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NEWTON POLYTOPES FOR HOROSPHERICAL SPACES
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Abstract. A subgroup H of a reductive group G is horospherical if it
contains a maximal unipotent subgroup. We describe the Grothendieck
semigroup of invariant subspaces of regular functions on G/H as a semi-
group of convex polytopes. From this we obtain a formula for the num-
ber of solutions of a system of equations f1(x) = · · · = fn(x) = 0 on
G/H, where n = dim(G/H) and each fi is a generic element from an
invariant subspace Li of regular functions on G/H. The answer is in
terms of the mixed volume of polytopes associated to the Li. This gen-
eralizes the Bernstein–Kushnirenko theorem from toric geometry. We
also obtain similar results for the intersection numbers of invariant linear
systems on G/H.
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Introduction

Consider a commutative semigroup S. Two elements a, b ∈ S are analogous and
written a ∼ b if there is c ∈ S with a + c = b + c (where we write the semigroup
operation additively). This relation is an equivalence relation and respects the
addition. The Grothendieck semigroup Gr(S) of S is the set of equivalence classes
of ∼ together with the induced addition. The map which sends an element to its
equivalence class is a natural homomorphism ρ : S → Gr(S). The semigroup Gr(S)
has the cancelation property, i.e., if a, b, c ∈ Gr(S), the equality a+c = b+c implies
a = b. Moreover, for any homomorphism ϕ : S → H, where H is a semigroup
with cancelation, there exists a unique homomorphism ϕ̄ : Gr(S) → H such that
ϕ = ϕ̄ ◦ ρ. In particular, under the homomorphism ϕ, analogous elements have
the same image. Any semigroup H with cancelation naturally extends to a group,
namely its group of formal differences. It consists of pairs of elements from H,
where two pairs (a, b) and (c, d) are equal if a+d = b+ c. The Grothendieck group
of a semigroup S is the group of formal differences of its Grothendieck semigroup
Gr(S).

Received July 14, 2010; in revised form October 18, 2010.

c©2011 Independent University of Moscow

265



266 K. KAVEH AND A. KHOVANSKII

The Grothendieck semigroup of S contains significant information about S and
often is more tractable and simpler to describe than S itself.

We will be interested in semigroups of subspaces of functions (as well as sections
of line bundles) which arise naturally in algebraic geometry. Let X be an irreducible
variety over C with the field of rational functions C(X). Consider the collection
K(X) of all nonzero finite dimensional subspaces of C(X). For L1, L2 ∈K(X) let
L1L2 denote the linear span of all fg, f ∈ L1, g ∈ L2. With this product, K(X)
is a commutative semigroup. One shows that for each L ∈K(X) there is a largest
subspace L which is analogous to L called the completion of L (see [17, Appendix
4] and [6]).

An interesting and important special case is the algebraic torus X = (C∗)n.
The variety X is a multiplicative group and acts on itself by multiplication. For
α = (a1, . . . , an) ∈ Zn let xα = xa11 · · ·xann denote the corresponding Laurent
monomial, which is a regular function on X. Let A ⊂ Zn be a finite subset and
let LA denote the subspace of Laurent polynomials spanned by all the xα, α ∈ A.
The correspondence A 7→ LA gives an isomorphism between the semigroup of finite
subsets of Zn together with the addition of subsets, and the semigroup KT (X) of in-
variant subspaces of regular functions on X. One then shows that the Grothendieck
semigroup of KT (X) is isomorphic to the semigroup of integral convex polytopes
with the Minkowski sum. Moreover, for a finite subset A, the completion of the
subspace LA is the subspace LA, where A is the set of all integral points in the
convex hull ∆(A). From this key fact one can deduce the Bernstein–Kushnirenko
theorem: let A1, . . . , An ⊂ Zn be finite subsets. Then the number of solutions in
(C∗)n of a generic system f1(x) = · · · = fn(x) = 0, where fi ∈ LAi , is equal to
n!V (∆1, . . . , ∆n). Here, for each i, ∆i is the convex hull of Ai and V denotes the
mixed volume of convex bodies in Rn (see [11] and [9], also see [12] and [2] for the
original papers where this theorem appeared).

In this paper we consider a class of homogeneous spaces of reductive groups
which have features similar to the torus (C∗)n. Let G be a connected reductive
algebraic group over C. A subgroup H ⊂ G is called horospherical if it contains a
maximal unipotent subgroup of G. The homogeneous space G/H is then called a
horospherical homogeneous space. The affine embeddings of horospherical homoge-
neous spaces were studied in [16].

Similar to the case of (C∗)n, we describe the semigroup of G-invariant subspaces
of regular functions on a horospherical homogeneous space X = G/H (respectively
its Grothendieck semigroup) in terms of a semigroup of finite subsets (respectively
integral convex polytopes). Moreover, we obtain a description of the completion
of a finite dimensional G-invariant subspace of regular functions on X. Finally we
generalize the above to invariant linear systems on X (Theorem 2.10, Corollary
2.22).

From these we obtain an analogue of the Bernstein–Kushnirenko theorem, that
is, a formula for the number of solutions in X of a system f1(x) = · · · = fn(x) = 0,
where each fi is a generic element of a finite dimensional G-invariant subspace
Li of regular functions on X. The formula involves certain polytopes associated
to the Li. In fact, we give two answers for the number of solutions: Firstly, we
represent it as the mixed integral of an explicitly defined homogeneous polynomial
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over the so-called moment polytopes of the subspaces Li (Corollary 2.11). Secondly,
we construct larger polytopes over the moment polytopes such that their mixed
volume is equal to the above mixed integral (Corollary 2.26). We extend all these
to the intersection numbers of G-invariant linear systems on X (Corollary 2.23,
Corollary 2.27).

This paper is one of a series of papers devoted to the general theory of convex
bodies associated to algebraic varieties. In [6] we develop an intersection theory of
finite dimensional subspaces of rational functions. In [7] we develop a general theory
of Newton-Okounkov bodies associated to algebraic varieties and more generally to
graded algebras. Finally in [8] we consider the case of general varieties with a
reductive group action.

The results of the present paper are along the same lines as [9]. In there we
describe the Grothendieck semigroup of finite dimensional representations of a re-
ductive group G with tensor product. From this we get a proof of Kazarnovskii’s
theorem on the number of solutions in G of a generic system of equations consisting
of matrix elements of representations of G. Some of the background material in the
present paper are taken from [9].

Among the different generalizations of the Bernstein–Kushnirenko theorem (e.g.,
in [3], [10] and [7]), the generalization of the Bernstein–Kushnirenko (for horo-
spherical homogeneous spaces) in this paper is closest to the original Bernstein–
Kushnirenko theorem. We expect that other formulae in toric geometry involving
Newton polytopes also extend to the horospherical case.

We would like to emphasize that a main difference of our approach (with many
other authors) in computation of intersection numbers is that we do not require the
varieties to be complete or projective and hence do not need any compactification.

And about the organization of material: Part I is devoted to preliminaries on
subspaces of rational functions, linear systems and their intersection indices, no-
tions of mixed volume and mixed integral and finally semigroup of finite subsets
of Rn and its Grothendieck semigroup. In Part II we cover the main results of
the paper. Section 2.1 discusses a classification of the horospherical subgroups of
G. Section 2.2 describes the semigroup of invariant subspaces, its Grothendieck
semigroup and gives a formula for the intersection index on quasi-homogeneous
horospherical spaces in terms of moment polytopes. Section 2.3 discusses similar
material for invariant linear systems on general horospherical spaces. Finally in Sec-
tion 2.4 we construct larger polytopes over moment polytopes whose volumes give
the intersection index. The last section considers the example of G = GL(n, C).

Notation. Throughout the paper we will use the following notation.

• G denotes a connected reductive algebraic group over C with dim(G) = d.
• B denotes a Borel subgroup of G and T and U the maximal torus and maximal

unipotent subgroup contained in B respectively. We put dim(T ) = r.
• W denotes the Weyl group of (G, T ).
• Λ denotes the weight lattice of G (that is, the character group of T ), and Λ+ is

the subset of dominant weights (for the choice of B). Put ΛR = Λ⊗Z R. Then
the convex cone generated by Λ+ in ΛR is the positive Weyl chamber Λ+

R .
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• For a weight λ ∈ Λ, the irreducibleG-module corresponding to λ will be denoted
by Vλ and a highest weight vector in Vλ will be denoted by vλ.

• For an algebraic group K, we denote the group of characters of K (written
additively) by X(K).

• P denotes a parabolic subgroup of G and P ′ its commutator subgroup.
• H will denote a horospherical subgroup, i.e., a subgroup of G containing a

maximal unipotent subgroup U .

1. Preliminaries

1.1. Intersection theory of finite dimensional subspaces and linear sys-
tems. Let X be a complex n-dimensional irreducible variety with C(X) its field
of rational functions. Consider the collection K(X) of all nonzero finite dimen-
sional subspaces of C(X). The product of two subspaces L1, L2 ∈ K(X) is the
subspace spanned by all the fg where f ∈ L1, g ∈ L2. With this product K(X) is
a commutative semigroup.

Definition 1.1. The intersection index [L1, . . . , Ln] is the number of solutions in
X of a generic system of equations f1 = · · · = fn = 0, where fi ∈ Li, 1 6 i 6 n.
In counting the solutions, we neglect the solutions x at which all the functions in
some space Li vanish as well as the solutions at which at least one function from
some space Li has a pole.

One shows that the intersection index is well-defined (i.e., is independent of the
choice of a generic system) [6]. It is obvious that the intersection index is symmetric
with respect to permuting the subspaces Li. Moreover, the intersection index is
linear in each argument. The linearity in first argument means:

[L′1L
′′
1 , L2, . . . , Ln] = [L′1, L2, . . . , Ln] + [L′′1 , L2, . . . , Ln], (1)

for any L′1, L
′′
1 , L2, . . . , Ln ∈ K(X). From (1) one sees that for a fixed (n − 1)-

tuple of subspaces L2, . . . , Ln ∈ K(X), the map π : K(X) → Z given by π(L) =
[L, L2, . . . , Ln] is a homomorphism from the semigroup K(X) to the additive
group of integers. The existence of such a homomorphism shows that the inter-
section index induces an intersection index on Gr(K(X)), i.e., the intersection
index [L1, . . . , Ln] remains invariant if we substitute each Li with an analogous

subspace L̃i.
One can describe the relation of analogous subspaces in a different way as follows

(see [6]). A rational function f ∈ C(X) is called integral over the subspace L if it
satisfies an equation

fm + a1f
m−1 + . . . a0 = 0

with m > 0 and ai ∈ Li, 1 6 i 6 m. The collection of all the rational functions
integral over L forms a finite dimensional subspace L called the completion of L.

Proposition 1.2. (1) For any L ∈K(X), the completion L belongs to K(X) and is
analogous to L. (2) Moreover, the completion L contains any subspace M ∈K(X)
analogous to L. (3) Two subspaces L1, L2 ∈ K(X) are analogous if and only if
L1 = L2.
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For L ∈ K(X) define the Hilbert function HL by HL(k) = dim(Lk). The fol-
lowing theorem provides a way to compute the self-intersection index of a subspace
L (see [7, Part II]):

Theorem 1.3. For any L ∈K(X), the limit

a(L) = lim
k→∞

HL(k)/kn

exists, and the self-intersection index [L, . . . , L] is equal to n!a(L).

The proof is based on the Hilbert theorem on the dimension and degree of a
subvariety of the projective space.

A linear system on X is a family of effective divisors of the form D+ (f), where
D is an effective divisor on X and f lies in a finite dimensional subspace L ⊂ C(X).
In this section we consider the intersection index of linear systems. Let us assume
that D is a Cartier divisor and let L be the line bundle associated to D. Any
element D + (f) determines a section of the line bundle L up to multiplication by
a regular nowhere zero function, i.e., an element of C[X]∗. Thus a linear system
determines a subspace of holomorphic sections of L, up to multiplication of each
section by a function in C[X]∗.

Conversely a finite dimensional subspace E of holomorphic sections H0(X, L)
determines a linear system of divisors {Div(s) : 0 6= s ∈ E}. By abuse of terminol-
ogy we will refer to (E, L) (or simply E) as a linear system on X. Fix a nonzero
section t ∈ E. Then every section s ∈ E can be written as s = fst for a unique
fs ∈ C(X). The map s 7→ fs identifies E with the subspace of rational functions
{fs : s ∈ E}.

Let (E1, L1), (E2, L2) be two linear systems on X. There is a tensor product
map H0(X, L1)⊗H0(X, L2)→ H0(X, L1 ⊗L2). Let E1E2 denote the span of all
the products f1f2 ∈ H0(X, L1⊗L2) for f1 ∈ E1, f2 ∈ E2. We call (E1E2, L1⊗L2)
the product of two linear systems (E1, L1), (E2, L2). With this product the collec-

tion K̃(X) of all the linear systems on X is a commutative semigroup.
Again fix a nonzero section t ∈ E and let L = {fs : s ∈ E} be the corresponding

subspace of rational functions. Define the completion of the linear system E to be
the subspace E = {ft : f ∈ L}, where L is the completion of the subspace L (as
defined above). If X is normal, one verifies that E still consists of holomorphic
sections, i.e., E ⊂ H0(X, L). One also verifies that for any rational function h we
have hL = hL, from which it follows that E is well-define, i.e., is independent of
the choice of the section t.

A linear system is said to have no base locus if the intersection of the supports
of the divisors D+ (f), ∀f ∈ L, is empty. In other words, if E ⊂ L is a subspace of
holomorphic sections representing a linear system then E has no base locus if for
any x ∈ X there is s ∈ E with s(x) 6= 0.

Definition 1.4 (Intersection index of linear systems). Let L1, . . . , Ln be line bun-
dles on X with linear systems Ei ⊂ H0(X, Li) for i = 1, . . . , n with no base locus.
The intersection index [E1, . . . , En] is the number of points in D1∩· · ·∩Dn where
Di is a generic divisor in the linear system Ei, i.e., Di = Div(si), where 0 6= si is a
generic element of Ei. For each i, fix a section ti ∈ Ei and let Li ∈ C(X) be the
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subspace associated to Ei and ti. One sees that [E1, . . . , En] is in fact equal to
the intersection index [L1, . . . , Ln] of subspaces of rational functions and hence is
well-defined.

The intersection index of linear systems enjoys properties similar to the inter-
section index of subspaces:

(1) The intersection index is symmetric with respect to permuting the argu-
ments.

(2) The intersection index is multi-linear with respect to the product of linear
systems.

(3) The intersection index [E1, . . . , En] does not change if we replace any of the

Ei with an analogous linear system Ẽi (in particular with the completion
Ei).

(4) As for subspaces of rational functions, for a linear system E on X let us

define the Hilbert function by HE(k) = dim(Ek). Then the limit

a(E) = lim
k→∞

HE(k)/kn

exists, and the self-intersection index [E, . . . , E] is equal to n! a(E).

1.2. Mixed volume and mixed integral. A function F : V → R on a (possibly
infinite dimensional) vector space V is called a homogeneous polynomial of degree k
if its restriction to any finite dimensional subspace of V is a homogeneous polynomial
of degree k. (For any k, the constant zero function is a homogeneous polynomial
of degree k.)

Definition 1.5. To a symmetric multi-linear function B(v1, . . . , vk), vi ∈ V one
corresponds a homogeneous polynomial P of degree k on V defined by P (v) =
B(v, . . . , v). We say that the symmetric form B is a polarization of the homoge-
neous polynomial P .

If F is a homogeneous polynomial of degree k, then its derivative F ′v(x) in the
direction of a vector v is linear in v and homogeneous of degree k − 1 in x. Let

v1, . . . , vk be a k-tuple of vectors. For each x, the k-th derivative F
(k)
v1,...,vk(x) is a

symmetric multi-linear function in the vi. One easily verifies the following:

Proposition 1.6. Any homogeneous polynomial of degree k has a unique polariza-
tion B defined by the formula:

B(v1, . . . , vk) = (1/k!)F (k)
v1,...,vk

. (2)

A compact convex subset of Rn is called a convex body. Consider the collection of
convex bodies in Rn. There are two operations of Minkowski sum and multiplication
by a non-negative scalar on convex bodies. The collection of convex bodies with
Minkowski sum is a semigroup with cancelation. The multiplication by a non-
negative scalar is associative and distributive with respect to the Minkowski sum.
These properties allow us to extend the collection of convex bodies to the (infinite
dimensional) vector space V of virtual convex bodies consisting of formal differences
of convex bodies (see [4]).
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Let dµ = dx1 . . . dxn be the standard Euclidean measure in Rn. For each convex
body ∆ ⊂ Rn let Vol(∆) =

∫
∆
dµ be its volume. The following statement is well-

known:

Proposition 1.7. The function Vol has a unique extension to the vector space V
of virtual convex bodies as a homogeneous polynomial of degree n.

Definition 1.8. The mixed volume V (∆1, . . . , ∆n) of the convex bodies ∆i is the
value of the polarization of the volume polynomial Vol at (∆1, . . . , ∆n).

Fix a homogeneous polynomial F of degree p in Rn. Let IF (∆) =
∫

∆
F dµ

denote the integral of F on ∆. One has the following (see for example [14]):

Proposition 1.9. The function IF has a unique extension to the vector space V
of virtual convex bodies as a homogeneous polynomial of degree n+ p.

Definition 1.10. The mixed integral IF (∆1, . . . , ∆n+p) of a homogeneous poly-
nomial F over the bodies ∆1, . . . , ∆n+p is the value of the polarization of the
polynomial IF at the bodies ∆1, . . . , ∆n+p.

From definition, the mixed integral of the constant polynomial F ≡ 1 is the
mixed volume.

More generally we can consider the mixed volume and mixed integral for convex
bodies in Rn which are parallel to a fixed subspace of Rn. Fix a subspace Π ⊂ Rn
with dim(Π) = m. Consider the collection of convex bodies which are parallel to
Π, i.e., lie in a translate a+ Π of Π for some a ∈ Rn. This collection is closed under
addition and multiplication by nonnegative scalars. Let V(Π) denote the subspace
of all virtual convex bodies V spanned by the convex bodies parallel to Π. Fix a
Lebesgue measure on Π and equip each translate of Π with a Lebesgue measure by
shifting the measure on Π. We denote all these measures by dγ. Let ∆ ⊂ a+ Π be
a convex body parallel to Π. The map

∆ 7→ VolΠ(∆)

is a homogeneous polynomial of degree m on the vector space V(Π), where VolΠ is
the volume with respect to the Lebesgue measure dγ. We will denote the polariza-
tion of VolΠ on V(Π) by VΠ and call it the mixed volume of convex bodies parallel
to Π.

Similarly, let F be a homogeneous polynomial on Rn of degree d. Then the map

∆ 7→
∫

∆

F dγ

is a homogeneous polynomial on V(Π). We will denote the polarization of this by
IFΠ. It is a (m+ d)-linear function on V(Π).

1.3. Semigroup of finite sets with respect to addition. There is an addition
operation on the collection of subsets of Rn. The sum of two sets A and B is
the set A + B = {a + b : a ∈ A, b ∈ B}. One verifies that the sum of two convex
bodies (respectively convex integral polytopes) is again a convex body (respectively
a convex integral polytope). This is the well-known Minkowski sum of convex
bodies. Consider the following:
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• S, the semigroup of all finite subsets of Zn with the addition of subsets.
• P, the semigroup of all convex integral polytopes with the Minkowski sum.

Proposition 1.11. The semigroup P has cancelation property.

Proposition 1.11 follows from the more general fact that the semigroup of convex
bodies with respect to the Minkowski sum has cancelation property. The next
statement is easy to verify:

Proposition 1.12. The map which associates to a finite nonempty set A ⊂ Zn its
convex hull ∆(A), is a homomorphism of semigroups from S to P.

For an integral convex polytope ∆ ∈ P let ∆Z ∈ S denote the finite set of integral
points in ∆, i.e., ∆Z = ∆ ∩ Zn. It is not hard to verify the following (see [11]):

Proposition 1.13. For any nonempty subset A ⊂ Zn we have:

A+ n∆(A)Z = (n+ 1)∆(A)Z = ∆(A)Z + n∆(A)Z.

We then have the following description for the Grothendieck semigroup of S.

Theorem 1.14. The Grothendieck semigroup of S is isomorphic to P. The homo-
morphism ρ : S → P is given by ρ(A) = ∆(A).

Proof. From Propositions 1.11 and 1.12 it follows that if A ∼ B then ∆(A) =
∆(B). Conversely, from Proposition 1.13 we know that A and ∆(A)Z are analogous.
By definition if ∆(A) = ∆(B) then ∆(A)Z = ∆(B)Z and hence A and B are
analogous. �

2. Horospherical homogeneous spaces

2.1. Horospherical subgroups. Recall that G denotes a connected reductive
algebraic group.

Definition 2.1 (Horospherical subgroup). A subgroup H ⊂ G is called horospher-
ical if it contains a maximal unipotent subgroup. The corresponding homogeneous
space G/H is called a horospherical homogeneous space.

The horospherical spaces (respectively their equivariant partial compactifica-
tions called S-varieties) have features similar to algebraic torus (respectively toric
varieties).

The next theorem gives a description of the horospherical subgroups of G. Recall
that a subgroup P of G is parabolic if it contains a Borel subgroup.

Theorem 2.2. Let H be a horospherical subgroup of G. Then there exists a par-
abolic subgroup P of G such that P ′ ⊂ H ⊂ P , where P ′ denotes the commutator
subgroup of P . Conversely, any closed subgroup H with P ′ ⊂ H ⊂ P is horospher-
ical.

Proof. Let H be a horospherical subgroup containing a maximal unipotent sub-
group U . By Chevalley’s theorem we can find a finite dimensional G-module V and
a vector 0 6= v ∈ V such that H is the stabilizer of the point [v] in the projective
space P(V ). Since U ⊂ H and U has no characters we see that v is fixed by U
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and hence should be a sum of highest weight vectors. Let us write v =
∑s
i=1 vi,

where each vi is a highest weight vector of some weight λi. The Borel B stabilizes
the point x = ([v1], . . . , [vs]) ∈

∏s
i=1 P(Vλi) and hence the stabilizer subgroup P

of x is a parabolic subgroup. Now since H also stabilizes x we have H ⊂ P as re-
quired. Finally, the characters λi restrict trivially to P ′ and thus P ′ fixes the point
[v] ∈ P(

⊕s
i=1 Vλi), which proves that P ′ ⊂ H. To prove the converse statement

we need to show that U ⊂ P ′. But U is the commutator of B and B ⊂ P . This
finishes the proof. �

2.2. Semigroup of invariant subspaces of C[G/P ′]. Fix a Borel subgroup B
and let U be its maximal unipotent subgroup. One knows that there is a one-to-one
correspondence between the parabolic subgroups containing B and the faces of the
positive Weyl chamber Λ+

R . Let σ be a face of the positive Weyl chamber Λ+
R . Let

σR denote the linear span of the cone σ. Also let Λσ = Λ∩ σR denote the lattice of
weights lying on σR and let Λ+

σ = Λ+∩σ be the semigroup of dominant weights lying
on the face σ. Let P be the parabolic subgroup containing B which corresponds
to σ and P ′ its commutator subgroup. The inclusion i : B ↪→ P induces a map
i∗ : X(P )→ X(B) = Λ. The following is well-known:

Proposition 2.3. The map i∗ is an inclusion, i.e., each character of P is deter-
mined by its restriction to B (equivalently T ). Moreover, the image of i∗ coincides
with the lattice Λσ, i.e., the characters which lie on the linear span of the face σ.
In particular, the rank of the lattice X(P ) is equal to the dimension of the face σ.

We will identify the character group X(P ) with Λσ.
Consider the quotient group S = P/P ′. By definition of P ′, S is an abelian

algebraic group. The natural projection map π : P → S gives a map π∗ : X(S) →
X(P ).

Proposition 2.4. The group S is a torus of dimension equal to the dimension
of the face σ. Moreover, the map π∗ gives an isomorphism between the character
lattice of S and the lattice Λσ

We will also identify X(S) with Λσ.
Now consider the homogeneous space X = G/P ′. As P ′ is a normal subgroup of

P , the group P and hence S = P/P ′ act on X from right. Also G acts on X from
left and the two actions commute.

The following theorem [16] is well-known and plays an important role for us.

Theorem 2.5. (1) The variety X is a quasi-affine variety.
(2) The ring of regular functions C[X] decomposes as:

C[X] =
⊕
λ∈Λ+

σ

Wλ,

where Wλ denotes the λ-eigenspace for the action of S. Moreover, as a G-module
Wλ is isomorphic to the dual representation V ∗λ .

(3) For any two dominant weights λ, µ ∈ Λ+
σ we have

WλWµ = Wλ+µ.
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Definition 2.6. (1) Let 0 6= f ∈ C[X]. Then we can write f =
∑
λ∈Λ+

σ
fλ, where

fλ ∈ Wλ
∼= V ∗λ . The support of f is the collection supp(f) of all the dominant

weights λ for which fλ 6= 0. We define the support of the 0 function to be the
empty set.

(2) Let L ⊂ C[X] be a G-invariant subspace of regular functions on X (which
is also automatically invariant under the right S-action). The support of L is the
collection supp(L) of dominant weights such that

L =
⊕

λ∈supp(L)

Wλ.

In other words, supp(L) is the union of all the supp(f) for f ∈ L.
(3) Let A ⊂ Λ+

σ be a finite set. Put

LA =
⊕
λ∈A

Wλ.

In other words, LA is the collection of all the f ∈ C[X] with supp(f) ⊂ A. By
Theorem 2.5, LA is a finite dimensional (G× S)-invariant subspace of C[X].

Definition 2.7 (Moment polytope of a subspace). For a G-invariant subspace
L ⊂ C[X] we denote the convex hull of supp(L) by ∆(L) and call it the moment
polytope of L.

Definition 2.8. We denote the collection of all the finite dimensional subspaces of
C[X] which are invariant under the left G action by KG(X).

The set KG(X) is a semigroup under the product of subspaces. Moreover, if
L ∈KG(X) is a G-invariant subspace then its integral closure L is also G-invariant,
i.e., L ∈KG(X).

The next proposition follows immediately from Theorem 2.5.

Proposition 2.9. (1) Let L1, L2 ∈KG(X) be two G-invariant subspaces. Then

supp(L1L2) = supp(L1) + supp(L2),

and hence

∆(L1L2) = ∆(L1) + ∆(L2).

(2) Let A1, A2 ⊂ Λ+
σ be finite subsets. Then

LA1+A2
= LA1

LA2
.

Let S(Λ+
σ ) denote the semigroup of all finite subsets of Λ+

σ together with the
operation of addition of subsets. Also let P(Λ+

σ ) be the semigroup of all convex
polytopes in σ with vertices in Λ+

σ together with the Minkowski sum of convex sets.
By Theorem 1.14, the map A 7→ ∆(A), the convex hull of A, gives an isomorphism
between the Grothendieck semigroup of S(Λ+

σ ) and the semigroup P(Λ+
σ ).

The following theorem is a corollary of Proposition 2.9

Theorem 2.10 (Semigroup of invariant subspaces). (1) The map L 7→ supp(L)
gives an isomorphism of the semigroup KG(X) of invariant subspaces of regular
functions and the semigroup S(Λ+

σ ) of finite subsets of Λ+
σ .
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(2) The map L 7→ ∆(L) gives an isomorphism of the Grothendieck semigroup of
KG(X) and the semigroup P(Λ+

σ ) of convex lattice polytopes in σ.
(3) If L ∈KG(X), the completion L is given by

L =
⊕

λ∈∆(L)∩Λ+
σ

Wλ.

Thus under the isomorphism in the part (1), L corresponds to the finite set of all
the dominant weights in the moment polytope ∆(L).

According to the Weyl dimension formula, the dimension of an irreducible rep-
resentation Vλ is equal to F (λ), where F is a polynomial on Rr of degree (d− r)/2
defined explicitly in terms of data associated to the Weyl group W (recall that
d = dim(G) and r = dim(T )). We call F the Weyl polynomial of W . Let Fσ
denote the restriction of F to the linear span σR of the face σ, and let φσ be the
homogeneous component of Fσ of highest degree.

Using Theorem 2.10 we can now obtain a formula for the intersection index of
invariant subspaces. Let L ∈ KG(X) be an invariant subspace. By Theorem 1.3
(Hilbert’s theorem) we have

[L, . . . , L] = p! lim
k→∞

dim(Lk)

kp
.

On the other hand, if ∆ is the moment polytope of L, Theorem 2.10(3) implies that

lim
k→∞

dim(Lk)

kp
= lim
k→∞

∑
λ∈k∆(L)∩Λ+

σ
F (λ)

kp
=

∫
∆

φσ dµ,

where dµ is the Lebesgue measure on σR normalized with respect to the lattice Λσ.
Thus [L, . . . , L] = p!

∫
∆
φσ dµ. Finally, from the multi-linearity of the intersection

index (the equation (1) in Section 1.1) and the additivity of the moment polytope
(Proposition 2.9), we obtain the following formula:

Corollary 2.11 (Intersection index of invariant subspaces). Let L1, . . . , Lp ∈
KG(X) be G-invariant subspaces, p = dim(X). For each i, let ∆i = ∆(Li) be
the moment polytope of the subspace Li. We have

[L1, . . . , Lp] = p! Iφσ(∆1, . . . , ∆p),

where Iφσ is the mixed integral (Section 1.2).

Remark 2.12. Note that each Li is a subspace of regular functions and hence
elements of the Li do not have poles. Also as each Li is G-invariant, the base
locus of Li (i.e., where all the elements of Li vanish) is G-invariant. But G acts
transitively on X and Li 6= {0}, it follows that Li has no base locus. That is, the
intersection index [L1, . . . , Lp] counts the number of solutions of a generic system
in the whole X (see Definition 1.1).

2.3. Semigroup of G-invariant linear systems on G/H. Fix a Borel sub-
group B with a maximal unipotent subgroup U . Let H be a subgroup of G con-
taining U (i.e., H is a horospherical subgroup). In this section we consider the
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horospherical homogeneous space Y = G/H. We describe the semigroup of invari-
ant linear systems on Y and its Grothendieck semigroup as well as the intersection
index of such linear systems.

From Theorem 2.2 we know that there exists a parabolic subgroup P containing
B such that P ′ ⊂ H ⊂ P . Let σ be the face of positive Weyl chamber corresponding
to the parabolic subgroup P .

The inclusion i : H ↪→ P induces a restriction map i∗ : X(P ) → X(H). As in
Proposition 2.3 identify X(P ) with the lattice Λσ and let Λ(H) ⊂ Λσ be the kernel
of the map i∗. Alternatively, H/P ′ is a subgroup of the torus S = P/P ′ and Λ(H)
can be viewed as the kernel of the restriction map X(S) → X(H/P ′). Also let
ΛR(H) = Λ(H)⊗ R denote the linear span of the lattice Λ(H).

Let D be a divisor on X and {D+ (f) : f ∈ L} be a family of equivalent divisors
(i.e a linear system) on X, where L is a finite dimensional subspace of rational
functions. Let us assume that the family is invariant under the action of G, i.e.,
for each g ∈ G and f ∈ L we have (g ·D) + (g · f) = D + (h) for some h ∈ L. If
we assume that the only regular nowhere zero functions on X are constants then
the principal divisor (h) determines h up to a constant. One verifies that g : f 7→ h
gives a projective representation of the group G in the projective space P(L). For
simplicity let us assume that this lifts to a linear representation of G on L. Thinking
of a linear system as a subspace of sections of the line bundle L (associated to the
divisor D) we have the following definition. (Recall that a G-linearized line bundle
L on Y is a line bundle L with an action of G on L extending its action on Y such
that for any x ∈ X the action of g ∈ G maps the fibre Lx linearly to the fibre Lg·x.)

Definition 2.13 (G-invariant linear system). We call a G-invariant finite dimen-
sional subspace E ⊂ H0(Y, L), a G-invariant linear system on Y . We denote the

collection of all such pairs (E, L) (up to isomorphism) by K̃G(Y ).

The product of two G-invariant linear systems is again invariant and hence the
set K̃G(Y ) is a semigroup with respect to the product of linear systems. Moreover,

if (E, L) ∈ K̃G(Y ) then the completion E is G-invariant, i.e., (E, L) ∈ K̃G(Y ).

Definition 2.14 (Support of an invariant linear system). Let E be a G-invariant
linear system on Y . The support of E is the set supp(E) of all dominant weights
λ ∈ Λ+

σ for which V ∗λ appears in the decomposition of E into irreducible G-modules.

Definition 2.15 (Moment polytope of a linear system). Let E be a G-invariant
linear system. We call the convex hull of supp(E), the moment polytope of E and
denote it by ∆(E).

Consider the natural projection π : X = G/P ′ → Y = G/H. We would like to
look at the pull-back π∗(E) of a G-invariant linear system E on Y to X.

Without loss of generality we can assume that every hypersurface in G is given
by an equation, that is, Pic(G) = {0}. In fact, by a theorem of Popov (see [13])

for any connected linear algebraic group G there exists a central isogeny π : G̃→ G
such that Pic(G̃) = {0}. (That is, π is an algebraic homomorphism such that ker(π)
is finite and lies in the center of G.) Now if U is a maximal unipotent subgroup

of G then π−1(U) is also a maximal unipotent subgroup of G̃. Thus replacing G
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with G̃ we can assume that the Picard group of G is trivial. The next theorem is
an immediate corollary of another result in [13]:

Theorem 2.16. The character group X(P ′) is trivial and hence any G-linearized
line bundle on X = G/P ′ is G-equivariantly isomorphic to the trivial bundle.

Let L be a G-linearized line bundle on Y . Then by the above theorem the
pull-back line bundle π∗(L) is trivial. Thus we can identify the space of sections
H0(X, π∗(L)) with the ring of regular functions C[X]. Note that since π : X → Y is
surjective, the map π∗ : H0(Y, L)→ H0(X, π∗(L)) ∼= C[X] is one-to-one. The map
π∗ then identifies a G-invariant linear system E on Y with a G-invariant subspace
L(E) ⊂ C[X]. It is clear that supp(E) = supp(L(E)).

Theorem 2.17. The map E 7→ L(E) gives a one-to-one correspondence between
the collection of G-invariant linear systems on Y (up to isomorphism) and the
collection of finite dimensional subspaces of C[X] which are invariant under the left
action of G and lie in an eigenspace for the right action of H.

Proof. Each character γ ∈ X(H) gives a G-linearized line bundle Lγ on Y = G/H
defined by Lγ = (G × C)/H, where h ∈ H acts on (g, x) ∈ G × C by h · (g, x) =
(gh−1, γ(h)x). The fibration Lγ → G/H is given by the projection on first factor.
From definition, each holomorphic section of Lγ corresponds to a section of the
trivial bundle over G which is invariant under the above action of H. It follows
that the holomorphic sections of Lγ are in one-to-one correspondence with regu-
lar functions in C[G] which are γ-eigenfunctions for the right action of H. By a
theorem of Popov [13] the correspondence γ 7→ Lγ is an isomorphism of X(H) and
PicG(G/H), the group of G-linearized line bundles on G/H (with tensor product).
Thus if E ⊂ H0(Y, Lγ) is an invariant linear system, where L is a G-linearized line
bundle, then for some character γ ∈ X(H) we have L = Lγ and E can be identified
with a (left) G-invariant subspace of γ-eigenspace of C[G] for the right action of
H. Also as P ′ has no characters, each γ-eigenfunction is P ′-invariant and hence
belongs to C[G/P ′]. This proves the proposition. �

The next proposition describes the support of the subspace L(E) associated to
an invariant system E.

Proposition 2.18. (1) Let γ ∈ X(H) be a character of H. Let L be a (left) G-
invariant subspace of C[G/P ′] consisting of γ-eigenfunctions of (right) action of
H. Then supp(L) is contained in a coset of Λ(H), i.e., for any λ, µ ∈ supp(L) we
have λ− µ ∈ Λ(H). In particular, the smallest affine space spanned by supp(L) is
parallel to the linear space ΛR(H).

(2) Conversely, let A ⊂ Λ+
σ be a finite subset which is contained in a coset

of Λ(H). Then the subspace LA =
⊕

λ∈AWλ ⊂ C[G/P ′] is contained in some
eigenspace of (right) action of H.

Proof. Let λ, µ ∈ supp(L) with Wλ, Wµ the corresponding eigenspaces in C[G/P ′]
for the right action of P . Then the functions in Wλ and Wµ are automatically
eigenfunctions for the action of H with weights i∗(λ) and i∗(µ) respectively, where
i∗ : X(P )→ X(H) is the restriction of characters. On the other hand, every function
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in L is an eigenfunction for H with weight γ. This shows that i∗(λ) = i∗(µ) = γ
and thus i∗(λ − µ) = 0, i.e., λ − µ ∈ Λ(H). This proves (1). Now let A ⊂ Λ+

σ

lay in a coset of Λ(H). Then i∗(A) consists of a single point γ ∈ X(H). Then
LA =

⊕
λ∈AWλ ⊂ C[G/P ′] consists of eigenfunctions of H with weight γ. This

finishes the proof of (2). �

From the previous proposition it follows that the moment polytope of E lies in
an affine subspace parallel to ΛR(H).

Consider the collection S(Λ(H)) consisting of finite subsets A of Λσ such that
for any λ, µ ∈ A we have λ − µ ∈ Λ(H) (i.e., A lies in a coset of Λ(H)). Clearly
S(Λ(H)) is a semigroup under the addition of subsets. Also consider the collection
P(Λ(H)) of all the convex lattice polytopes ∆ in Λσ such that for any two vertices
λ, µ of ∆ we have λ−µ ∈ Λ(H). It is also clear that P(Λ(H)) is a semigroup with
respect to the Minkowski sum of convex bodies.

As in Theorem 1.14 we have:

Proposition 2.19. The map A 7→ ∆(A), the convex hull of A, gives an isomor-
phism between the Grothendieck semigroup of S(Λ(H)) and the semigroup P(Λ(H)).

From Proposition 2.18 we get the following corollary:

Corollary 2.20. The map L 7→ supp(L) gives an isomorphism between the semi-
group of finite dimensional subspaces of C[X] which are invariant under the left
action of G and contained in some eigenspace for the right action of H, and the
semigroup S(Λ(H)) of finite subsets of Λσ which lie in a coset of Λ(H).

The next proposition follows immediately from Theorem 2.5 and Theorem 2.17.

Proposition 2.21. Let E1, E2 ∈ K̃G(Y ) be two G-invariant linear systems. Then

supp(E1E2) = supp(E1) + supp(E2),

and hence
∆(E1E2) = ∆(E1) + ∆(E2).

Now, as in Theorem 2.10 we obtain the following description for the semigroup
of invariant linear systems on Y as well as a description of the completion of a
linear system.

Corollary 2.22 (Semigroup of G-invariant linear systems). (1) The map E 7→
supp(E) gives an isomorphism between the semigroup K̃G(Y ) of G-invariant linear
systems and the semigroup S(Λ(H)) of finite subsets of Λσ which lie in a coset of
Λ(H).

(2) The map E 7→ ∆(E) gives an isomorphism of the Grothendieck semigroup of

K̃G(Y ) and the semigroup P(Λ(H)) of convex lattice polytopes in σR whose set of
vertices lie in a coset of Λ(H).

(3) Let E be the completion of E. Then supp(E) is the intersection of the coset
of Λ(H) containing supp(E) and the moment polytope ∆(E).

As before let φσ be the homogeneous component of highest degree of the Weyl
polynomial F restricted to the linear span σR of the cone σ. Fix a Lebesgue measure
on ΛR(H) normalized with respect to Λ(H), i.e., the smallest nonzero measure of a
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parallelepiped with vertices in Λ(H) is equal to 1. We equip all the affine subspaces
a+ ΛR(H), a ∈ σR, with shifts of this Lebesgue measure.

Finally, similar to the proof of Corollary 2.11, using the properties of the inter-
section index of linear systems (paragraph after Definition 1.4), Corollary 2.22, and
the additivity of the moment polytope (Proposition 2.21), we obtain the following
formula:

Corollary 2.23 (Intersection index of invariant linear systems). Let E1, . . . , Em ∈
KG(Y ) be G-invariant linear systems, where m = dim(Y ). For each i, let ∆i =
∆(Ei) be a moment polytope of Ei. We have

[E1, . . . , Em] = m! Iφσ(∆1, . . . , ∆m),

where Iφσ is the mixed integral of φσ for the polytopes which are parallel to the
linear space ΛR(H).

2.4. Intersection index as mixed volume. In this section we rewrite the for-
mula for the intersection index as a mixed volume of certain polytopes (instead of
mixed integral). To this end, we use the so-called Gelfand–Cetlin polytopes.

In their classical paper [5], Gelfand and Cetlin constructed a natural basis for
any irreducible representation of GL(n, C) and showed how to parameterize the
elements of this basis with integral points in a certain convex polytope. These
polytopes are called the Gelfand–Cetlin polytopes. Since then similar constructions
have been done for other classical groups and analogous polytopes were defined (see
[1]). We will also call them Gelfand–Cetlin polytopes or for short G-C polytopes.
Consider the list of Lie algebras: the abelian algebra Cn, sl(n1, C), so(n2, C) and
sp(2n3, C), for any n, n1, n2, n3 ∈ N. We say that a connected reductive group is
a classical group, if its Lie algebra is a direct sum of the algebras in this list. In
this sense, the general linear group and the spinor group are classical groups.

Let G be a classical group. As usual let d = dim(G). We have:

Theorem 2.24 (G-C polytopes). For any classical group G and for any λ ∈ Λ+
R

one can explicitly construct a polytope ∆GC(λ) ⊂ R(d−r)/2, called the Gelfand–
Cetlin polytope of λ, with the following properties:

(1) If λ is integral then the dimension of Vλ is equal to the number of integral
points in ∆GC(λ).

(2) The map λ 7→ ∆GC(λ) is linear, i.e., for any two λ, γ ∈ Λ+
R and c1, c2 > 0

we have = ∆GC(c1λ+ c2γ) = c1∆GC(λ) + c2∆GC(γ).

The part (2) in the above theorem is an immediate corollary of the defining
inequalities of the G-C polytopes for the classical groups.

Definition 2.25 (Newton polytope). Let A be a finite nonempty set of dominant

weights in Λ+
σ . Define the polytope ∆̃(A) ⊂ σ × R(d−r)/2 by:

∆̃(A) =
⋃

λ∈∆(A)

{(λ, x) : x ∈ ∆GC(λ)}.

In other words, the projection on the first factor maps ∆̃(A) to the moment polytope
∆(A) and the fibre over each λ is the G-C polytope ∆GC(λ). For a G-invariant sub-

space L ⊂ C[X] we define its Newton polytope ∆̃(L) to be the polytope ∆̃(supp(L)).
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Similarly we define a Newton polytope ∆̃(E) of a G-invariant linear system E to be
the Newton polytope of supp(E).

From Corollaries 2.11 and 2.23 we obtain the following:

Corollary 2.26 (Intersection index of subspaces as mixed volume). Suppose that
L1, . . . , Lp ∈ KG(X) are G-invariant subspaces, where p = dim(X). For each i,

let ∆̃i = ∆̃(Li) be the Newton polytope of the subspace Li. Then we have

[L1, . . . , Lp] = p!V (∆̃1, . . . , ∆̃p),

where V denotes the mixed volume of convex bodies in the cone σ × R(d−r)/2.

Corollary 2.27 (Intersection index of linear systems as mixed volume). Suppose

that E1, . . . , Em ∈ K̃G(Y ) are G-invariant linear systems, where m = dim(Y ).

For each i, let ∆̃i = ∆̃(Ei) be a Newton polytope of Ei. Then we have

[E1, . . . , Em] = m!VH(∆̃1, . . . , ∆̃m),

where VH denotes the mixed volume of convex bodies in σ × R(d−r)/2 and parallel
to ΛR(H)× R(d−r)/2.

2.5. Case of GL(n, C). Let G = GL(n, C) and let B be the Borel subgroup of
upper triangular matrices. Then the subgroup T of diagonal matrices is a maximal
torus, and the subgroup of upper-triangular matrices with 1’s on the diagonal is
the maximal unipotent subgroup contained in B. We identify the weight lattice Λ
with Zn and its linear span ΛR with Rn. The Weyl group of G is identified with
the symmetric group Sn acting on Rn by permuting the coordinates. The positive
Weyl chamber for the choice of B is Λ+

R = {λ = (λ1, . . . , λn) : λ1 6 · · · 6 λn}.
There is a one-to-one correspondence between the subsets I = {k1 < · · · < ks}

of {1, . . . , n− 1} and the faces

σI = {λ = (λ1, . . . , λn) ∈ Λ+
R : λki+1 = λki+2 = · · · = λki+1

, ∀ i = 0, . . . , s}
of the positive Weyl chamber. Here by convention k0 = 0 and ks+1 = n. Also
each subset I then corresponds to a parabolic subgroup PI consisting of the block
upper-triangular matrices with blocks of fixed sizes k1, k2−k1, . . . , ks−ks−1, n−ks.
One verifies that the commutator subgroup P ′I consists of the block upper-triangular
matrices, where determinant of each block is equal to 1.

Moreover, the torus S = PI/P
′
I can be identified with (C∗)s+1 and the natural

map PI → PI/P
′
I is given by x 7→ (det(B1), . . . , det(Bs+1)), where x ∈ P and

B1, . . . , Bs+1, are the blocks of sizes k1, k2−k1, . . . , ks−ks−1, n−ks respectively
sitting on the diagonal of x.

Let us see that G/P ′I is quasi-affine by giving an embedding of this variety in
some affine space. Let g ∈ G be an invertible matrix with columns C1, . . . , Cn.

Consider the map Ψ: G→
⊕s+1

i=1

∧ki Cn given by

g 7→
s+1∑
i=1

(C1 ∧ · · · ∧ Cki).

One verifies that Ψ induces an embedding ofG/P ′I into the affine space
⊕s+1

i=1

∧ki Cn.
This map is closely related to the generalized Plücker embedding.
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Since G is a Zariski open subset of C(n2), it is clear that Pic(G) = {0}.
In the next example we consider a special case of a horospherical homogeneous

space which is related to the classical Bezout theorem.

Example 2.28. Let G = GL(n, C) act on Cn in the natural way. Then Cn \ {0}
is an orbit O. Let H be the G-stabilizer of e1, the first standard basis vector. It
contains the subgroup of upper triangular matrices with 1’s on the diagonal, i.e., H
is a horospherical subgroup and O is a horospherical homogeneous space G/H. If
n > 1, the space of regular functions C[O] is isomorphic to the polynomial algebra
on Cn and as a G-module it decomposes into

C[O] =

∞⊕
k=1

Vk,

where Vk is the space of homogeneous polynomials of degree k on Cn. It is the
dual of the k-th symmetric power of the tautological representation of GL(n, C)
on Cn. For each k > 0, Vk is an irreducible representation with highest weight
(0 = · · · = 0 6 k) (under the identification of the dominant weights of GL(n, C)
with non-decreasing sequences of integers λ = (λ1 6 · · · 6 λn)). Let F (k) =
dim(Vk) = number of monomials in n variables and of total degree k. One knows

that F (k) =
(
k+n−1
n−1

)
. Then φ(k) = kn−1/(n− 1)! is the homogenous component of

F of highest degree. For each finite set A = {a1, . . . , as} ⊂ Z>0 let LA be the space
of polynomials on Cn whose homogeneous components have degrees a1, . . . , as, i.e.,
supp(LA) = A. Let A1, . . . , An ⊂ Z>0 be finite subsets and for each i, let fi ∈ LAi
be a generic polynomial. Then by Corollary 2.11 the number of solutions of the
system f1(x) = · · · = fn(x) = 0 in Cn \ {0} is equal to n! Iφ(I1, . . . , In), where for
each i, Ii = ∆(Ai) = [ai, bi] is the interval which is the convex hull of the finite set
Ai. Using the equation (2) in Section 1.2, we can compute the mixed integral:

[LA1
, . . . , LAn ] = n! Iφ(I1, . . . , In) =

n∏
i=1

bi −
n∏
i=1

ai.

This can be thought of as an affine version of the classical Bezout theorem general-
ized to arbitrary dimensions. For each k > 0 let ∆k be the G-C polytope associated
to the dominant weight (k > 0 = · · · = 0). From the defining equations of G-C
polytopes we see that ∆GC(k) = {(x1, . . . , xn) ∈ Rn−1 : k > xn−1 > · · · > x1 > 0}.
Now for a finite subset A ⊂ Z>0, let I = ∆(A) = [a, b]. Then the Newton polytope

∆̃(A) ⊂ Rn is defined by

∆̃(A) = {(k, x1, . . . , xn−1) : k > xn−1 > · · · > x1 > 0, a > k > b}.

Let ∆̃i denote the Newton polytope of the finite subset Ai. Then by Corollary 2.26,
[LA1

, . . . , LAn ] is also given by:

n!V (∆̃1, . . . , ∆̃n).

Here V denotes the mixed volume of convex bodies in Rn. One can verify that
both of the above formulae agree with the answer obtained by using the Bernstein–
Kushnirenko theorem. Note that in the above we count the solutions in Cn \ {0}
while in the Bernstein–Kushnirenko we count the solutions in (C∗)n.
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The last example concerns the degree of equivariant line bundles on partial flag
varieties.

Example 2.29. Let I ⊂ {1, . . . , n − 1} and let H = PI be the corresponding
parabolic subgroup. Clearly H is a horospherical subgroup. Put dim(G/PI) = m.
For a dominant weight λ ∈ Λ+

σI let Lλ be the corresponding G-linearized line

bundle on G/PI and Eλ = H0(G/PI , Lλ) ∼= V ∗λ the corresponding complete linear

system. One sees that ∆(Eλ) = λ and ∆̃(Eλ) = ∆GC(λ). Let λ1, . . . , λm ∈ Λ+
σI

be dominant weights with the corresponding linear systems E1, . . . , Em. Then the
intersection index of these linear systems is given by

[E1, . . . , Em] = m!V (∆GC(λ1), . . . , ∆GC(λm)),

where V is the mixed volume of convex bodies in Rm.
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