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Abstract. The paper completes the construction of a multidimensional topological version of
differential Galois theory. We construct a rich class of germs of functions of several variables which is
closed under superpositions and other natural operations. The main theorem describes the behavior
of the monodromy groups of such germs under the natural operations. As a result, we obtain
topological obstructions to the representability of functions in quadratures, which give the strongest
known statements about unsolvability of equations in closed form.
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The present paper is the last in the series of papers [4–6] dealing with topological obstructions to
the representability of a function of several variables in quadratures. Similar results for functions of
one variable were obtained in my PhD thesis [1–3] written under Arnold’s supervision and defended
in 1973.

Arnold [9–16] found topological proofs of unsolvability of several problems, including the prob-
lem of solving algebraic equations in radicals (cf. [7, 8]), although he ascribed the results concerning
the latter problem to Abel, see [7].

In [1–3], a rich class of functions of one variable with infinitely many values has been constructed
for which the monodromy group is well defined. Is there a sufficiently rich class of germs of func-
tions of several variables with infinitely many values (including germs of functions representable
in generalized quadratures and germs of entire functions of several variables and closed with re-
spect to natural operations such as superposition) possessing the same property? For a long time,
I have thought that the answer is “no.” In the present paper, I introduce the class of SC -germs,
which answers the question in the positive. The proof makes use of the results of [4] concerning the
continuability of multivalued analytic functions along their ramification sets.

The main theorem (see Sec. 5) describes the changes occurring in the monodromy groups of
SC-germs if one applies natural operations to these germs. This theorem is very close to the main
one-dimensional theorem in [2, 3] but uses also new results both of analytic [4] and group-theoretic
[6] nature. As a consequence, we obtain topological statements about unsolvability of equations
in closed form, which are stronger than their classical counterparts. The reader can find a rather
detailed bibliography of classical papers including the fundamental work due to by Liouville, Picard,
Vessiot, and Kolchin in [17].

I am grateful to V. I. Arnold, who encouraged me to write this paper, and to my wife T. V. Be-
lokrinitskaya, who helped me write it.

1. Functions Representable in Quadratures, k-Quadratures,
and Generalized Quadratures

One can define a class of germs of analytic functions as follows: take a set of basic germs and
a list of admissible operations and define the class of germs as the set of all germs obtained from
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the basic germs by applying the admissible operations. This is exactly the way in which the classes
of germs of functions representable in quadratures, k-quadratures, and generalized quadratures are
defined. Let us recall these definitions. We take the standard space C

n with coordinates x1, . . . , xn .
Definition 1. A function germ ϕ at a point a ∈ C

n is expressed via function germs (at a)
1) f1 and f2 by arithmetic operations if one of the identities ϕ = f1+f2 , ϕ = f1−f2 , ϕ = f1f2 ,

or ϕ = f1/f2 holds (in the last case, we assume that the germ f2 does not vanish identically);
2) f0, . . . , fk by the solution of an algebraic equation if the germ f0 is not identically zero and

the identity
f0ϕ

k + f1ϕk−1 + · · ·+ fk = 0
holds;

3) f1, . . . , fn by integration if the identity dϕ = α, where α = f1 dx1 + · · · + fn dxn , holds (for
given function germs f1, . . . , fn , there exists a function germ ϕ with this property if and only if
the 1-form α is closed; in this case, ϕ is uniquely determined up to an additive constant);

4) f1, . . . , fn by exponentiation of the integral if the identity dϕ = αϕ, where α = f1 dx1+ · · ·+
fn dxn , holds (for given f1, . . . , fn , the germ ϕ exists if and only if the 1-form α is closed; in this
case, ϕ is uniquely determined up to a multiplicative constant);

5) f1, . . . , fm and a function germ g at a point b ∈ C
m by superposition if the identity ϕ =

g(f1, . . . , fm) holds.
Definition 2. The class of function germs in C

n representable in quadratures is defined by
the following data. The basic germs are the germs of constant functions (at an arbitrary point
of C

n). The admissible operations are the arithmetic operations, integration, and exponentiation
of the integral. The classes of function germs in C

n representable in k-quadratures and generalized
quadratures are defined in the same way. We only supplement the list of admissible operations with
the operation of solving algebraic equations of degree � k and arbitrary degree, respectively.

Remark. In what follows, we do not consider the operation of exponentiation of the integral: it
can be replaced by integration followed by superposition with the exponential. However, in the above
definitions, this operation is important: these definitions do not use the absolutely nonalgebralizable
operation of superposition. They can be restated almost word for word in the case of abstract
differential fields equipped with n pairwise commuting differentiations ∂/∂x1, . . . , ∂/∂xn and play
an important role in differential Galois theory. These generalized definitions of quadratures and
generalized quadratures are due to Liouville for n = 1 and Kolchin for n > 1.

We consider the classes of function germs representable in quadratures, k-quadratures, and
generalized quadratures in the spaces C

n of all dimensions n � 1 simultaneously. One can readily
show by repeating the argument due to Liouville in the one-dimensional case that these classes of
function germs are closed with respect to superposition and contain all germs of rational functions of
several variables and the germs of all main elementary functions. (The main elementary functions
are those studied at school and often included in calculator’s keyboards. Here is the list of these
functions: the constants, the independent variable x, the roots n

√
x, the exponential expx, the

logarithm log x, and the trigonometric functions sinx, cos x, tanx, arcsinx, arccos x, and arctanx.)
Remark. We often denote the germ of an analytic function (generally speaking, multivalued)

by the same letter as the function itself, specifying neither the point nor the specific germ at that
point provided that this information is clear from the context.

2. Formulas, their Multigerms, Analytic Continuations, and Riemann Surfaces

We consider classes of analytic function germs representable by formulas that involve the above-
mentioned operations and the operation of solving a system of holonomic equations (see Sec. 3).
For each formula of this kind, one can define a multigerm containing the germs of all functions
participating in the formula (see Sec. 4).

We can speak about analytic continuation of a multigerm of a formula along a curve (which
is essentially the analytic continuation along various curves of all germs occurring in the formula
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and related by the formula). We can also define the Riemann surface of a formula, introduce the
S -property of a formula, and so on. We shall discuss these definitions in detail for the simplest
formula y = f ◦ G. In order to avoid cumbersome details, we do not give similar definitions for
more complicated formulas. The main ideas are clear from the example below.

Consider the composition of a germ of an analytic map G of a smooth analytic manifold M into
C

n and an analytic function germ f : C
n → C. A multigerm of the formula y = f ◦ G is a triple of

germs {yb |Gb, fa}, where yb and Gb are germs at the point b ∈ M of an analytic function y and
the analytic map G : (M, b) → (Cn, b), respectively, fa is a germ at a point a ∈ C

n of the analytic
function f , and yb = fa ◦ Gb .

Let γ : [0, 1] → M , γ(0) = b, be a parametrized curve in M . Consider the parametrized curve
Gγ(t) ◦ γ : [0, 1] → C

n in C
n taking each point t, 0 � t � 1, to Gγ(t) ◦ γ(t), where Gγ(t) is the

analytic continuation of Gb along the curve γ : [0, t] →M . The analytic continuation of a multigerm
{yb1 |Gb1 , fa1} of the formula y= f ◦ G along the curve γ : [0, 1] →M , γ(0)= b1 , γ(1)= b2 , is the
triple {yb2 |Gb2 , fa2}, where yb2 and Gb2 are the germs obtained by the analytic continuation of yb1

and Gb1 along γ and fa2 is the germ obtained by the analytic continuation of fa1 along the curve
Gγ(t) ◦ γ : [0, 1] → C

n . Obviously, these germs are related by the equation yb2 = fa2
◦ Gb2 .

We say that two multigerms of the formula y = f ◦ G are equivalent if one of them can be
obtained from the other by analytic continuation along some curve. As a set of points, the Riemann
surface R of the formula y = f ◦ G is the union of all multigerms equivalent to a given multigerm
{yb |Gb, fa}. The natural projection π : R → M of a Riemann surface of the formula y = f ◦ G to
the manifold M takes a germ {yb1 |Gb1 , fa1} to the point b1 ∈ M . A small neighborhood U of a
point b1 in M determines a neighborhood Ũ of a multigerm b̃1 = {yb1 |Gb1 , fa1} in the Riemann
surface R provided that U belongs to some coordinate neighborhood of b1 in M , the Taylor series
of Gb1 : M → C

n converges to some map G̃ : U → C
n in U , and the image G̃(U) ⊂ C

n of U under
G̃ belongs to the domain of convergence of the Taylor series of fa1 . If these conditions are satisfied,
then the neighborhood Ũ of the multigerm b̃1 on the Riemann surface R is defined as the set of
multigerms {yb2 |Gb2 , fa2} such that b2 ∈ U , Gb2 is the germ at b2 of the map G̃, fa2 is the germ
at a2 = G̃(b2) of the function f̃ that is equal to the sum of the Taylor series of the germ fb1 , and
yb2 = fa2

◦ Gb2 .
Neighborhoods Ũ of this form determine a topology on the Riemann surface R. In this topology,

the natural projection π : R → M is a local homeomorphism of R into M . The local homeomor-
phism π induces the structure of a complex-analytic manifold on R, since this structure by definition
exists on M .

The Riemann surface R of the formula y = f ◦ G plays exactly the same role as the Riemann
surface of an analytic function. Namely, a multigerm {y∗

b̃
|G∗

b̃
, fa} of y∗ = f ◦ G∗ , where G∗ = π∗G,

admits a unique extension to the entire Riemann surface R, and R is the maximal manifold
possessing this property (this means that if π1 : R1 → M is another manifold R1 equipped with
a local homeomorphism π1 to M possessing the same property, then there exists an embedding
j : R1 → R commuting with the projections, i.e., satisfying π1 = π ◦ j).

A point b2 ∈M is said to be singular for a multigerm {yb1 |Gb1 , fa1} of the formula y = f ◦ G if
there is a curve γ : [0, 1] →M , γ(0) = b1 , γ(1) = b2 , such that the multigerm cannot be continued
regularly along this curve but admits a regular continuation along the shorter curve γ : [0, t] →M
for each t in the interval 0 � t < 1. Equivalent multigerms have the same sets of singular points.
We say that the formula y = f ◦ G possesses the S -property if the set of singular points of any of
its multigerms is thin (see [6]).

It is also convenient to consider other sets, different from the set of singular points, such that a
multigerm of a formula is endlessly continuable outside these sets. A thin set A is called a forbidden
set for a multigerm of a formula if the multigerm admits a regular extension along each curve γ(t),
γ(0) = a, intersecting A at most at the initial point.
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The following theorem be proved in the same way as the similar theorem for S -functions in the
one-dimensional case; see [2, 3].

Theorem (about a forbidden set (cf. [6])). A thin set is a forbidden set for a multigerm of
a formula if and only if it contains the set of its singular points. In particular, a multigerm of a
formula admits a forbidden set if and only if the formula possesses the S -property.

3. The Class of SC-Germs and its Closedness with Respect to Natural Operations

The definition below plays the key role in what follows.
Definition 1. A germ fa of an analytic function f at a point a ∈ C

n is an SC-germ if the
following condition is satisfied: for each connected complex-analytic manifold M , each analytic map
G : M → C

n , and each preimage b of a (G(b) = a) there is a thin set A ⊂M such that for any curve
γ : [0, 1] → M issuing from b (γ(0) = b) and intersecting A at most at the initial point (γ(t) /∈ A
for t > 0) the germ fa admits an analytic continuation along the curve G ◦ γ : [0, 1] → C

n .
In other words, a germ fa at a ∈ C

n is an SC-germ if for each analytic map G : M → C
n

and each point b ∈ M such that G(b) = a the multigerm {yb |Gb, fa} of the formula y = f ◦ G
possesses the S -property on M .

Proposition 1. Each germ of an S -function f of one variable is an SC -germ.
Proof. If G : M → C

1 is a constant map, then the function f ◦ G is constant. If the map is
not constant, then it suffices to take the thin set A in the form A = G−1(O), where O is the set of
singularities of f .

Proposition 2. If f1, . . . , fm are SC-germs at a ∈ Cn and g is an SC-germ at the point
(f1(a), . . . , fm(a)) ∈ C

m, then g(f1, . . . , fm) is an SC-germ at a.
Proof. Let G : M → C

n be an analytic map of a connected complex manifold M into C
n, and

let b ∈ M be a point such that G(b) = a. Since the germs f1, . . . , fm at a ∈ C
n are SC-germs, it

follows that for each i = 1, . . . ,m there is a thin set Ai ∈M forbidden for the germ of the formula
yi = fi ◦ G. A forbidden set for the multigerm of the formula z = f ◦ G, where f = (f1, . . . , fm)
is a vector function germ at the point a ∈ C

n , can be taken in the form A =
⋃m

i=1Ai . Let
π : R → M be the natural projection of the Riemann surface R of the formula z = f ◦ G, and
let b̃ the point of R corresponding to the multigerm {zb |Gb, fa}. The germ of g at the point
c = (f1(a), . . . , fm(a)) of C

m is an SC-germ. Therefore, there is a thin subset B ⊂ R forbidden for
the multigerm {wb̃ | (f ◦ G ◦ π)b̃, gc} of the formula w = g ◦ (f ◦ G ◦ π). Then the thin set A ∪ π(B)
is a forbidden set for the multigerm {ub | (f ◦ G)b, gc} of the formula u = g ◦ (f ◦ G).

Definition 2. An operation ℵ that takes an analytic vector function germ f at a point a ∈ C
n

to an analytic function germ ϕ = ℵ(f) at the same point a is called an operation with controllable
singularities if the germ π∗ϕ, where π : R → M is the natural projection of the Riemann surface
R of the germ f , has a forbidden closed analytic subset A ⊂ R. (In other words, the germ π∗ϕ
admits an analytic continuation along each curve γ : [0, 1] → R, γ(0) = ã, where ã ∈ R is the point
corresponding to the germ f , such that γ intersects A at most at the initial point, i.e., γ(t) /∈ A
for 0 < t � 1.)

Proposition 3. 1) For each i = 1, . . . , n the differentiation operation that takes an analytic
function germ f at a point a ∈ C

n to the germ ∂f/∂xi at the same point is an operation with
controllable singularities.

2) The integration operation that takes a vector function germ f = (f1, . . . , fn) at a point a ∈ C
n

to an analytic function germ ϕ at the same point such that the identity dϕ = f1 dx1 + · · ·+ fn dxn

holds is an operation with controllable singularities.
Proof. If the function germ f (or the 1-form germ α = f1 dx1+ · · ·+fn dxn) admits an analytic

continuation along some curve in C
n , then the partial derivatives of f (respectively, the indefinite

integral of α) admit analytic continuation along the same curve. Therefore, the partial derivative
(the indefinite integral) has no singularities on the Riemann surface of f (respectively, f ) at all.
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Proposition 4. The operation of solving an algebraic equation, which takes a vector function
germ f = (f0, . . . , fk) at a ∈ C

n, where f0 �≡ 0, to a germ y at the same point a ∈ C
n such that

f0y
k + · · ·+ fk = 0, is an operation with controllable singularities.
Proof. Consider the field K generated over C by the germs f0, . . . , fk . By definition, y satisfies

the algebraic equation f0yk + · · ·+ fk = 0 over K ; however, this equation may reducible. We take
an irreducible equation

Q0y
l + · · ·+Ql = 0 (∗)

over K satisfied by y. We can assume that the coefficients Q0, . . . , Ql belong to the ring over C

generated by f0, . . . , fk . (If this is not the case, we just multiply the coefficients of this equation by
their common denominator.) The coefficients Q0, . . . , Ql admit a single-valued continuation to the
Riemann surface R of f .

Let D(Q0, . . . , Ql) be the discriminant of Eq. (∗). It does not vanish identically on R, since
Eq. (∗) is irreducible. Let ΣD ⊂ R be the analytic set of zeros of D(Q0, . . . , Ql) and let Σ0 ⊂ R
be the analytic set of zeros of the coefficient Q0 . We can take Σ = Σ0 ∪ ΣD .

Recall that a system

Lj(y) =
∑

aj
i1,...,in

∂i1+···+iny

∂xi1
1 . . . ∂x

in
n

= 0, j = 1, . . . , N, (∗∗)

of N linear partial differential equations for an unknown function y whose coefficients aj
i1,...,in

are
analytic functions of n complex variables x1, . . . , xn is said to be holonomic if the space of germs
of its solutions at each point of C

n is finite-dimensional.
Definition. The operation of solving a holonomic system of equations is the operation that

takes a vector function germ a = (aj
i1,...,in

) at a point a whose components are the coefficients of a
holonomic system (∗∗) numbered in an arbitrary order to the germ y at a of some solution of this
system.

Proposition 5. The operation of solving a holonomic system of equations is an operation with
controllable singularities.

This statement follows from general theorems about holonomic systems.
Theorem 1. Let f be an analytic vector function germ at a point a ∈ C

n, f = (f1, . . . , fN ),
whose components f1, . . . , fN are SC-germs. Suppose that a germ ϕ at a ∈ C

n is obtained by an
application of an operation with controllable singularities to f . Then ϕ is an SC-germ.

Proof. Let π : R→ C
n be the natural projection of the Riemann surface R of f , and let ã ∈ R

be the marked point of R corresponding to this germ, π(ã) = a. By definition, the germ π∗ϕ at
the point ã ∈ R admits an analytic continuation along any curve in R intersecting some analytic
subset Σ ⊂ R at most at the initial point. We take a Whitney stratification of the pair (R,Σ)
such that the closure of each stratum is a closed complex-analytic set. We shall be interested only
in those strata whose closures contain the marked point ã ∈ R. Let Σ1 be the closure of one of
these strata Σ1 , and let Σ0

1 be the union of all strata except for Σ1 contained into Σ1 . According
to the result in [4], the germ π∗ϕ admits an analytic continuation along each curve γ : [0, 1] → Σ1 ,
γ(0) = â, intersecting Σ0

1 at most at the initial point. Now the theorem follows.
Indeed, let G : M → C

n be an analytic map of a connected complex manifold M into C
n ,

and let b ∈ M be a point such that G(b) = a. Since all components of f are SC-germs, it follows
that there is a thin set A ⊂M forbidden for the multigerm {yb |Gb, fa} of the formula y = f ◦ G.
Let π1 : R1 → M be the natural projection of the Riemann surface R1 of this formula, and let
b̃ ∈ R1 be the marked point in M1 corresponding to this germ. The map germ π−1Gπ1 : R1 → R
at the point b̃ ∈ R1 taking b̃ to ã admits an analytic continuation to R1 , which will be denoted by
G̃ : R1 → R.

In the Whitney stratification of the pair (R,Σ), consider all strata whose closures contain
the image G̃(R1) of R1 . Let Σ1 be the minimal of all these closures. Let Σ0

1 be the union of all
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strata except for Σ1 contained in Σ1 . The set B ⊂ R1 , where B = G̃−1(Σ0
1), is a proper analytic

subset of R1 . According to [4], the germ ϕa admits an analytic continuation along the image
G ◦ π1 ◦ γ : [0, 1] → C

n of each curve γ : [0, 1] →M1 , γ(0) = b̃, intersecting B at most at the initial
point. Therefore, the set A ∪ π1(B) ⊂ M is a forbidden set for the multigerm {yc |Gc, ϕa} of the
formula y = ϕ ◦ G. This completes the proof of the theorem.

Corollary 1. Suppose that the set of singularities of a multivalued analytic function in C
n is

a closed analytic set. Then each germ of this function is an SC-germ.
Proof. By definition, a germ of such a function at a point a ∈ C

n can be obtained by an
application of an operation with controllable singularities to the germ at a of the vector function
x = (x1, . . . , xn) whose components are the coordinate functions.

Theorem 2 (about the closedness of the class of SC-germs). The class of SC-germs contains
all germs of S -functions of one variable and all germs of S -functions of several variables with
analytic sets of singular points.

The class of SC -germs in C
n is closed under the operations of superposition with SC-germs

of functions of m variables, differentiation, integration, solving algebraic equations, and solving
holonomic systems of linear differential equations.

Proof. The fact that the germs of S -functions mentioned in the statement of Theorem 2 belong
to the class of SC-germs is proved in Proposition 1 and Corollary 1. The closedness of the class of
SC-germs with respect to superposition is proved in Proposition 2. The closedness of the class of
SC-germs with respect to the other operations follows from Theorem 1 by virtue of Propositions 3–5.

Corollary 2. If a function germ f can be obtained from germs of S -functions with analytic
sets of singularities and from germs of S -functions of one variable by integration, differentiation,
arithmetic operations, superpositions, and solving algebraic equations and holonomic systems of
linear differential equations, then f is an SC-germ. In particular, a germ that is not an SC-germ
cannot be expressed in generalized quadratures.

4. The Class of Multigerms of Formulas Possessing the SC-Property

Suppose that a class A of analytic function germs is defined by a set B of basic germs and a
list D of admissible operations. Suppose that D contains only the operations mentioned in Sec. 1
together with the operation of solving holonomic equations (see Sec. 2). By definition, each germ
of the class A can be expressed via the basic germs by formulas containing admissible operations.
Let us inductively define multigerms of formulas of this kind.

A multigerm of the simplest formula Ω that states that a germ ϕ is basic, by definition, consists
of the germs ϕ and g, where g is an element of B, and the equation ϕ = g; i.e., Ω = {ϕ | g |ϕ =
g}. Suppose that a germ ϕ at a point a ∈ C

n can be expressed via function germs f1, . . . , fm

at a by one of operations 1)–4) in Definition 1 in Sec. 1 or by solving a system of holonomic
equations. Let Ω1, . . . ,Ωm be the multigerms of formulas expressing f1, . . . , fm via the basic germs.
Then the multigerm of the formula expressing ϕ is the set consisting of ϕ, the multigerms of all
formulas Ω1, . . . ,Ωm , and the identity corresponding to the operation in question. For example, if
ϕ is obtained from f1, . . . , fm by solving an algebraic equation ϕm + f1ϕm−1 + · · ·+ fm = 0, then
Ω = {ϕ |Ω1, . . . ,Ωm |ϕm + f1ϕm−1 + · · ·+ fm = 0}.

If a germ ϕ at a point a ∈ C
n can be expressed via the function germs f1, . . . , fm at a and a

function germ g at the point b = (f1(a), . . . , fm(a)) ∈ C
m by superposition, then the multigerm Ω

of the formula expressing ϕ is Ω = {ϕ |Ω1, . . . ,Ωm,Ω0 |ϕ = g(f1, . . . , fm)}, where Ωi , i = 1, . . . ,m,
is the multigerm of the formula for the germ fi at a and Ω0 is the multigerm of the formula for
the germ g at b. (Because of the presence of superposition, multigerms of formulas can contain
function germs in different spaces.)

For a multigerm of a formula Ω representing a germ ϕ at a point a ∈ C
n , the notions of

analytic continuation and Riemann surface are introduced in the same way as in Sec. 2 for the
formula y = f ◦ G. Note that the Riemann surface R of a formula Ω lies over the space C

n (i.e., the
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natural projection π : R→ C
n is well defined), although the formula can contain germs of functions

of different numbers of variables.
Repeating the definition in Sec. 3, we say that a multigerm Ω of a formula expressing a function

germ ϕ at a point a ∈ C
n via the basic germs possesses the SC -property if the following condition

is satisfied: for each connected complex-analytic manifold M , each analytic map G : M → C
n ,

and each preimage b of a (G(b) = a) there exists a thin set A ⊂ M such that for each curve
γ : [0, 1] → M issuing from b (γ(0) = b) and intersecting A at most at the initial point (γ(t) /∈ A
for t > 0) the multigerm Ω can be analytically continued along the curve G ◦ γ : [0, 1] → C

n .
Theorem. 1) Suppose that a class A of germs is given by a set B of basic germs containing

only SC-germs and a list of admissible operations D containing only operations mentioned in Sec. 1
and the operation of solving holonomic systems of differential equations. Then for each germ in A

each formula expressing this germ via the basic germs by admissible operations possesses the SC -
property.

2) If, moreover, the set B of basic germs is closed with respect to the operation of analytic
continuation, then for each germ ϕa ∈ A at a point a ∈ C

n there exists a forbidden set A ⊂ C
n

such that at each point b /∈ A each germ ϕb equivalent to ϕa also belongs to the class A (and, in a
sense, can be expressed via the basic germs by the same formula as ϕ).

Proof. To prove statement 1), it suffices to reproduce the argument in Sec. 3 (replacing function
germs by multigerms of formulas). Let us prove statement 2). By 1), the multigerm of the formula
Ω that expresses the germ ϕa via the basic germs possesses the SC-property and, in particular,
has a thin forbidden set A. Suppose that a germ ϕb can be obtained by analytic continuation of
ϕa along a curve γ . We can assume that γ(t) is not contained in A for 0 < t � 1 (see the theorem
about taking a curve off a thin set in [3, 6]). Under the analytic continuation of the multigerm of
the formula Ω, we obtain a multigerm of a formula expressing the multigerm ϕb by admissible
operations, since the set of basic germs is closed under analytic continuation.

In the assumptions of statement 2) of the theorem, we have the following alternative: For each
multivalued analytic function ϕ, either none of its germs belongs to the class A, or all its germs
outside some thin set belong to this class (and can be expressed via the basic germs by “one and the
same formula”). In the first case, we say that the function ϕ cannot be expressed via the basic germs
by admissible operations, and in the second case we say that such an expression exists. In particular,
the notions of representability of a multivalued analytic function in quadratures, k-quadratures, and
generalized quadratures are well defined.

5. Topological Obstructions to the Representability of Functions in Quadratures

We take a nonempty I -almost complete class IM of pairs of groups (see [6]). Let ÎM be the
class of SC-germs of analytic functions (at points of all spaces C

n , n � 1, simultaneously) whose
monodromy pair belongs to the class IM .

Main theorem. The class ÎM contains the SC-germs of all single-valued functions and is
closed with respect to superpositions and differentiations. Moreover,

1) if IM contains the additive group C of complex numbers, then ÎM is closed with respect to
integration;

2) if IM contains the permutation group S(k) on k elements, then ÎM is closed with respect
to solving algebraic equations of degree leqk.

Proof. To prove the theorem, one studies how the monodromy pairs of function germs change
under the operations mentioned in the theorem. The argument follows that in the proof of the
similar theorem about S -functions of one variable [2, 3]. Therefore, we only mention the differences
between the two proofs. First, the theorem about the closedness of the class of SC-germs (see
Sec. 3) is more complicated than its one-dimensional counterpart. It is based on the results in [4].
Secondly, the multidimensional composition operation is related to a new operation with pairs of
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groups, namely, the operation of induced closure. Related issues are described in detail in the paper
[6].

A result about quadratures. The monodromy group of a function germ f representable in
quadratures is solvable. Moreover, the monodromy group of any function germ f representable via
germs of single-valued S -functions with analytic sets of singular points and germs of single-valued
S -functions of one variable by integration, differentiation, and superpositions is solvable.

A result about k-quadratures. The monodromy pair of a function germ f representable
in k-quadratures is k-solvable (see [6]). Moreover, the monodromy pair of any function germ f
representable in terms of germs of single-valued S -functions with analytic sets of singular points
and germs of single-valued S -functions of one variable by integration, differentiation, and solving
algebraic equations of degree � k is k-solvable.

A result about generalized quadratures. The monodromy pair of a function germ f rep-
resentable in generalized quadratures is almost solvable (see [6]). Moreover, the monodromy pair
of any function germ f representable in terms of germs of single-valued S -functions with ana-
lytic sets of singular points and germs of single-valued S -functions of one variable by integration,
differentiation, and solving algebraic equations is almost solvable.

Proof. The above results follow from the main theorem, since the germs mentioned there
are SC-germs (see Sec. 3), and classes of pairs of groups having solvable, k-solvable, and almost
solvable monodromy group, respectively, contain the additive group C. The last two classes of pairs
of groups contain also the group S(k) and all groups S(m), 0 < m <∞, respectively, (see [6]).

Kolchin extended the Picard–Vessiot theory to the case of holonomic systems of linear partial
differential equations. Let us state the corollaries to Kolchin’s theory related to the solvability of
regular holonomic systems in quadratures. By analogy with the one-dimensional case, a holonomic
system is said to be regular if all solutions of the system grow not faster than polynomially as the
argument approaches either the set of singular points of the system or infinity.

Theorem 1. A regular holonomic system is solvable in quadratures, k-quadratures, or gener-
alized quadratures if its monodromy group is solvable, k-solvable, or almost solvable, respectively.

Hence Kolchin’s theory implies the following two results.
1) If the monodromy group of a regular holonomic system is solvable (k-solvable, almost solv-

able), then this system is solvable in quadratures (k-quadratures, generalized quadratures).
2) If the monodromy group of a regular holonomic system is unsolvable (not k-solvable, not al-

most solvable), then this system cannot be solved in quadratures (k-quadratures, generalized quadra-
tures).

Our theorem allows one to sharpen the negative result 2).
Theorem 2. If the monodromy group of a holonomic system is unsolvable (not k-solvable, not

almost solvable), then none of the germs of almost any solution of this system can be expressed via
germs of single-valued S -functions with analytic sets of singular points and germs of single-valued
S -functions of one variable by superposition, integration and differentiation (and solving algebraic
equations of degree at most k, and solving algebraic equations).

Galois theory readily implies the following assertion.
Theorem 3. Solutions of the algebraic equation ym + r1y

m−1 + · · · + rm = 0, where ri are
rational functions of n variables, can be expressed by radicals (by radicals and solutions of algebraic
equations of degree at most k) if and only if the monodromy group of the equation is solvable
(k-solvable).

Our theorem allows one to sharpen the negative results in Theorem 3. For example, the following
version of the classical Abel theorem, which is stronger than any previous result in this direction,
is valid.

Theorem 4 (cf. [7, 8]). For n � 5, none of the germs of a solution of the general algebraic
equation yn + x1y

n−1 + · · ·+ xn = 0, where x1, . . . , xn are independent variables, can be expressed
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via germs of elementary functions, germs of single-valued S -functions with analytic sets of sin-
gular points, and germs of single-valued S -functions of one variable by superposition, integration,
differentiation, and solving algebraic equation of degree less than n.
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