SETS

Here we discuss a few propositions on transitive permutation groups that will be needed below.
Suppose that a group G acts transitively on a set A. Fix a point x in A and denote by Gx the

stabilizer subgroup of the point x. The action of G on A can be recovered by the pair of groups
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Gx ⊂ G: the points of the set A can be identified with the right cosets of the subgroup Gx in the
group G (the right coset of an element h is the set of elements of the group that can be represented
as hg, where g ∈ Gx). Under this identification, the action of the group G on A turns into the
action of G on the right cosets of the subgroup Gx by left multiplication.

Suppose that an equivalence relation is introduced in A. This relation is said to be G-invariant
if the relation g(a) ≈ g(b) holds for any element g of the group G and any pair of equivalent points
a ≈ b of the set A. Let us describe all possible G-invariant equivalence relations on the set A.

Let F be an arbitrary subgroup in G that contains the subgroup Gx. Then F generates the
following equivalence relation on the set A: points a and b are said to be F -equivalent if a = g1(x),
b = g2(x), and the elements g1 and g2 belong to the same right coset of the subgroup F . One can
easily verify the following proposition.

Proposition 20. The F -equivalence is well defined and G-invariant. For different sub-
groups F, the F -equivalence relations are different. Every G-invariant equivalence relation is the
F -equivalence for some subgroup F ⊇ Gx.

Corollary 21. Suppose that a group G acts transitively on a finite set A and a G-invariant
equivalence relation is introduced. Then each equivalence class contains the same number of points.

Suppose that a transitive group G of transformations of a set A contains a transposition. With
the set A and the group G, we associate the following graph AG: the vertices of the graph are points
of the set A; two vertices a, b ∈ A are connected by an edge if and only if the group G contains a
transposition that permutes the points a and b.

Proposition 22. Suppose that vertices a and b of the graph AG are connected by an edge.
Then, for any element g of the group G, the vertices g(a) and g(b) are also connected by an edge.

Proof. Suppose that a transposition σ ∈ G permutes the points a and b. Then gσg−1 is an
involution that permutes the points g(a) and g(b).

Suppose that a group containing a transposition acts transitively on a set A. Introduce the
following equivalence relation on the set A: two points a, b ∈ A are equivalent if the vertices a and b
of the graph AG belong to the same connected component of this graph.

Corollary 23. The equivalence relation introduced is G-invariant. In particular, all equiva-
lence classes contain the same number of points.

Proof. The first assertion of the corollary follows from Proposition 22, and the second follows
from Corollary 21.

Proposition 24. If a transitive group of permutations of a finite set A is generated by trans-
positions, then it coincides with the group of all permutations of the set A.

A proof of this simple proposition can be found, for example, in [10].
Suppose that a group G acts transitively on a set A and contains at least one transposition.

Then the following theorem holds.
Theorem 25. There exists a G-invariant equivalence relation on A such that

(1) each equivalence class contains at least two points;
(2) the set H of all permutations of A that preserve the equivalence relation is a normal subgroup

of the group G.

Proof. Consider the same equivalence relation in A as in Corollary 23. It follows from Propo-
sition 24 that the group G contains all permutations of the set A that preserve this equivalence
relation. These permutations form the normal subgroup H mentioned in the theorem.

Corollary 26. Suppose that the conditions of Theorem 25 hold and the set A contains n ele-
ments. Then the number n has a divisor k > 1, n = km, such that the group G contains a normal
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subgroup H isomorphic to the direct sum of m copies of the symmetric group S(k). Therefore, in
particular, the group G contains a subgroup isomorphic to the symmetric group S(p), where p is the
least prime divisor of the number n.

Galois obtained remarkable results on solvable groups that act transitively on sets with a prime
number of elements. Below we formulate his results (we call them the first and the second Galois
theorems on solvable groups) and discuss their corollaries.

First, we introduce necessary notation. Let m ∈ Z be a natural number, Z/mZ be the ring
of residues modulo m, and (Z/mZ)∗ be the multiplicative group of elements in (Z/mZ)∗ that are
invertible with respect to multiplication. The metacyclic group Mm is the group of all permutations g
of the set Z/mZ of the form g(x) ≡ ax + b mod m, where a ∈ (Z/mZ)∗ and b ∈ Z/mZ. The map
π : Mm → Z/mZ that takes each element g ∈ Mm, where g(x) ≡ ax+b, to the element a ∈ (Z/mZ)∗

is a homomorphism of the group Mm onto the group (Z/mZ)∗. Denote by H(m) the cyclic group
of order m that consists of all permutations g of the set Z/mZ of the form g(x) ≡ x + b mod m,
where b ∈ Z/mZ. The group H(m) is the kernel of the above homomorphism. The groups Hm and
(Z/mZ)∗ are commutative. Therefore, the metacyclic group Mm is solvable.

The first Galois theorem on solvable groups. Let G be a transitive group of permutations
of a finite set A that contains a prime number p of elements. Then the group G is solvable if and
only if there exists an identification φ : A → (Z/pZ)∗ of the set A with the field of residues modulo p
such that the group corresponding to G under this identification lies in the metacyclic group Mp and
contains the normal subgroup Hp.

The second Galois theorem on solvable groups. A transitive group of transformations of
a finite set containing a prime number of elements is solvable if and only if any transformation in
this group that has at least two fixed points is the identity transformation.

The elegant and simple Galois theorems on solvable groups are closely related to each other.
In slightly different formulations they are given, for example, in the book [14]. The second Galois
theorem imposes strong constraints on the cyclic type of each permutation g in the group G. Namely,
the following proposition holds.

Corollary 27. A transitive group G of transformations of a set A containing a prime number p
of elements is solvable if and only if the action of any nonidentity transformation g ∈ G splits
the set A

(1) either into one orbit of length p;
(2) or into one orbit of length 1 and (p − 1)/l orbits of length l, where l > 1 is an arbitrary

natural divisor of the number p − 1.

Proof. According to the second Galois theorem, a group G satisfying the conditions of the
corollary is solvable. Suppose that G is solvable and a transformation g ∈ G has two orbits
of different lengths k and m each of which contains more than one point. We can assume that
k > m > 1. The transformation gm has at least m > 1 fixed points; however, it is not the
identity transformation. By the second Galois theorem, the group G is nonsolvable. This implies
the assertion of the corollary.

8. LOCAL MONODROMY AND UNSOLVABILITY
OF ALGEBRAIC EQUATIONS IN AN EXPLICIT FORM

Consider an irreducible algebraic equation

yn + R1y
n−1 + . . . + Rn = 0 (∗∗∗)

whose coefficients belong to the field C〈x〉 of rational functions of one variable x. It was known
even to Frobenius that the Galois group of equation (∗∗∗) over the field C〈x〉 is isomorphic to the
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monodromy group of the algebraic function y of the variable x defined by equation (∗∗∗) (see, for
example, [11–13]).

An algebraic equation over a field K is solvable by k-radicals if there exists a chain of extensions
K = K0 ⊆ K1 ⊆ . . . ⊆ Km such that the field Kj+1 is obtained from the field Kj by adding
either a radical or an algebraic element of degree ≤ k over the field Kj and the field Km contains
all solutions of equation (∗∗∗). An algebraic function of x is representable by k-radicals if the
irreducible algebraic equation that defines this function is solvable by k-radicals over the field C〈x〉.
The solvability of an equation by k-radicals can be determined by its Galois group. A group G is
said to be k-solvable if it has a normal tower of subgroups G = G0 ⊇ G1 ⊇ . . . ⊇ Gm = e such that
each factor group Gi/Gi+1 is either commutative or isomorphic to a subgroup of the group S(k).
The following criterion holds.

Criterion of solvability by k-radicals (see [11, 13]). An algebraic equation over a field of
characteristic zero is solvable by k-radicals if and only if its Galois group is k-solvable.

It is easily seen that the subgroups and factor groups of a k-solvable group are k-solvable. There-
fore, for m > k ≥ 4, the group S(m) is not k-solvable: the group S(m) contains the simple subgroup
A(m), which is not commutative and not isomorphic to a subgroup of the group S(k).

Theorem 28. Suppose that an irreducible algebraic equation of degree n over a field K of
characteristic zero is such that its Galois group, considered as a group of permutations of the roots
of the equation, contains at least one transposition. Let the least prime divisor p of n be greater
than 3. Then the equation is unsolvable by (p − 1)-radicals over the field K.

Proof. By Theorem 25, the Galois group contains a subgroup isomorphic to S(p). By hypoth-
esis, p ≥ 5; therefore, the Galois group is not (p − 1)-solvable. Now, Theorem 28 follows from the
criterion of solvability by k-radicals.

Corollary 29. Suppose that the monodromy group of an n-valued algebraic function y contains
at least one transposition, and let the least prime divisor p of n be greater than 3. Then the
function y is not representable by (p − 1)-radicals.

Corollary 30. Suppose that an n-valued algebraic function y is defined by an irreducible equa-
tion P0y

n + . . .+Pn−1y +Pn = 0 with polynomial coefficients. Suppose that the discriminant of this
equation has at least one simple root at which the polynomial P0 does not vanish, and let the least
prime divisor p of n be greater than 3. Then the function y is not representable by (p−1)-radicals.

Proof. Indeed, after going around a simple root of the discriminant that is not a root of the
leading coefficient, two branches of the algebraic function are transposed.

Proposition 31. The estimate in Corollary 29 is sharp; i.e., there exists an algebraic func-
tion y that satisfies the conditions of Theorem 28 and is representable by p-radicals.

Proof. Let p ≥ 5 be the least prime divisor of the number n and n = pk. Consider an arbitrary
general algebraic function w of degree k all of whose branch points are nonmultiple (after going
around such points, two branches of the algebraic function w are transposed) and are different
from 0 and ∞. The algebraic function y defined by the formula y(x) = w(x1/k) is of degree n, and
all branch points of this function, except the points 0 and ∞, are nonmultiple. By construction,
the function y is representable by p-radicals. By Theorem 28, it is not representable by (p − 1)-
radicals.

Corollary 29 can be strengthened as follows.

Theorem 28′. If y satisfies the conditions of Corollary 29 (and, in particular, if it satisfies
the conditions of Corollary 30), then y cannot be expressed in terms of meromorphic functions by
means of compositions, arithmetic operations, solutions of algebraic equations of degree < p, square
rooting, and indefinite integration.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 259 2007



VARIATIONS ON THE THEME OF SOLVABILITY BY RADICALS 93

Proof. Theorem 28′ follows from Corollary 29 and from an assertion that was proved in the
topological version of the Galois theory (see [11]) and that is a necessary condition for the repre-
sentability of functions by (p − 1)-quadratures.

9. ALGEBRAIC FUNCTIONS OF PRIME DEGREE
THAT ARE REPRESENTABLE BY RADICALS

Galois found the following
Criterion of solvability by radicals (see [13, 14]). An algebraic equation over a field of

characteristic zero is solvable by radicals if and only if its Galois group is solvable.
The second Galois theorem on solvable groups (see Section 7) allows one to reformulate this

criterion for irreducible equations of prime degree as follows.
Galois theorem. An irreducible algebraic equation of prime degree over a field of characteristic

zero is solvable by radicals over this field if and only if each nonidentity transformation in its Galois
group has at most one fixed point among the roots of the equation.

Since the monodromy group of an algebraic function is isomorphic to the Galois group of its
equation over the field of rational functions, the Galois criterion gives necessary and sufficient
conditions for the representability of an algebraic function by radicals in terms of its monodromy
group (see [11, 12]). In particular, if an algebraic function of prime degree is representable by
radicals, then its behavior near the branch points must obey very strong constraints imposed by
the Galois criterion.

Theorem 32. If an algebraic function y of prime degree p is representable by radicals, then,
after going around any of its branch points, one obtains either a cyclic permutation of the sheets
of the function y or a permutation that can be decomposed into cycles one of which has unit length
and all the other have equal lengths.

Proof. Theorem 32 follows from the Galois theorem and Corollary 27.
Let π : R → C be the natural projection of the Riemann surface of an algebraic function onto

the Riemann sphere C and a ∈ C be a branch point of π. The defect µ(a) of the branch point a ∈ C

is defined as the sum of the multiplicities of zeros of the differential of the map π over all preimages
of the point a.

Let us define a defect set Ap for each prime number p as a finite set of natural numbers whose
elements are given by

(1) the number p − 1,
(2) the number (p − 1)(1 − 1/l), where l > 1 is a divisor of the number p − 1.

Example 5. Suppose that p and q = (p − 1)/2 are prime numbers. Then the set Ap is
equal to {q, 2q − 2, 2q − 1, 2q}. Indeed, the prime factor decomposition of the number p − 1 has
the form p − 1 = 2q; hence the divisors of p − 1 that are greater than unity are given by 2, q,
and 2q. In particular, consider prime numbers p = 23 and q = 11 = (23 − 1)/2. In this case
A23 = {11, 20, 21, 22}.

Proposition 33. The defect of every branch point of an algebraic function of prime degree p
that is representable by radicals belongs to the set Ap.

Proof. This proposition follows from Theorem 32. Indeed, if, after going around a branch
point, one obtains a cyclic permutation of the sheets of the algebraic function, then the defect of
the branch point is equal to p−1. Suppose that after going around a branch point, one sheet of the
algebraic function is fixed and the other sheets are partitioned into cycles of equal length l. Then
the number p − 1 is divisible by l. Above this branch point, there are (p − 1)/l critical points at
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each of which the differential of the projection has a zero of multiplicity l − 1. The defect of such a
branch point is equal to (l − 1)(p − 1)/l = (p − 1)(1 − 1/l).

The concept of defect is related to the following classical result.
Riemann–Hurwitz formula. The genus g of a Riemann surface R satisfies the following

relation:
2 − 2g = 2p −

∑
µ(a),

where the summation is over the branch points a of the function.
For every prime p, consider the semigroup Pp generated by the defect set Ap. By definition,

m ∈ Pp if there exist nonnegative integers mi such that m =
∑

miki, where ki ∈ Ap. We will need
the set Bp consisting of natural numbers q that do not belong to the semigroup Pp and satisfy the
following condition : q is an even number greater than or equal to 2p − 2.

The set Bp is finite for any prime p (see Corollary 35 below); for many prime numbers p, it is
empty.

Theorem 34. An algebraic function of prime degree p whose genus is equal to [N−(2p−2)]/2,
where N is an even number from the set Bp, is not representable by radicals.

Proof. According to the Riemann–Hurwitz formula, the genus g of an algebraic function y
of degree p satisfies the relation 2 − 2g = 2p −

∑
µ(a). By Proposition 33, if the function y is

representable by radicals, then the defect µ(a) of each of its branch points a lies in the set Ap. Let∑
µ(a) = D. Then D ∈ Pp and the genus g can be represented as [D − (2p − 2)]/2, where D is an

even number from the semigroup Pp. This implies the assertion of the theorem.
The Sylvester theorem gives information on the semigroup P (m,n) generated by coprime num-

bers n and m. Define a number N(m,n) by the formula N(m,n) = (m − 1)(n − 1) − 1.
Sylvester theorem. Every integer greater than N(m,n) belongs to the semigroup P (m,n).

For any pair of nonnegative integers whose sum is equal to N(m,n), one of the numbers belongs to
the semigroup P (m,n), while the other does not. In particular, there exist exactly (m− 1)(n− 1)/2
nonnegative integers that do not belong to the semigroup P (m,n).

Corollary 35. For any prime p > 2, the set Bp is finite.
Proof. The set Ap contains two coprime numbers: the number p − 1 and the number p − 2 =

(p− 1)(1− 1/(p− 1)). By the Sylvester theorem, the complement of the semigroup Pp to the set of
natural numbers is finite.

Let us describe the semigroup Pp in the case when q = (p− 1)/2 is a prime number. According
to Example 5, to this end it suffices to describe the semigroup P generated by the numbers q, 2q−2,
2q − 1, and 2q.

Proposition 36. The semigroup P generated by the numbers q, 2q − 2, 2q − 1, and 2q is the
union of the following sets of natural numbers :

(1) the set of solutions of the inequalities 2l(q − 1) ≤ x ≤ 2lq for every even number 2l ≥ 0;
(2) the set of solutions of the inequalities 2l(q − 1) + q ≤ x ≤ (2l + 1)q for every odd number

2l + 1 > 0.

Proof. The numbers in the semigroup have the form k0q + k1(2q − 2) + k2(2q − 1) + k3(2q),
where k0, k1, k2, k3 ≥ 0. Consider the following two cases.

1. The number k0 is even. Then, taking the number k3 +k0/2 instead of k3, we can assume that
k0 = 0. Thus, the required numbers have the form (k1 +k2 +k3)2q−(k2 +2k1). Set k1 +k2 +k3 = l.
We have the constraints k1, k2, k3 ≥ 0 and k1 + k2 + k3 = l. Under these constraints, the expression
k2 + 2k1 takes all values from zero to 2l. Therefore, for even k0, we obtain the union of segments of
the natural sequence 2lq − 2l ≤ x ≤ 2lq with l ≥ 0.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 259 2007



VARIATIONS ON THE THEME OF SOLVABILITY BY RADICALS 95

2. The number k0 is odd. Then, taking the number k3 +(k0 −1)/2 instead of k3, we can assume
that k0 = 1. Thus, the required numbers have the form (k1 + k2 + k3)2q − (k2 + 2k1) + q. Set
k1+k2+k3 = l. We have the constraints k1, k2, k3 ≥ 0 and k1+k2+k3 = l. Under these constraints,
the expression k2 + 2k1 takes all values from zero to 2l. Therefore, for odd k0, we obtain the union
of segments of the natural sequence 2l(q − 1) + q ≤ x ≤ (2l + 1)q with l ≥ 0.

The proposition is proved.
Example 6. For the number p = 23, the number q = 11. We have A23 = {11, 20, 21, 22}.

Applying Proposition 36, we find that the semigroup P23 contains the following numbers: 0, 11,
20–22, 31–33, 40–44, 51–55, 60–66, 71–77, 80–88, 91–99, 100–110, and all greater natural numbers.
Thus, the even numbers ≥ 44 that are not included in P23 are given by 46, 48, 50, 56, 58, 68, 70,
78, and 90.

Theorem 37. An algebraic function of degree 23 whose genus g is equal to one of the numbers
1, 2, 3, 6, 7, 12, 13, 17, or 23 is not representable by radicals.

Proof. Theorem 37 follows from Theorem 34 and the calculations of Example 6.
Oleg Ivrii, a student at the University of Toronto who attended my lectures on the Galois theory,

compiled a program for calculating all pairs p, g, where p < 60 is a prime number and g ≤ 2 is an
even number for which, according to Theorem 34, any algebraic function of degree p and genus g is
not representable by radicals. It turned out that among the numbers p < 60 there are six numbers
for which such pairs exist. Here is the list of these numbers: 23, 29, 43, 47, 53, and 59. For the
prime numbers p = 23, 47, 59 from this list, the numbers (p− 1)/2 are prime. For such p, there are
many suitable genera g (9, 81, and 144, respectively); all of them can be found without a computer,
using Proposition 36. Here, I reproduce Oleg’s answer for the remaining three prime numbers. For
p = 29, the corresponding genera are g = 1, 2; for p = 43, the genera are g = 1, 5; and for p = 53,
the genera are g = 1, 2, 3, 4, 5, 7, 8, 14, 15, 16, 27, 28, 29, 40, 53.

In these computations, we used Theorem 34. Apparently, there exist pairs p, g that are not
covered by Theorem 34 but for which any algebraic function of degree p and genus g is not rep-
resentable by radicals. In the remaining part of this section, we discuss why Theorem 34 is most
likely inexact.

The point is that the monodromy transformations corresponding to the branch points (i.e.,
obtained when one goes around the branch points) of an algebraic function are not arbitrary: the
product of these transformations must be the identity transformation, and they must generate a
transitive monodromy group.

The monodromy group of a degree p algebraic function representable by radicals is a subgroup
of the metacyclic group. The metacyclic group Mp has a homomorphism π : Mp → (Z/pZ)∗ to the
multiplicative group (Z/pZ)∗ of the ring Z/pZ. Assume that there are no cyclic permutations among
the monodromy transformations corresponding the branch points of an algebraic function. In this
case, the image π(g) of a monodromy transformation g determines the lengths of the cycles into
which the transformation g is decomposed. The element g(x) = ax + b mod p with a = π(g) �= 1
mod p is decomposed into cycles of equal lengths l and one cycle of length 1, where l is the order
of the element a = π(g). The product of operations corresponding to the branch points is equal
to the identity monodromy element. Let us number the branch points. Let gj be the monodromy
transformation corresponding the jth branch point, aj = π(gj), and the order of the element aj

be equal to lj . We have a1 · . . . · ak = 1, where k is the number of branch points. This identity
implies some constraints on the orders lj . Here is an example: decompose lj into prime factors. Let
p1, . . . , pm be the set of prime numbers that appear in the decompositions of the orders lj . Let µq be
the maximum multiplicity of the prime number pq in the decompositions of the numbers l1, . . . , lk.

Proposition 38. For every q, the prime number pq is contained in the decompositions of at
least two numbers li and lj with the maximum multiplicity µq.
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Proof. Consider the number N = pµ1
1 · . . . · pµm

m . Set Nq = N/pq. Suppose that the maximum
multiplicity µq is encountered in exactly one number lj(q). Then (a1 · . . . · am)Nq �= 1, which is
impossible. Indeed, when raising to the power Nq, all elements ai except aj(q) become units. The
contradiction proves the proposition.

10. CLASSIFICATION OF POLYNOMIALS OF PRIME DEGREE
WHOSE INVERSES ARE REPRESENTABLE BY RADICALS

We begin with the following obvious proposition.
Proposition 39. If a function is the inverse of a polynomial of degree n, then the sum of

defects of its finite branch points is equal to n − 1.
Proof. The defect of a finite branch point a of a function inverse to a polynomial P is defined

as the sum of multiplicities of zeros of the derivative P ′ over the points of the set P−1(a). But the
sum of multiplicities of all zeros of the function P ′ is equal to n − 1.

Proposition 40. If a function that is the inverse of a polynomial of prime degree is repre-
sentable by radicals, then the function has

(1) either one finite branch point such that, after going around it, one obtains a cyclic permuta-
tion of the sheets;

(2) or two finite branch points such that, after going around each of them, one obtains an invo-
lution of the set of sheets.

Proof. Suppose that an algebraic function y is the inverse of a polynomial of degree p and is
representable by radicals. According to Proposition 33, the defect of each finite branch point of the
function y is equal to either p − 1 or (p − 1)(1 − 1/l), where l > 1 is a divisor of the number p − 1.
By Proposition 39, the sum of all defects is equal to p− 1. For l > 2, the number (p− 1)(1− 1/l) is
greater than half the number p − 1. Consequently, the defect of a branch point may only be equal
to either p−1 or (p−1)(1−1/2). There exist only two possibilities: either there is only one branch
point with defect p−1, or there are two branch points with defects (p−1)(1−1/2). By Theorem 32,
in the first case, after going around the finite branch point, one obtains a cyclic permutation of the
sheets of the function y. By the same Theorem 32, in the second case, after going around each finite
branch point, one obtains an involution of the set of its sheets.

Theorem 41. The inverse of a polynomial of prime degree p is representable by radicals if
and only if this polynomial can be reduced to one of the following two forms by affine changes of
variables in the target and source spaces :

(1) to the power function xp;
(2) to the Chebyshev polynomial Tp.

Proof. Let us apply the previous proposition. Suppose that the polynomial has two critical
values. Consider the composition of the polynomial with the affine transformation that maps the
two critical values to the points 1 and −1. According to Theorem 18, the polynomial obtained can
be reduced to the Chebyshev polynomial Tp by an affine change of the variable.

Suppose that the polynomial has one critical value. Consider the composition of the polynomial
with an affine transformation that maps the critical value to the point 0. By Proposition 19, the
polynomial obtained can be reduced to the power function xp by an affine change of the variable.

Thus, we have shown that among polynomials of prime degree, up to affine changes of the
variable, only for the Chebyshev polynomial and the power function the inverse functions are rep-
resentable by radicals. Recall that a general cubic equation is solvable by radicals precisely because
any cubic polynomial can be reduced to either the polynomial T3 or the function x3 by affine changes
of coordinates.
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11. ON RATIONAL FUNCTIONS OF PRIME DEGREE
WHOSE INVERSES ARE REPRESENTABLE BY RADICALS

We begin with the following obvious proposition.
Proposition 42. If the degree of an algebraic function is equal to n and the genus of its

Riemann surface is equal to zero, then the sum of defects of its branch points is equal to 2(n − 1).
Proof. According to the Riemann–Hurwitz formula, 2 = 2n −

∑
µ(a), or

∑
µ(a) = 2(n − 1).

The number µ(a)/(n − 1), where µ(a) is the defect of a branch point a of an n-valued algebraic
function whose Riemann surface has genus zero, is called the reduced defect of this branch point.
By the Riemann–Hurwitz formula, the sum of reduced defects is equal to 2.

Suppose that an algebraic function y of prime degree p whose Riemann surface has genus 0 is
representable by radicals. What set can be the set of reduced defects of its branch points?

For any prime p, the defects of branch points of the function y are elements of the set Ap, which
contains the number p− 1 and the numbers (p− 1)(1− 1/l), where l > 1 is a divisor of the number
p − 1. Denote by A∞ = {1, 1/2, 3/4, 4/5, . . .} the union of two sets one of which consists of the
number 1 and the other of all numbers of the sequence k/(k + 1), where k = 1, 2, . . . . One can see
that the reduced defect of each branch point of the function y is contained in the set A∞.

Problem. List all unordered collections of numbers such that each number belongs to the
set A∞ and the sum of all numbers in the collection is equal to 2.

Proposition 43. Only the following six collections of numbers satisfy the conditions formulated
in the problem:

(1) 1, 1;

(2) 1, 1/2, 1/2;
(3) 1/2, 1/2, 1/2, 1/2;

(4) 1/2, 2/3, 5/6;
(5) 1/2, 3/4, 3/4;

(6) 2/3, 2/3, 2/3.

Proof. 1. Suppose that a collection contains either the number 1 or the subcollection
{1/2, 1/2}. The sum of the remaining numbers of the collection must be equal to 1. The remaining
numbers may only be units or halves. Indeed, if a number x ∈ A∞ \ {1, 1/2} is contained in the
collection, then x < 1 and so the collection must contain another number of the set A∞, which is
impossible because x > 1/2 and all the numbers of the set A∞ are no less than 1/2. The remaining
possibilities are easily analyzed, which yields collections (1)–(3).

2. Suppose that a collection does not contain unity and contains one half. The sum of the
remaining numbers of the collection must be equal to 3/2. In addition to 1/2, the collection must
contain exactly two numbers. Indeed, all numbers in the set A∞ \ {1/2} are greater than (3/2)/3.
Among the remaining numbers there are numbers ≤ (3/2)/2 = 3/4: these are the numbers 2/3
and 3/4. Hence, there is either 2/3 or 3/4 among the remaining numbers. Both these cases are
possible and correspond to collections (4) and (5).

3. Suppose that a collection does not contain the numbers 1 and 1/2. All numbers x of the
set A∞ \ {1, 1/2} satisfy the inequalities 2/3 ≤ x < 1. This may only happen when the collection
contains exactly three numbers and all of them are equal to 2/3. This possibility corresponds to
collection (6).

Corollary 44. For a prime number p > 2, the functions that are representable by radicals and
are the inverses of rational functions of degree p may only have the following collections of reduced
defects: collections (1) and (2), which are realized if and only if the rational functions can be reduced
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either to the power function xp or to the Chebyshev polynomial Tp by linear fractional changes in
the target and source spaces ; collection (3); collections (4) and (6), which may occur only for p ≡ 1
mod 3; and collection (5), which may occur only for p ≡ 1 mod 4.

I am going to return to the topological classification of functions that are representable by
radicals and are the inverses of rational functions. Let us dwell on the topological classification of
such functions with a collection of reduced defects of type (3).

12. CLASSIFICATION OF RATIONAL FUNCTIONS OF PRIME DEGREE p,
p ≡ −1 mod 12, WHOSE INVERSES ARE REPRESENTABLE BY RADICALS

Recall general facts on the topological classification of degree n analytic maps ϕ : R → C of
connected compact Riemann surfaces to the Riemann sphere C. Each such map induces a mon-
odromy homomorphism M : π1(C \A, ∗) → S(n), where A is the set of critical values of the map ϕ
and π1(C \ A, ∗) is the fundamental group of the complement C \ A with a marked point ∗. The
homomorphism M is defined up to conjugation of the group S(n). The image of the fundamental
group under the monodromy homomorphism is transitive.

Maps ϕ1 : R1 → C and ϕ2 : R2 → C are called equivalent as branched coverings if there exists a
homeomorphism h : R1 → R2 such that ϕ2 ◦ h = ϕ1. Maps are equivalent as branched coverings if
and only if the sets A1 and A2 of their critical values are equal and the monodromy homomorphisms
M1 : π1(C \ A, ∗) → S(n) and M2 : π1(C \ A, ∗) → S(n), where A = A1 = A2, of these branched
coverings coincide up to conjugation in the group S(n).

Let us number the points of the set of critical values A = {v1, . . . , vm+1}. As generators
γ1, . . . , γm+1 of the group π1(C \ A, ∗), we take disjoint loops that wind once around the points
v1, . . . , vm+1 in the counterclockwise direction and are related by the formula γ1 . . . γm+1 = e.
Upon fixing the generators, the definition of a homomorphism q : π1(C \A, ∗) → S(n) is equivalent
to the choice of an ordered collection of elements g1 = q(γ1), . . . , gm+1 = q(γm+1) in the group S(n)
such that g1 . . . gm+1 = e.

Since the monodromy homomorphism is defined up to conjugation in the group S(n) and its
image is transitive, we will focus on the ordered collections g1, . . . , gm+1, defined up to conjugation,
of elements of the group S(n) that generate a transitive subgroup. On such collections one can define
an action of the braid group B(m + 1) on m + 1 strands with generators p1, . . . , pm. The action is
introduced by the following rule: all elements of the collection g1, . . . , gm+1 except gi and gi+1 are
invariant under the action of the generator pi, while pi(gi) = gi+1 and pi(gi+1) = g−1

i+1gigi+1.
Maps ϕ1 : R1 → C and ϕ2 : R2 → C are called topologically equivalent if there exist orientation-

preserving homeomorphisms h : R1 → R2 and ρ : C → C such that ϕ2 ◦ h = ρ ◦ ϕ1. Branched
coverings with a branch set A are topologically equivalent if and only if the ordered collection of
elements g1, . . . , gm+1 ∈ S(n) corresponding to the monodromy homomorphism of the first covering
is equal, up to conjugation in the group S(n) and the above-described action of the braid group, to
the collection of elements l1, . . . , lm+1 ∈ S(n) corresponding to the monodromy homomorphism of
the second covering [15].

In the metacyclic group Mp, consider the subgroup SMp generated by all second-order elements.
The group SMp consists of transformations g of the ring Z/pZ that have either the form g(x) ≡
−x + a mod p (each such transformation has order 2) or the form g(x) ≡ x + b mod p. Let us
introduce the following notation: for any element a of the ring Z/pZ, denote by σa the transformation
g(x) ≡ x + a mod p and by σ̃a the transformation g(x) ≡ −x + a mod p. Let us write down the
multiplication table in the group SMp. One can easily verify the following proposition.

Proposition 45. For any a, b ∈ Z/pZ,

σaσb = σa+b, σaσ̃b = σ̃a+b, σ̃aσ̃b = σa−b, σ̃aσb = σ̃a−b.
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Theorem 46. Suppose that σ̃a, σ̃b, σ̃c, and σ̃d are four second-order elements in the group
SMp that are related by σ̃aσ̃bσ̃cσ̃b = e and generate a transitive group. Each such quadruple can be
transformed by means of conjugation in the group SMp and the action of the braid group B(4) into
a quadruple such that σ̃a(x) ≡ σ̃c(x) ≡ −x + 1 mod p and σ̃b(x) ≡ σ̃d(x) ≡ −x − 1 mod p.

Proof. The relation σ̃aσ̃bσ̃cσ̃d = e means that (σ̃aσ̃b)(σ̃cσ̃d) = σ(a−b)σ(c−d) = σ(a−b+c−d) = e,
i.e., that a + c = b + d.

The generator p1 of the braid group B(4) takes the quadruple g1, g2, g3, g4 to the quadruple
g2, g

−1
2 g1g2, g3, g4. For g1 = σ̃a and g2 = σ̃b we have g−1

2 g1g2 = σ̃b ◦ σ̃a ◦ σ̃b = σ̃2b−a. Thus, the
generator p1 takes the pair σ̃a, σ̃b to the pair σ̃b, σ̃2b−a and does not change the last two elements in
the quadruple. Denote a− b by q. Using this notation, write the pair of elements σ̃a, σ̃b as σ̃a, σ̃a−q

and its image as the pair σ̃a−q, σ̃a−2q. Therefore, the element pm
1 ∈ B(4) takes the pair σ̃a, σ̃b to the

pair σ̃a−mq, σ̃a−(m+1)q .
Suppose that q �= 0 mod p. In this case, without changing the elements σ̃c and σ̃d, we can

map the pair σ̃a, σ̃b to a pair σ̃l, σ̃−l, where 2l ≡ q mod p. Indeed, for q �= 0 mod p, the equation
a + mq = l in the field Z/pZ is solvable with respect to m. For m equal to the solution of this
equation, the element pm

1 takes the pair a, b to the pair l,−l, where 2l ≡ a − b mod p.
By hypothesis, the elements a, b, c, and d are related by a + c = b + d. Hence, if a− b = 2l �= 0,

then c − d = −2l �= 0. Repeating the previous calculations, we find that some power of the
generator p3 of the braid group B(4) takes the pair σ̃c, σ̃d to the pair σ̃−l, σ̃l. Thus, under the
action of some powers of the generators p1 and p3, the quadruple σ̃a, σ̃b, σ̃c, σ̃d is mapped to the
quadruple σ̃l, σ̃−l, σ̃−l, σ̃l.

Now, consider the case q ≡ 0 mod p. If q = 0, then c = d because, by hypothesis, a− b = c− d;
i.e., the quadruple has the form σ̃a, σ̃a, σ̃b, σ̃b. The elements a and b cannot be equal: otherwise,
all four transformations have the common fixed point 0, which contradicts the transitivity of the
group. For a �= b, the generator p2 of the braid group B(4) takes the original quadruple to the
quadruple σ̃a, σ̃b, σ̃2b−a, σ̃b. Now the calculations performed above can be applied to this quadruple
because a �= b and b �= 2b − a.

Hence, by the action of the braid group B(4), one can reduce the original quadruple to the form
σ̃l, σ̃−l, σ̃−l, σ̃l, where l �= 0. Now, performing the affine change g(x) ≡ lx mod p in the field Z/pZ,
we can make it so that l equals 1. Indeed, g−1σ̃lg = σ̃1 and g−1σ̃−lg = σ̃−1.

Corollary 47. Up to topological equivalence, there exists a unique rational map π : C → C

of prime degree p > 2 such that the inverse map is representable by radicals and the monodromy
transformation corresponding to each branch point is an involution. Such a rational map has four
critical values. The monodromy homomorphism of the inverse function is described in Theorem 46.

According to Corollary 44, if a prime number p satisfies the conditions p �= 1 mod 3 and p �= 1
mod 4, then a function that is representable by radicals and is the inverse of a rational function of
degree p may have the collection of reduced defects of types (1)–(3) only. A prime number p > 3
satisfies the relations p �= 1 mod 3 and p �= 1 mod 4 if and only if p ≡ −1 mod 12.

Corollary 48. Let p > 3 be a prime number such that p ≡ −1 mod 12. Then there exist
three topological types of rational functions of degree p whose inverses are representable by radicals.
These are the function xp, the Chebyshev polynomial Tp, and the function described in Theorem 46.
The functions of the first two types can be reduced to their normal forms by linear fractional trans-
formations in the target and source spaces. The functions of the third type with respect to this
transformation group depend on a modulus given by the double ratio of four critical values.

Remark. After the paper was accepted for publication, I found the following remarkable paper:
J. F. Ritt, “On Algebraic Functions Which Can Be Expressed in Terms of Radicals,” Trans. Am.
Math. Soc. 24 (1), 21–30 (1922). In many respects, Ritt advanced further than me. He showed
that a polynomial (not necessarily of prime degree) whose inverse is representable by radicals is
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a composition of first- and fourth-degree polynomials, functions of the form zp, and Chebyshev
polynomials. He also classified rational functions of prime degree whose inverses are representable
by radicals. However, Ritt’s paper lacks some of my results. Here are examples: (1) the Riemann
surface of a function that is the inverse of a Chebyshev polynomial is determined by its local behavior
near the branch points; (2) an algebraic function of degree n that has at least one nonmultiple branch
point cannot be reduced by radicals to algebraic functions of degree <p, where p is the least prime
divisor of the number n (here we assume that p ≥ 5).
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