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Note on the Grothendieck Group of
Subspaces of Rational Functions and
Shokurov’s Cartier b-divisors
Kiumars Kaveh and A. G. Khovanskii

Abstract. In a previous paper the authors developed an intersection theory for subspaces of rational
functions on an algebraic variety X over k = C. In this short note, we first extend this intersection the-
ory to an arbitrary algebraically closed ground field k. Secondly we give an isomorphism between the
group of Cartier b-divisors on the birational class of X and the Grothendieck group of the semigroup
of subspaces of rational functions on X. The constructed isomorphism moreover preserves the inter-
section numbers. This provides an alternative point of view on Cartier b-divisors and their intersection
theory.

Introduction

In [K-K10] the authors developed an intersection theory for subspaces of rational
functions on an arbitrary variety over k = C. In this short note we first extend this in-
tersection theory to an arbitrary algebraically closed field k, and secondly we observe
that there is a direct connection between this intersection theory and Shokurov’s
Cartier b-divisors. This approach provides an alternative way of introducing Cartier
b-divisors and their intersection theory and, in our opinion, is suitable for several
applications in intersection theory.

Let X be an irreducible variety of dimension n over an algebraically closed ground
field k. Consider the collection K(X) of all the finite dimensional k-subspaces of
rational functions on X. The set K(X) is equipped with a natural product: for two
subspaces L,M ∈ K(X), the product LM is the subspace spanned by all the f g where
f ∈ L and g ∈ M. With this product K(X) is a commutative semigroup (which is
not cancellative). Let L1, . . . , Ln be subspaces in K(X). In [K-K10] we associated a
non-negative integer [L1, . . . , Ln] with the subspaces Li and called it their intersection
index. It is defined to be the number of solutions x of a system f1(x) = · · · = fn(x) =
0, where fi ∈ Li are general elements and x lies in a certain non-empty Zariski open
subset U of X (depending on the Li). In [K-K10] it was shown that when k = C,
the intersection index is well-defined and moreover is multi-additive with respect to
the product of subspaces. It follows that the intersection index extends to a multi-
additive integer valued function on the Grothendieck group G(X) of the semigroup
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K(X) (see Section 1). We regard G(X), together with its intersection index, as an
extension of the intersection theory of Cartier divisors on complete varieties. In this
note we observe that the well-definedness and multi-additivity of the intersection
index for an arbitrary algebraically closed field k follow from the usual intersection
theory on a product of projective spaces (see Sections 2 and 6).

Consider the collection of all projective birational models of X, i.e., all birational
maps π : Xπ 99K X where Xπ is projective. A Cartier b-divisor on X is a direct limit of
Cartier divisors (Xπ,Dπ) with respect to a natural partial order on birational models
of X. One verifies that the intersection product of Cartier divisors induces an in-
tersection product on Cartier b-divisors (see Section 4). The b-divisors (birational
divisors) were introduced by Shokurov (see [Iskovskikh03, S03]) and play an impor-
tant role in birational geometry.

The main observations of this note are that the Grothendieck group G(X) of K(X)
can be identified with the group of Cartier b-divisors on X and that this identification
preserves the intersection index (Theorem 5.2).

A b-divisor is represented by a divisor on a projective birational model of the va-
riety X. The collection of birational models of a variety, the main object of study
in birational geometry, is a complicated object and intrinsically related to the no-
tion of resolution of singularities and Minimal Model Program. Moreover, proving
statements about b-divisors and their intersection theory relies on the statements
about usual divisors and their intersection theory, while the intersection theory of
b-divisors is more stable in the sense that it is invariant under birational isomor-
phisms, and one may regard it as easier to treat.

On the other hand, the Grothedieck group construction in [K-K10] suggests a
different way that does not involve completions/birational models of X, and the in-
variance under a birational isomorphism is evident from the definition. This descrip-
tion of Cartier b-divisors and their intersection theory is suitable for several applica-
tions. We mention a few here: (1) It provides a framework to extend the celebrated
Bernstein–Kushnirenko theorem (from toric geometry) on the number of solutions
of a system of Laurent polynomial equations in the algebraic torus (k∗)n, to arbitrary
varieties and arbitrary systems of equations (see [K-K10]). (2) Fix a valuation v on
the field of rational functions k(X) and with values in Zn. One can then associate
certain convex bodies (Newton–Okounkov bodies) with subspaces of rational func-
tions, which using this approach can be identified with Cartier b-divisors such that
their Euclidean volumes give the intersection numbers of the corresponding Cartier
b-divisors. This way one obtains transparent proofs of the Hodge inequality, and its
generalizations, for intersection numbers [K-K12].

It was pointed out to us by V. Shokurov that the group of Cartier b-divisors mod-
ulo the linear equivalence has another interpretation as the Picard group of the so-
called bubble space of X. Thus, by the observation in this note, this Picard group can
be interpreted as the Grothendieck group of subspaces modulo the linear equivalence
of subspaces. Two subspaces L,M ∈ K(X) are called linearly equivalent if there exists
a non-zero h ∈ k(X) with hL = M where hL = {h f | f ∈ L}. Roughly speaking, the
bubble space of X is the (huge) space obtained by blowing up X everywhere and con-
tinuing this process again and again. More precisely, it is the union of all birational
models π : X ′ 99K X where we identify two points x ′, x ′ ′ in birational models X ′, X ′ ′
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respectively, if the canonical birational map between X ′ and X ′ ′ is an isomorphism
of a neighborhood of x ′ and a neighborhood of x ′ ′ (see [M74, §35]).

We give a few words about the organization of this short note. Section 1 covers
basic definitions about the semigroup K(X) of subspaces of rational functions. Sec-
tions 2 and 3 recall some material about intersection index from [K-K10]. Section
4 recalls basic definitions about Cartier b-divisors. In Section 5 we observe that the
Grothendieck group G(X) can be identified with the group of Cartier b-divisors. The
last section is devoted to (short) proofs of the well-definedness and multi-additivity
of the intersection index for an arbitrary algebraically closed field k.

Finally, we believe that the elementary nature of the notions needed to define the
semigroup K(X) and its intersection index, i.e., subspaces of rational functions and
number of solutions of a system of equations, makes this approach accessible to a
wide audience and, in particular, suitable for a first course in algebraic geometry.

1 Subspaces of Rational Functions and the Grothendieck Group

Throughout this note the ground field k is an algebraically closed field of arbitrary
characteristic. Let X be an irreducible algebraic variety over k.

Definition 1.1 We denote the collection of all non-zero finite dimensional vector
subspaces (over k) of the field of rational functions k(X) by K(X). Given L,M ∈
K(X), let the product LM be the subspace spanned by all the products f g, f ∈ L, and
g ∈ M. With this product of subspaces K(X) is a commutative semigroup.

Let K be a commutative semigroup (whose operation we denote by multiplica-
tion). K is said to have the cancellation property if for x, y, z ∈ K, the equality xz = yz
implies x = y. Any commutative semigroup K with the cancellation property can be
extended to an abelian group G(K) consisting of formal quotients x/y, x, y ∈ K. For
x, y, z,w ∈ K we identify the quotients x/y and w/z, if xz = yw.

Given a commutative semigroup K (not necessarily with the cancellation prop-
erty), we can get a semigroup with the cancellation property by considering the
equivalence classes of a relation ∼ on K: for x, y ∈ K we say x ∼ y if there is
z ∈ K with xz = yz. The collection of equivalence classes K/∼ naturally has struc-
ture the of a semigroup with cancellation property. Let us denote the group of formal
quotients of K/∼ again by G(K). It is called the Grothendieck group of the semigroup
K. The map that sends x ∈ K to its equivalence class [x] ∈ K/∼ gives a natural
homomorphism φ : K → G(K).

The Grothendieck group G(K) together with the homomorphism φ : K → G(K)
satisfies the following universal property: for any other group G ′ and a homomor-
phism φ ′ : K → G ′, there exists a unique homomorphism ψ : G(K) → G ′ such that
φ ′ = ψ ◦ φ.

Definition 1.2 For two subspaces L,M ∈ K(X), we write L ∼ M if L and M
are equivalent as elements of the multiplicative semigroup K(X), that is, if there is
N ∈ K(X) with LN = MN.
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Let L ∈ K(X). A rational function f is said to be integral over L if it satisfies an
equation f m +

∑m−1
i=0 gi f i = 0, where gi ∈ Lm−i , i = 1, . . . ,m− 1. The completion L

is the collection of all rational functions that are integral over L. The following result
describes the completion L of a subspace L as the largest subspace equivalent to L (see
[S-Z60, Appendix 4] for a proof; also see [K-K10]).

Theorem 1.3 (i) The completion L is finite dimensional.
(ii) The completion L is the largest subspace which is equivalent to L. That is,

(a) L ∼ L, and
(b) if for M ∈ K(X) we have M ∼ L, then M ⊂ L.

Remark 1.4 Let us call a subspace L complete if L = L. If L and M are complete
subspaces, then LM is not necessarily complete. For two complete subspaces L,M ∈
K, define

L ∗M = LM.

The collection of complete subspaces together with ∗ is a semigroup with the cancel-
lation property. Theorem 1.3 in fact shows that L 7→ L gives an isomorphism between
the quotient semigroup K/∼ and the semigroup of complete subspaces (with ∗).

We denote the Grothendieck group of the semigroup K(X) by G(X).

2 Intersection Index of Subspaces of Rational Functions

In this section we define the intersection index of finite dimensional subspaces of
rational function. Let L = (L1, . . . , Ln) be an n-tuple of non-zero finite dimensional
subspaces of rational functions. Let Z ⊂ X be a closed subvariety of X containing
the poles of all rational functions from the Li , as well as all the points x at which all
functions from some subspace Li vanish.

Theorem 2.1 (Intersection index is well-defined) There exists a non-empty Zariski
open subset U ⊂ L1 × · · · × Ln such that for any ( f1, . . . , fn) ∈ U the number of
solutions {

x ∈ X \ Z | f1(x) = · · · = fn(x) = 0
}

is finite and is independent of the choice of Z and ( f1, . . . , fn) ∈ U.

We denote the number of solutions {x ∈ X \ Z | f1(x) = · · · = fn(x) = 0} in
Theorem 2.1 by [L1, . . . , Ln] and call it the intersection index of the subspaces Li .

The following are immediate corollaries of the definition of the intersection index:
(a) [L1, . . . , Ln] is a symmetric function of L1, . . . , Ln ∈ K(X), (b) the intersection
index is monotone (i.e., if L ′1 ⊆ L1, . . . , L ′n ⊆ Ln, then [L ′1, . . . , L

′
n] ≤ [L1, . . . , Ln]),

and (c) the intersection index is non-negative.

Theorem 2.2 (Multi-additivity of intersection index) Let L ′1, L
′ ′
1 , L2, . . . , Ln ∈ K(X)

and put L1 = L ′1L ′ ′1 . Then

[L1, . . . , Ln] = [L ′1, L2, . . . , Ln] + [L ′ ′1 , L2, . . . , Ln].
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We will prove Theorems 2.1 and 2.2 in Section 6. The proofs rely on the notion of
intersection product in the Chow rings of products of projective spaces.

From multi-additivity of the intersection index it follows that the intersection in-
dex is invariant under the equivalence of subspaces, namely if

L1, . . . , Ln and M1, . . . ,Mn ∈ K

are n-tuples of subspaces and for each i, Li ∼ Mi ,

[L1, . . . , Ln] = [M1, . . . ,Mn].

Hence one can extend the intersection index to the Grothendieck group G(X) of
K(X). In particular, Theorem 1.3 implies that all the intersection indices of a sub-
space L ∈ K and its completion L are the same.

Analogous to the Kodaira map of a very ample line bundle, one can assign to a
subspace L ∈ K(X) its Kodaira map ΦL, which is a rational map from X to P(L∗), the
projectivization of the dual space L∗, as follows: let x ∈ X be such that f (x) is defined
for all f ∈ L. Then ΦL(x) is represented by the linear functional in L∗ that sends f to
f (x).

Let YL denote the closure of the image of X in P(L∗). The next proposition relates
the self-intersection index of a subspace with the degree of YL. It easily follows from
the definition of the intersection index.

Proposition 2.3 (Self-intersection index and degree) Let L ∈ K be a subspace and
ΦL : X 99K YL ⊂ P(L∗) its Kodaira map.

(i) If dim X = dim YL, then ΦL has finite mapping degree d and [L, . . . , L] is equal
to the degree of the subvariety YL (in P(L∗)) multiplied by d.

(ii) If dim X > dim YL, then [L, . . . , L] = 0.

3 Cartier Divisor Associated with a Subspace of Rational Functions
with a Regular Kodaira Map

The material in this section is taken from [K-K10, Section 6].
A Cartier divisor on an irreducible variety X is a divisor that can be represented

locally as a divisor of a rational function. Any rational function f defines a prin-
cipal Cartier divisor denoted by ( f ). The Cartier divisors are closed under the ad-
dition and form an abelian group that we will denote by CDiv(X). A dominant
morphism Φ : X → Y between varieties X and Y gives a pullback homomorphism
Φ∗ : CDiv(Y )→ CDiv(X). Two Cartier divisors are linearly equivalent if their differ-
ence is a principal divisor. The group of Cartier divisors modulo linear equivalence is
called the Picard group of X and is denoted by CDiv(X). One has an intersection the-
ory on Pic(X): for given Cartier divisors D1, . . . ,Dn on an n-dimensional complete
variety there is an intersection index [D1, . . . ,Dn] that obeys the usual properties (see
[Fulton98]).

Now let us return to the subspaces of rational functions. For a subspace L ∈ K(X),
in general, the Kodaira map ΦL is a rational map, possibly not defined everywhere on
X.
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We denote by KCart(X) the collection of subspaces L ∈ K(X) for which the rational
Kodaira map ΦL : X 99K P(L∗) extends to a regular map defined everywhere on X.
We call a subspace L ∈ KCart(X) a subspace with regular Kodaira map. One verifies
that the collection KCart(X) is closed under the multiplication.

To a subspace L ∈ KCart(X) there naturally corresponds a Cartier divisor D(L) as
follows: each rational function h ∈ L defines a hyperplane H = {h = 0} in P(L∗).
The divisor D(L) is the difference of the pullback divisor Φ∗L(H) and the principal
divisor (h).

One has the following theorem ([K-K10, Theorem 6.8]).

Theorem 3.1 Let X be a projective variety.

(i) For any L ∈ KCart(X) the divisor D(L) is well defined, i.e., is independent of the
choice of a function h ∈ L. The map L 7→ D(L) is a homomorphism from the
semigroup KCart(X) to the semigroup CDiv(X).

(ii) The map L 7→ D(L) preserves the intersection index, i.e., for L1, . . . , Ln ∈
KCart(X) we have

[L1, . . . , Ln] =
[
D(L1), . . . ,D(Ln)

]
,

where the right-hand side is the intersection index of Cartier divisors.

Conversely, with any Cartier divisor we can associate a subspace of rational func-
tions. The subspace L(D) associated with a Cartier divisor D is the collection of all
rational functions f such that the divisor ( f )+D is effective (by definition 0 ∈ L(D)).

The following well-known fact can be found in [Hartshorne77, Chap. 2, Theorem
5.19].

Theorem 3.2 When X is projective, L(D) is finite dimensional.

We record the following facts, which are direct corollaries of the definition.

Proposition 3.3 Let L ∈ KCart(X) and put D = D(L). Then L ⊂ L(D) and L(D) ∈
KCart(X).

Proposition 3.4 Let ρ : X ′ → X be a birational morphism. Let D be a Cartier divisor
on X. Then

L
(
ρ∗(D)

)
= ρ∗

(
L(D)

)
.

One verifies that D is a very ample divisor if D(L(D)) = D. It is a well-known
fact that the group of Cartier divisors is generated by the very ample divisors (see
[L04, Example 1.2.6]).

Let L ∈ KCart(X). The following describes the subspace L(D(L)). It can be found
in slightly different forms in [Hartshorne77, Chap. 2, Proof of Theorem 5.19] and
[S-Z60, Appendix 4].

Theorem 3.5 Let X be an irreducible projective variety and let L ∈ KCart(X) be such
that the Kodaira map ΦL : X → P(L∗) is an embedding.

(i) Every element of L(D(L)) is integral over L, i.e., L ⊂ L(D(L)) ⊂ L, and hence
L(D(L)) ∼ L.

(ii) Moreover, if X is normal, then L(D(L)) = L.
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4 Cartier b-divisors

Let X be an irreducible variety of dimension n defined over an algebraically closed
field k.

Definition 4.1 (Birational model) We call a proper birational map π : Xπ 99K X,
where Xπ is a projective variety, a projective birational model (or for short a birational
model) of X. The collection of all models of X modulo isomorphism is partially
ordered. We say (Xπ ′ , π

′) dominates (Xπ, π) and write π ′ ≥ π if there is a morphism
ρ : Xπ ′ → Xπ such that π ′ = π ◦ ρ.

Proposition 4.2 The above partial order is a directed set, i.e., for any two models
(Xπ, π) and (Xπ ′ , π

′) there exists a third model (Xπ ′ ′ , π
′ ′) that dominates both.

Proof By Chow’s lemma, without loss of generality we can assume that X is quasi-
projective sitting in some projective space PN . Let U ⊂ X be an open subset such that
π and π ′ are isomorphisms restricted to π−1(U ) and π ′−1(U ) respectively. Consider
the set

Γ =
{

(x, π−1(x), π ′−1(x)) | x ∈ U
}
⊂ X × Xπ × Xπ ′ ,

and let Xπ ′ ′ be the Zariski closure of Γ in PN ×Xπ ×Xπ ′ . The morphisms to Xπ and
Xπ ′ as well as the rational map to X are given by the projections on the corresponding
factors:

Xπ

π ′

  
Xπ ′ ′

ρ
<<

π ′ ′

//

ρ ′

""

X

Xπ ′ .

π ′
>>

Definition 4.3 The Riemann–Zariski space X of the birational class of X is defined
as

X = lim
←π

Xπ,

where the limit is taken over all the birational models of X.

Definition 4.4 (Cartier b-divisor) Following Shokurov one defines the group of
Cartier b-divisors as

CDiv(X) = lim
→π

CDiv(Xπ),

where CDiv(Xπ) denotes the group of Cartier divisors on the variety Xπ and the limit
is taken with respect to the pullback maps CDiv(Xπ) → CDiv(Xπ ′), which are de-
fined whenever π ′ ≥ π.
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Remark 4.5 Let D1, . . . ,Dn be Cartier divisors on a model Xπ and suppose π ′ ≥ π.
One shows that the intersection number of the Di on Xπ is equal to the intersection
number of the their pullbacks to Xπ ′ . This shows that the intersection number of
Cartier b-divisors is well defined.

5 Main Statement

Let X be an irreducible variety over k. In this section we prove the main state-
ment of this note that the group of Cartier b-divisors is naturally isomorphic to the
Grothendieck group of K(X) (Theorem 5.2). The proof is based on the following
easy lemma.

Lemma 5.1 Let L ∈ K(X) be a non-zero finite dimensional subspace with the Kodaira
rational map ΦL : X 99K P(L∗). Then there exists a normal projective birational model
Xπ of X such that ΦL ◦ π extends to a regular map on the whole Xπ . In other words, the
Kodaira map of the subspace π∗(L) extends to a regular map on Xπ .

Proof Every irreducible variety is birationally isomorphic to a projective variety. So
without loss of generality we assume that X is projective. Let U ⊂ X be an open
subset such that ΦL|U is regular. Let Γ ⊂ U × P(L∗) be the graph of ΦL|U and let Xπ

be the closure of Γ in X ×P(L∗). Let π : Xπ → X denote the projection onto the first
factor. The map π|Γ : Γ → U is an isomorphism with inverse x 7→ (x,ΦL(x)). Thus
Xπ is birationally isomorphic to X. Also the Kodaira map ΦL on X extends to Φπ∗(L),
which is the projection on the second factor and hence defined on the whole Xπ . If
Xπ is not normal, replace Xπ with its normalization.

From Theorem 3.1 and Lemma 5.1 we get the following theorem.

Theorem 5.2 The group of Cartier b-divisors CDiv(X) is naturally isomorphic to the
Grothendieck group G(X) of K(X). Moreover, the isomorphism preserves the intersection
index.

Remark 5.3 Sometimes it is customary to define Cartier b-divisors to be the direct
limit of vector spaces of Cartier Q-divisors on birational models of X. With this
definition, the above result would assert that the Q-vector space of Cartier b-divisors
is isomorphic to the Q-vector space G(X)⊗Q .

Proof of Theorem 5.2 Define a map F from CDiv(X) to the Grothendieck group of
K(X) as follows. Let D be a Cartier b-divisor represented by a Cartier divisor Dπ on
a birational model Xπ . We know that Dπ can be written as the difference of two very
ample divisors on Xπ . Thus to define F it is enough to define it on Cartier b-divisors
that are represented by very ample divisors. So without loss of generality we assume
that Dπ is very ample. By Theorem 3.2 we know that the subspace L(Dπ) ⊂ k(Xπ)
associated with Dπ is finite dimensional. Define

F(D) =
(
π−1)∗(L(Dπ)

)
.
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Suppose (Xπ ′ , π
′) dominates (Xπ, π) with the corresponding morphism ρ : Xπ ′ →

Xπ . Then by Proposition 3.4 we have

L
(
ρ∗(Dπ)

)
= ρ∗

(
L(Dπ)

)
,

since ρ is a birational isomorphism. Thus F is well defined, i.e., is independent of the
choice of the representative (Xπ,Dπ) for D.

Now suppose D, D ′ are two Cartier b-divisors represented by very ample divi-
sors Dπ , Dπ ′ on two birational models (Xπ, π) and (Xπ ′ , π

′). By Proposition 4.2 we
can find a third birational model (Xπ ′ ′ , π

′ ′) dominating both. Now applying The-
orem 3.1(2) to the pull-backs of Dπ and Dπ ′ to Xπ ′ ′ , it follows that F(D + D ′) =
F(D)F(D ′); that is, F is a homomorphism.

Next we define an inverse map G to F. Suppose L ∈ K(X). Then by Lemma
5.1 there exists a normal projective model Xπ such that Φπ∗(L) : Xπ 99K P(π∗(L)∗)
extends to a regular map on the whole Xπ (which we again denote by Φπ∗(L)). De-
fine G(L) to be the element of CDiv(X) represented by the divisor D(π∗(L)) in the
birational model Xπ . Suppose Xπ ′ is another birational model such that Φπ ′∗(L) is
regular. By Proposition 4.2 we can find a third model π ′ ′ that dominates both π and
π ′. Now ρ∗(D(π∗(L)) = ρ ′∗(D(π ′∗(L)) = D(π ′ ′∗(L)). Hence the class in CDiv(X)
represented by D(L) is independent of the choice of the model Xπ and the map G
is well defined. Finally, if D is represented by a very ample divisor, we know that
G(F(D)) = D, and also by Theorem 3.5, L ⊂ F(G(L)) ⊂ L and hence F(G(L)) ∼ L.
So F and G are inverses of each other, and the proposition is proved.

6 Intersection Index is Well Defined and Multi-additive

In this section we prove Theorems 2.1 and 2.2 using the intersection product in the
Chow ring of a product of projective spaces. A standard reference for Chow rings and
their intersection product is [Fulton98, Chapter 8].

Let X be an irreducible n-dimensional variety. Let L = (L1, . . . , Ln) be an n-tuple
of non-zero finite dimensional subspaces of rational functions on X. For each i let
ΦLi : X 99K P(L∗i ) denote the corresponding Kodaira rational map. Suppose X is
birationally embedded in some projective space PN (Chow’s lemma). Put

P = PN × P(L∗1 )× · · · × P(L∗n),

and consider the rational map ΦL : X 99K P given by

ΦL : x 7−→
(

x,ΦL1 (x), . . . ,ΦLn (x)
)
.

Let YL be the closure of the image of X under the rational map ΦL. The map ΦL is a
birational isomorphism between X and YL.

Proof of Theorem 2.1 For each i, let Hi be a hyperplane in P(L∗i ) and let H = PN ×
H1 × · · · × Hn. Then H is a subvariety of P of codimension n. We note that for
different choices of the hyperplanes Hi the cycles [H] are all rationally equivalent.
From the definition of product in the Chow ring A∗(P) we see that the intersection
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index [L1, . . . , Ln] is equal to the intersection number of the product of cycles [YL]
and [H], and hence well defined.

Proof of Theorem 2.2 There is a natural surjective map L ′1 ⊗ L ′ ′1 → L ′1L ′ ′1 . This
induces an embedding (L ′1L ′ ′1 )∗ ↪→ L ′1 ⊗ L ′ ′1 and thus an embedding P((L ′1L ′ ′1 )∗) ↪→
P((L ′1 ⊗ L ′ ′1 )∗). Consider the Segre map

P(L ′∗1 )× P(L ′ ′1 )→ P(L ′∗1 ⊗ L ′ ′∗1 ) ∼= P
(

(L ′1 ⊗ L ′ ′1 )∗
)
.

One has a commutative diagram:

PN × P((L ′1L ′ ′1 )∗)× P(L∗2 )× · · · × P(L∗n)

��

X //

**

44

PN × P((L ′1 ⊗ L ′ ′1 )∗)× P(L∗2 )× · · · × P(L∗n)

PN × P((L ′∗1 )× P(L ′ ′∗1 )× P(L∗2 )× · · · × P(L∗n),

OO

where the top vertical map is given by P((L ′1L ′ ′1 )∗) ↪→ P((L ′1⊗ L ′ ′1 )∗) and the bottom
vertical map is induced by the Segre map. Note that the image of X in P((L ′1 ⊗ L ′ ′1 )∗)
lies in P((L ′1L ′ ′1 )∗). Take f ∈ L ′1, g ∈ L ′ ′1 . Then f , g define hyperplanes H f , Hg

in P(L ′1
∗), P(L ′ ′1

∗) respectively. Moreover, f ⊗ g ∈ L ′1 ⊗ L ′ ′1 ∼= (L ′∗1 ⊗ L ′ ′∗1 )∗ de-
fines a hyperplane H in P((L ′1 ⊗ L ′ ′1 )∗) and hence in P((L ′1L ′ ′1 )∗). Also take hyper-
planes H2, . . . ,Hn in P(L∗2 ), . . . ,P(L∗n) respectively. We know from the proof of The-
orem 2.1 that

[L ′1, L2, . . . , Ln] = [YL ′] · [H f ×H2 × · · · ×Hn],

[L ′ ′1 , L2, . . . , Ln] = [YL ′ ′] · [Hg ×H2 × · · · ×Hn],

[L ′1L ′ ′1 , L2, . . . , Ln] = [YL] · [H ×H2 × · · · ×Hn],

where · denotes the product in the corresponding Chow rings, and

L ′ = (L ′1, L2, . . . , Ln), L ′ ′ = (L ′ ′1 , L2, . . . , Ln), L = (L ′1L ′ ′1 , L2, . . . , Ln).

We note that the pullback, under the Segre map, of the hyperplane H to P(L ′∗1 ) ×
P(L ′ ′∗1 ) coincides with (H f × P(L ′ ′∗1 )) + (P(L ′∗1 )×Hg). This shows that

[H ×H2 × · · · ×Hn] = [H f ×H2 × · · · ×Hn] + [Hg ×H2 × · · · ×Hn].

This finishes the proof.
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