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Abstract. We generalize Vieta formula for the product of roots of a polynomial to
the multidimensional case. We compute in the group (C∗)n the product of all roots
of a system of n polynomial equations with sufficiently general Newton polyhedra.
We present two different formulas for this product. In the first formula we use the so
called Parshin symbols, in the second formula we use derivatives of the mixed volume
with respect to vertices of all polyhedra. Both formulas employ certain combinatorial
coefficients which characterize the relative location of Newton polyhedra at each
vertex of their Minkowski sum. The technique of these coefficients is essential for our
work. Using this technique we also prove a new formula for mixed volumes.

To Vladimir Igorevich Arnold

Introduction

1. The idea of this work came to me in the summer of 1995 in Paris, when I was
staying with V. I. Arnold. I am grateful to Vladimir Igorevich for his hospitality
and for stupendous walks around Paris and its vicinities.

2. According to the classical Vieta formula, the product of the nonzero roots of
an equation anxn + · · · + akxk = 0 with an 6= 0, ak 6= 0 is equal to the number
(−1)n−kaka−1

n . In this article we generalize the Vieta formula to the multidimen-
sional case. More precisely, we compute in the group (C∗)n the product of all the
roots of the system of equations

(1) P1(x) = · · · = Pn(x) = 0, x ∈ (C∗)n,

whose Newton polyhedra ∆1, . . . , ∆n are developed (see §1), which means that they
are located sufficiently generally with respect to each other.

The geometrical meaning of being developed is especially clear in the two-
dimensional case: two polygons on a plane are developed if and only if they do
not have parallel sides with identically directed outer normals.

For the generalization of the Vieta formula the condition of developed polyhedra
is essential. If it is not satisfied, then the problem of finding the product of all the
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2 A. KHOVANSKII

roots of a system of equations turns out to be just as difficult as the problem of
finding the multidimensional resultants (see theorem 1, §6).1

The Newton polygon of the polynomial P (x) = anxn + · · ·+ akxk is a segment
I(n, k) on the real line with vertices n and k, where n > k ≥ 0. The product of the
nonzero roots of the polynomial P is equal, up to a sign, to the monomial aka−1

n in
the coefficients an, ak at the vertices n and k of the Newton polyhedron I(n, k) of
the polynomial P . The coefficient an enters in this monomial to the power given by
the value, taken with opposite sign, of the derivative of the length of the segment
I(n, k) by the vertex n, i.e. to the power minus one. The coefficient ak enters in
this monomial to the power also given by the value, taken with opposite sign, of
the derivative of the length of the segment I(n, k) by the vertex k, i.e. to the power
one.

It turns out that this is the case in many dimensions as well. Up to a sign every
component of the product of the roots of a system of equations with developed
Newton polyhedra is equal to a certain monomial in the coefficients of equations
corresponding to the vertices of the Newton polyhedra. Further, the coefficient at
each vertex enters in these monomials to vector power equal to the value, taken with
coefficient (−n!), of the derivative of the mixed volume of the Newton polyhedra
by this vertex (see theorem 2 from §11).

3. The Vieta formula also has a completely different interpretation connected with
Weil’s theorem. First let us recall Weil’s theorem (see, for example, [8]). Let X
be a complex algebraic curve, and f and g be two nonzero holomorphic functions
on X. With each point a ∈ X is associated the so-called the Weil symbol [f, g]a.
Here is its definition. Let u be a local parameter about the point a, u(a) = 0, and
let f = c1u

k1 + . . . and g = c2u
k2 + . . . be the leading terms of the expansion

of the functions f and g at the point a. The Weil symbol [f, g]a is the number
(−1)k1k2ck2

1 c−k1
2 (let us point out that sometimes the sign in the Weil symbol is

chosen differently, instead of (−1)k1k2 it is sometimes set equal to (−1)k1+k2+k1k2).
For all the points on the curve X, except for a finite number of them, the Weil
symbol is equal to one. The following holds:

Weil’s theorem. ∏

a∈X

[f, g]a = 1.

Let us apply Weil’s theorem in the case that the curve X coincides with the
Riemann sphere, the function f is equal to the coordinate function x, and the
function g is equal to a polynomial P . We will get

(2)
∏

x(a) = [x, P ]−1
0 [x, P ]−1

∞ ,

1During my visit to the City University of Hong Kong in 1999 I learned that a formula for the
product of roots that uses multidimensional resultants was found independently in the following
papers:
1. E. Cattani, A. Dickenstein and B. Sturmfels, Residues and Resultants, J. Math. Sci. Univ.

Tokyo 5 (1998), no. 1, 119–148.
2. J.M. Rojas, Toric Laminations, Sparse Generalized Characteristic Polynomials, and a Re-

finement of Hilbert’s Tenth Problem, Foundations of Computational Mathematics, selected
papers of a conference, IMPA, Rio de Janeiro, 1997, Springer-Verlag, Berlin-New York, 1999,
pp. 369–381.
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where the product is taken over all nonzero roots a of the polynomial P . This
formula coincides with the Vieta formula.

Parshin-Kato theory gives a far-reaching generalization of Weil’s theorem. In this
theory to (n + 1) meromorphic functions on an n-dimensional algebraic manifold
X and a flag of submanifolds in the manifold X is associated the so-called Parshin
symbol which generalizes the Weil symbol. According to Parshin-Kato theory, the
product of Parshin symbols over certain flags of submanifolds also turns out to by
equal to one (see [9], [10], [12]).

Let us turn to a different interpretation of the multidimensional generalization
of the Vieta formula. Let M(P1, . . . , Pn) be the product in the group (C∗)n of the
roots of the system of equations (1). The computation of the point M(P1, . . . , Pn)
in the group (C∗)n is equivalent to the computation of the value χ(M(P1, . . . , Pn))
of each character χ : (C∗)n → C∗ at this point.

Let ∆ be the Minkowski sum of the polyhedra ∆i, ∆ = ∆1 + · · · + ∆n. With
each vertex A of the polyhedron ∆ is associated an integer — the combinatorial
coefficient CA of the vertex A — characterizing the mutual position of the polyhedra
∆1, . . . , ∆n in the space. In this paper the combinatorial coefficients (see §§1–3)
play an important role.

With each vertex A of the polyhedron ∆ it is possible to associate a number
[P1, . . . , Pn, χ], which we will call the Parshin symbol of the functions P1, . . . , Pn, χ
at the vertex A of the polyhedron ∆ (see §11).

Let us cite another expression for the product of the roots of a system of equa-
tions. Namely the following equality holds (see theorem 1 §11):

(3) χ(M(P1, . . . , Pn)) =
∏

A∈∆

[P1, . . . , Pn, χ](−1)nCA

A .

Here the product is taken over all the vertices A of the polyhedron ∆. The equality
(3) is analogous to the interpretation of Vieta’s theorem (2) with the help of Weil’s
theorem. It should be explainable in the framework of Parshin-Kato theory. Our
proof of the equality (3), however, is elementary and does not require this theory.

4. The results of this paper are connected to the results of the work [4], although
they are independent of each other. Several words about the work [4]. In [4] there
is an explicitly calculated formula for the Grothendieck residues of the form

ω =
Q

P1 . . . Pn

(
dx1

x1
∧ · · · ∧ dxn

xn

)

over all the roots of the system of equations (1), where Q is an arbitrary Laurent

polynomial. If we let Q = x1 . . . xnT det
(

∂P

∂x

)
, where T is an arbitrary Laurent

polynomial, then the sum of the Grothendieck residues of the form ω will be equal
to the sum of the values of the Laurent polynomial T over the roots of the system
of equations (1).

The formula for the sum of the Grothendieck residues from [4] is of the form

(4)
∑[

Q

P1, . . . Pn

]

a

=
∑

A∈∆

(−1)nCAres ωA,
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where the summation on the left hand side of the equality is taken over all the roots
of the system of equations (1), and the summation on the right hand side of the
equality is taken over all the vertices A of the polyhedron ∆; res ωa is the residue
of the form ω at the vertex A (see [4]), and CA is the combinatorial coefficient at
the vertex A.

The formula (3) is similar to the formula (4). I hope to return to this range of
questions and explain the reason behind the similarity of these formulas.

5. One of the consequences of the work [4] is a new formula for the mixed volume
of a developed collection of integer-valued polyhedra. It is obtained by summing
over the roots of the system a polynomial identically equal to one. This sum than
equals the number of roots of the system, which by Bernshtein’s theorem [1] equals
n! multiplied by the mixed volume of the Newton polyhedra: n!Vol (∆1, . . . , ∆n).
Using the formula (4) we obtain

(5) n!Vol (∆1, . . . ∆n) =
∑

A∈∆

(−1)nCA det(A1, . . . , An).

Here the summation is taken over all the vertices A of the polyhedron ∆, and
A1, . . . , An are vertices of the polyhedra ∆1, . . . , ∆n that A1 + · · · + An = A. In
this way, the new formula for mixed volumes was proven in [4] by methods of
algebraic geometry but only for integer-valued polyhedra. In spite of some progress
(see [5]), efforts to generalize the formula (5) to the case of non-integral polyhedra
have not previously been successful. Here we fill in this gap (see §4).

6. A couple of words about the arrangement of material in this paper.
Paragraphs 1–4 are devoted to polyhedral geometry. In §1 we introduce the

combinatorial coefficients of a developed collection of polyhedra. In §2 we discuss
subdivisions of several polyhedra and compatibility of these subdivisions. In §3 we
generalize the definition of the combinatorial coefficients to the case of compatible
subdivisions of polyhedra. In §4 we prove a new formula for the mixed volume of
a collection of polyhedra and compute the derivatives of the mixed volume by the
vertices of the polyhedra. After this we turn to algebraic geometry.

Our method to study the product of the roots of a system of equations consists of
the following. In the system we introduce an extra parameter t so that when t →∞
the roots of the system split into groups of roots having different asymptotics.
Furthermore the dependence on the parameter t is chosen so that each group of
roots with the same asymptotics would be the simplest possible (see theorem 2
from §7), and so that the dependence of the product on the parameter t would be
possible to control (see theorem 3 from §5).

A similar idea was used in the work of D. Bernshtein [1], in which he computes
the number of roots of a system of equations; in the work of O.Ya. Viro [11], in
which he constructs nontrivial examples of real algebraic manifolds; and in the
work of I.M. Gelfand, A.M. Zelvinski and M. Kapranov [3], in which they study
multidimensional discriminants.

The simplest systems, which cannot be further simplified, are systems of binomial
equations. These systems can be solved explicitly. The product of the roots of
such systems is calculated in §8. The determination of signs in this computation
oriiginally gave me the most difficulty, but turns out to be very simple: in §9 we
investigate in detail linear algebra over the field Z/2Z which is connected to the
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computation of these signs. §10 is also devoted to systems of binomial equations:
the product of roots of such systems can be written in an especially convenient way.
In §11 we combine our calculations with the technique of combinatorial coefficients
from §§1–4 and conclude the proof of the multidimensional generalization of the
Vieta formula.

7. I am grateful to my wife T.V. Belokrinitskaya for her help with the work on
this paper, and to A. Ivrii for his help in preparing this paper for publication. A
number of results of this work were obtained during my visit to the Ecole Normale
Supérieure (France) in 1995 and in 1996. I could finish this paper thanks to reduc-
tion of professorial load, which was offered to me for scientific research in 1997–1998
by the University of Toronto.

§1. Characteristic maps, critical vertices,
and developed sets of polyhedra

In this paragraph we discuss the combinatorial coefficients — integral invariants
characterizing the mutual placement of n polyhedra in a n-dimensional space. The
technique of combinatorial coefficients plays a central role in this paper.

Let ∆1, . . . , ∆n be convex polyhedra, lying in some real linear space, and let
∆ be their Minkowski sum. Each face Γ of the polyhedron ∆ can be uniquely
represented as a sum

(1) Γ = Γ1 + · · ·+ Γn

of faces Γi of the polyhedra ∆i. The representation (1) will be called the decom-
position of the face Γ and the face Γi ⊂ ∆i will be called the i-th component of
the decomposition of the face Γ. The face Γ will be called locked if among the
components of its decomposition there is at least one vertex.

Let K be the union of all the locked faces of the polyhedron ∆. A map

f : K → ∂Rn
+

of the set K into the boundary of the positive octant will be called characteristic
if the component fi of the map f = (f1, . . . , fn) vanishes on and only on the faces
Γ from the set K for which the i-th component of the decomposition is a point (a
vertex of the polyhedron ∆i)

Lemma 1. 1. Characteristic maps exist.
2. For a characteristic map the preimage of the center of coordinates is precisely

the set of all the vertices of the polyhedron ∆.
3. The set of all characteristic maps is convex.

Proof. 1. The set Mi of the faces of the polyhedron ∆, for which the i-th component
of decomposition is a vertex, with each face Γ also contains all the faces belonging
to its boundary ∂Γ. Therefore there exists a nonnegative function fi on the set K
which vanishes precisely on the faces in the set Mi. The map f with components
f1, . . . , fn maps the set K into the boundary of the positive octant because by
definition all the faces of the polyhedron ∆ in the set K are locked.

2. Only for the vertices of the polyhedron ∆ all the components of the decom-
position are vertices of the polyhedra ∆i.
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3. If f and h are characteristic maps, then for every t, 0 ≤ t ≤ 1, the map
ft = tf +(1− t)h is also characteristic. In particular ft is a map into the boundary
of the positive octant.

Remark. The characteristic map can be chosen piecewise linear. Moreover, using
barycentric subdivision of the polyhedron ∆, it is possible to construct a charac-
teristic map explicitly.

We will call a map h : K → ∂Rn
+ almost characteristic if

1) the component hi of the map h = (h1, . . . , hn) vanishes on the faces Γ from the
set K for which the i-th component of the decomposition is a point;

2) The map h maps into the center of coordinates only the vertices of the polyhedron
∆.
The components of almost characteristic maps can vanish on bigger sets than the

corresponding components of the characteristic map. Almost characteristic maps
belong to the closure of the convex set of characteristic maps. It is easy to check
the following

Lemma 2. Let f be a characteristic map and let h be an almost characteristic
map. Then the map ht = tf + (1− t)h with 0 < t ≤ 1 is characteristic.

A vertex of the polyhedron ∆ will be called critical if all the proper faces of the
polyhedron ∆ adjacent to this vertex are locked. In other words, a vertex will be
called critical if it belongs to the interior of the set K ∩ ∂∆ in the topology of the
boundary of the polyhedron ∆.

Assume further that the polyhedron ∆ lies in a linear space L of dimension n;
let us fix the orientations of the spaces L and Rn.

Definition. The combinatorial coefficient CA of a critical vertex A of the polyhe-
dron ∆ is the local degree of the germ of the map

f : (∂∆, A) → (∂Rn
+, 0)

of the restriction of a characteristic map on the boundary of the polyhedron ∆.

Lemma 3. 1. The combinatorial coefficient is well-defined, i.e. it does not depend
on the choice of the characteristic map.

2. The local degree of the germ of an almost characteristic map at a critical
vertex of the polyhedron is equal to the combinatorial coefficient of this vertex.

Proof. The first part follows by lemma 1, and the second part follows by lemma 2.

We will say that a collection of n polyhedra ∆1, . . . , ∆n in a linear space L is
developed if all the faces of the polyhedron ∆ are locked. In other words, the
collection of polyhedra is developed if the set K contains the boundary of the
polyhedron ∆. Thus the combinatorial coefficient is defined at every vertex of the
sum polyhedron.

Let us consider one simple but important example. Let I1, . . . , In be n transversal
segments in Rn, and let ∆ = I1 + · · · + In be their Minkowski sum. Each vertex
A of the parallelepiped ∆ is the sum of certain vertices Ai of segments Ii: A =
A1 + · · ·+ An. For each segment Ii fix one of its vertices li which we will call left;
the second vertex will be called right and it has the form hi = li + ai, where ai is
a vector from the first vertex to the second.
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Theorem 1. The combinatorial coefficient at a vertex A = A1 + · · · + An of the
parallelepiped ∆ = I1 + · · · + In is equal to (−1)H(A)sign det(a1, . . . , an), where
H(A) is the number of points Ai being the right vertices of segments Ii, and ai is
the vector from the left vertex of Ii to the right vertex.

Proof. First consider n usually situated segments I1, . . . In in the space Rn equiped
with standard orientation. Namely, define the segment Ii by the following rela-
tions: the point x1, . . . , xn belongs to Ii if and only if xj = 0 for i 6= j and
−1 ≤ xi ≤ 1. The Minkowski sum of these segments is a cube ∆ defined by the
relations (x1, . . . , xn) ∈ ∆ ⇔ |xi| ≤ 1. Consider the map f of ∆ in Rn

+ defined by
f(x1, . . . , xn) = 1−|x1|, . . . , 1−|xn|. With the help of this map we can compute the
combinatorial coefficients. It is easy to see that the local degree of the restriction
of the map f on the boundary ∂∆ of the cube into the boundary of the positive
octant ∂Rn

+ is computed as follows. The local degree of the map at a vertex A is
equal to (−1)H(A), where H(A) is the number of coordinates of the vertex A equal
to +1. (Every coordinate of any vertex A of the cube ∆ is equal either to +1 or to
−1.) This proves the theorem in the considered case.

Now let I1, . . . , In be transversal segments the midpoints of which are situated in
the center of coordinates. Consider a linear transformation of the space Rn which
sends the i-th vector of the standard basis of the space Rn, to the vector ai. This
transformation preserves orientation if det(a1, . . . , an) is positive, and reverses the
orientation in the opposite case. This transformation reduces the case to the one
previously considered.

Finally, a parallel translation of segments Ii results in simply translating the
Minkowski sum of these segments. So theorem 1 is proven in the general case.

For i = 1, . . . , (n−1) let us fix certain vertices Ai of the polyhedra ∆i. Consider
the set V (A1, . . . , An−1) of the vertices of the polyhedron ∆ for which the vertices
A1, . . . , An−1 are the components of the decomposition. In other words, a vertex
A of the polyhedron ∆ belongs to the set V (A1, . . . , An−1) if there exists a vertex
An of the polyhedron ∆n such that A = A1 + · · ·+ An−1 + An.

Theorem 2. For every developed collection of polyhedra ∆1, . . . , ∆n and for every
choice of vertices A1, . . . , An−1 the following statement holds. The sum of the
combinatorial coefficients of the vertices A of the polyhedron ∆ belonging to the
set V (A1, . . . , An−1) is equal to 0, i.e.

∑

A∈V (A1,...,An−1)

CA = 0.

Proof. Let us fix a characteristic map and denote by f : ∂∆ → ∂Rn
+ its restriction on

the boundary of the polyhedron ∆. Consider the vertical ray x1 = · · · = xn−1 = 0,
xn ≥ 0, lying in the boundary of the positive octant Rn

+. Its preimage under the
map f consists of the union M of all the faces Γ of the polyhedron ∆ such that
their i-th components of the decomposition for i = 1, . . . , (n − 1) are vertices. A
subset M0 of the set M consisting of the faces for which these components are the
fixed vertices A1, . . . , An−1 is isolated. In other words, it is possible to choose an
open neighbourhood U of the set M0 such that its closure does not contain any
other points from the set M . On the boundary of this neighbourhood the function
f1+· · ·+fn−1 reaches a minimum value C, moreover this minimum value is positive.
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Denote by WC an unbounded region in the boundary of the positive octant which
contain the vertical ray and whose points satisfy the inequality x1 + · · ·+xn−1 < C.
Denote by UC the set U ∩ f−1(WC).

The map f : UC → WC is a proper map, so the notion of degree of f makes
sense. On one hand, this degree equals 0 since the component fn of the function
f is bounded on the polyhedron ∆ so the points on the vertical ray sufficiently far
from the origin do not have a preimage at all. On the other hand, this degree equals
to the number of preimages of the center of coordinates, calculated counting the
multiplicities, i.e. equals to the sum of combinatorial coefficients of the vertices A
in the set V (A1, . . . , An−1). The theorem is proven.

Remark. Theorem 2 is useful only for consistent sets of vertices A1, . . . , An−1 (for
which there exists a common covector ξ such that the maximum of scalar product
with ξ on the polyhedron ∆i is attained precisely at the vertex Ai). For inconsistent
sets of vertices, the set V (A1, . . . , An−1) is empty.

§2. Partitions and their consistencies

In this paragraph we discuss the notion of a consistent partition of several poly-
hedra.

A partition of a polyhedron ∆ is a finite set of polyhedra R(∆) such that
1) the union of all the polyhedra in R(∆) is equal to the polyhedron ∆,
2) the set R(∆) contains all the faces of any polyhedron from R(∆),
3) the intersection of any two polyhedra in R(∆) is either empty or is a face of

these polyhedra.
The simplest example of a partition is the tautological partition of the polyhe-

dron, which contains the polyhedron and all of its faces.
We will deal with partitions of several polyhedra simultaneously and we will

consider collections containing one polyhedron from each partition. Some of such
collections we will call consistent. The method of choice of consistent collections
will be governed by certain conditions which we are now going to define.

Let R(∆1), . . . ,R(∆k) be a collection of partitions of several polyhedra, and
let S be a subset in Cartesian product of these partitions. To each point s ∈ S
corresponds a collection Γ1(s), . . . Γk(s) of polyhedra, where Γi(s) ∈ R(∆i). Let

Γ(s) = Γ1(s) + · · ·+ Γk(s)

be the sum of the polyhedra in the collection, let G be a face of the polyhedron
Γ(s), and let

G = G1 + · · ·+ Gk

be the decomposition of the face G into the sum of faces of the polyhedra Γi(s).
We will say that a set S possesses the property of being natural if for every point

s ∈ S and every face G of the polyhedron Γ(s) there exists a point s1 ∈ S for which
Γi(s1) = Gi and Γ(s1) = G.

We will say that a set S possesses the property of being additive if the polyhedra
Γ(s) are distinct for different points s and if the polyhedra Γ(s) for s ∈ S give a
partition R(∆) of the polyhedron ∆ = ∆1 + · · ·+ ∆k.

We will call a set S a consistency of the partitions R(∆1), . . . ,R(∆k) if it has
the property of being additive and the property of being natural. To every point
s in the consistency S corresponds a polyhedron Γ(s) in the partition R(∆) of
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the polyhedron ∆ = ∆1 + · · · + ∆k and corresponds a collection of polyhedra
Γ1(s), . . . , Γk(s) in the partitions R(∆1), . . . ,R(∆k) such that the following holds:

(1) Γ(s) = Γ1(s) + · · ·+ Γk(s).

A collection of the polyhedra Γ1(s), . . . , Γk(s) will be called consistent, the repre-
sentation (1) will be called the S-decomposition of the polyhedron Γ(s), and the
polyhedron Γi(s) ⊂ R(∆i) will be called the i-th component of the S-decomposition
of the polyhedron Γ(si).

Example. The tautological consistency of tautological partitions of the polyhedra
∆1, . . . , ∆k. The set S for this consistency is in the one-to-one correspondence with
the faces of the polyhedron ∆ = ∆1 + · · ·+ ∆k. To each face Γ of the polyhedron
∆ corresponds a collection Γ1, . . . , Γk of components of its decomposition.

Remark. The most known to me examples of consistencies are obtained from the
so-called join partitions of the polyhedra ∆1, . . . , ∆k (see [7], in which is explained
the role of consistencies in the theory of finite-additive measures on the polyhedra).
The definition of the consistency in the work [7] is a little bit different from ours:
that definition requires more conditions and then it is proven that to these extra
conditions satisfy only the consistencies obtained from the join partitions.

In this paper for us will be very important the regular partitions of the poly-
hedra and their regular consistencies. Only regular partitions and their regular
consistencies are encountered in the calculation of the product of roots of a system
of equations in terms of the Newton polyhedra. It would be possible to restrict our
attention to considering only regular partitions. Let us now turn to the definition
of this class of partitions and their consistencies.

Let ∆ be a polyhedron in a certain linear space. We will say that a polyhedron
∆̃ that belongs to the product of this linear space and the real line R1 lies over the
polyhedron ∆ if the polyhedron ∆ is the projection of the polyhedron ∆̃ along the
line R1. Let e1 be a vector in the line R1 specifying its orientation. We will say
that a point x of the polyhedron ∆̃ is an upper point of ∆̃ if the ray x+λe1, where
λ ≥ 0, intersects ∆̃ only at the point x. A face of the polyhedron ∆̃ will be called
an upper face if each of its points is an upper point of this polyhedron.

There is a partition of the polyhedron ∆ related to the polyhedron ∆̃, namely
the partition consisting of projections of the upper faces of the polyhedron ∆̃. A
partition ∆ related to some polyhedron lying over it is called regular.

A regular partition of the polyhedron ∆ depends not on the polyhedron ∆̃ itself,
but only on its upper points. The set of upper points of the polyhedron ∆̃ can be
considered as a graph of a piecewise-linear convex function on the polyhedron ∆.
Conversely, to each piecewise-linear convex function on the polyhedron is related its
regular partition — in the capacity of the polyhedron ∆̃ we can take the convex hull
of the graph of this function. If a linear function is added to the piecewise-linear
function, then the regular partition will be unchanged.

Let R(∆1), . . . ,R(∆k) be a collection of regular partitions of the polyhedra
∆1, . . . , ∆k. Let us choose polyhedra ∆̃1, . . . , ∆̃k that lie over the polyhedra ∆1, . . . , ∆k,
respectively, and generate this collection of regular partitions. The choice of the
polyhedra ∆̃i defines the consistency of the collection of the regular partitions.
Namely, we will say that the polyhedra Γ1, . . . , Γk from the partitionsR(∆1), . . . ,R(∆k)
are consistent via the polyhedra ∆̃1, . . . , ∆̃k if the Minkowski sum Γ̃1 + · · ·+ Γ̃k of
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the upper faces Γ̃i of the polyhedra ∆̃i lying over them is an upper face Γ̃ of the
polyhedron ∆̃ = ∆̃1 + · · ·+ ∆̃n. In this way with each upper face Γ̃ of the polyhe-
dron ∆̃ is connected a collection of consistent polyhedra Γ1, . . . , Γk. We obtain a
definition of the consistency for which the set S is in a one-to-one correspondence
with the set of upper faces of the polyhedron ∆̃.

Let ∆1 and ∆2 be polyhedra lying in a linear space L and let R(∆1) and R(∆2)
be their regular partitions consistent via two piecewise-linear convex functions f1

and f2 on these polyhedra.
The next lemma gives a necessary condition for two polyhedra Γ1 and Γ2 from

the partitions R(∆1) and R(∆2) to be consistent. In its formulation we identify
between themselves the tangent spaces to all the interior points of the polyhedron
Γ1 (of the polyhedron Γ2) and we also identify them with a linear subspace L1 (a
subspace L2) of the space L.

Lemma 1. If two polyhedra Γ1 and Γ2 from the partitions R(∆1) and R(∆2) are
consistent via the functions f1 and f2, then the differentials of the restrictions of
these functions on the polyhedra Γ1 and Γ2 are constant and coincide on the space
L1 ∩ L2.

Proof. If two polyhedra Γ1 and Γ2 are consistent, then there exists a covector ξ on
the space L such that the function 〈ξ, x〉+ f1(x) is constant on the polyhedron Γ1

and the function 〈ξ, x〉 + f2(x) is constant on the polyhedron Γ2. Differentiating,
we obtain that the differential of the restriction of the function f1 on the space L1

is equal to the covector (−ξ), and the differential of the restriction of the function
f2 on the space L2 is also equal to (−ξ). This proves the lemma.

We will say that polyhedra are affinely independent if the minimum affine sub-
spaces containing these polyhedra are independent. In other words, the polyhedra
∆1, . . . , ∆k are affinely independent if the dimension of their Minkowski sum is
equal to the sum of their dimensions:

dim(∆1 + · · ·+ ∆k) = dim∆1 + · · ·+ dim ∆k.

The following is clear:

Lemma 2. If the polyhedra ∆1, . . . , ∆n are affinely independent in Rn, then either
one of these polyhedra is a point, or all of these polyhedra are segments.

The following holds:

Theorem 1. Any collection R(∆1), . . . ,R(∆k) of regular partitions can be made
regularly consistent in such a way that any consistent collection of polyhedra will
be affinely independent.

Proof. Assume that the partition R(∆i) corresponds to the function fi : ∆i → R.
We will sow that adding to the functions fi different sufficiently general functions,
we can achieve that every consistent collection of polyhedra becomes affinely inde-
pendent. We will begin with the case of two polyhedra. If the consistent polyhedra
Γ1 and Γ2 from the partitions R(∆1) and R(∆2) are affinely dependent, then, as
can be seen from lemma 1, they cease to be consistent by adding an almost any
linear function to the function f2. Therefore by adding an almost any linear func-
tion to the function f2 destroys the consistency of any pair of affinely dependent
polyhedra. So the theorem is proven for the regular partitions of two polyhedra.
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The general case reduces to the one considered. Indeed, we can add the polyhedra
one by one to the sum and correct with the help of a linear perturbation only the
function specifying the regular partition of the polyhedron being added.

Corollary. Tautological partitions of several polyhedra in Rn can be made reg-
ularly consistent in such a way that every consistent collection will contain the
affinely independent faces of these polyhedra.

Proof. Indeed, the tautological partition is clearly regular because it is assigned to
any linear function on the polyhedron.

Lemma 3. Any collection of partitions R(∆1), . . . ,R(∆k) can be made consis-
tent in such a way that every consistent collection of polyhedra will be affinely
independent.

Proof. Let us fix k sufficiently general linear functions f1, . . . , fk. For every consis-
tent collection of polyhedra Γ1(s), . . . , Γk(s) let us consider the regular consistency
of their tautological partitions via the linear functions f1, . . . , fk. Let us consider
all consistent collections of polyhedra which can be obtained by a such regular con-
sistency for different elements s ∈ S. The union of all such consistent collections
will defined a new, finer, consistency of the partitions R(∆1), . . . ,R(∆k), which
satisfies the conditions of lemma 2.

§3. combinatorial coefficients connected with consistent partitions

In this paragraph the notions of a characteristic map of a collection of polyhedra,
a locked collection of polyhedra, etc., are generalized to the case of partitions of
collections of polyhedra equiped with a fixed consistency.

Let R(∆1), . . .R(∆n) be partitions of the polyhedra ∆1, . . . , ∆n, lying in some
linear space, let S be their consistency, and let R(∆) be the corresponding partition
of the polyhedron ∆ = ∆1 + · · ·+ ∆n. A polyhedron Γ in the partition R(∆) will
be called S-locked if among the components of its S-decomposition there is at least
one point (a vertex of one of the partitions R(∆i)).

Let KS be the union of all the S-locked polyhedra Γ in the partition R(∆) of
the polyhedron ∆. The map

f : KS → ∂Rn
+

of the set KS into the boundary of the positive octant will be called S-characteristic
if the component fi of the map f = (f1, . . . , fn) vanishes on and only on those poly-
hedra Γ in the partition R(∆) for which the i-th component of the S-decomposition
is a vertex.

Lemma 1. 1. S-characteristic maps exist.
2. For an S-characteristic map the preimage of the center of coordinates is

precisely the set of all the vertices of the partition R(∆).
3. The set of all S-characteristic maps is convex.

The proof of lemma 1 almost word for word repeats the proof of lemma 1 from
§1, so we will skip it.

A map h : KS → ∂Rn
+ will be called almost S-characteristic if

1) the component hi of the map h = (h1, . . . , hn) vanishes on the polyhedra Γ from
the set KS for which the i-th component of the S-decomposition is a point;
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2) the map h maps to the center of coordinates only the vertices of the partition
R(∆).
It is easy to check the following:

Lemma 2. Let f be an S-characteristic map and let h be an almost S-characteristic
map. Then the map ht = tf + (1− t)h with 0 < t ≤ 1 is S-characteristic.

In the definitions below for us will be important only the behaviour of the consis-
tencies on the boundary of the polyhedron ∆. A vertex of the partition R(∆) will
be called S-critical if it lies on the boundary ∂∆ of the polyhedron ∆ and belongs
to the interior of the set ∂∆ ∩KS in topology of the boundary of the polyhedron
∆. Assume further that the polyhedron ∆ lies in a linear space L of dimension n;
let us fix the orientations of the spaces L and Rn.

Definition. The combinatorial coefficient CA of an S-critical vertex A of the par-
tition R(∆) is the local degree of the germ of the map

f : (∂∆, A) → (∂Rn
+, 0)

of the restriction f of an S-characteristic map on the boundary of the polyhedron.

Lemma 3. 1. The combinatorial coefficient of an S-critical vertex is well-defined,
i.e. it does not depend on the choice of the S-characteristic map.

2. The local degree of the germ of restriction of an almost S-characteristic map
on ∂∆ at an S-critical vertex of the partition is equal to the combinatorial coefficient
of this vertex.

Proof. The first part follows by lemma 1, and the second part follows by lemma 2.

Let us now discuss the behaviour of combinatorial coefficient when looking at
finer partitions. Let R1(∆i) and R2(∆i), i = 1, . . . , n be two collections of parti-
tions of the polyhedra ∆1, . . . , ∆n equiped with the consistencies S1 and S2, cor-
respondingly. Let R1 and R2 be the corresponding partitions of the polyhedron
∆ = ∆1 + · · · + ∆k. We will say that the consistency S2 of the partitions R2(∆i)
is finer then the consistency S1 of the partitions R1(∆i) if for every point s2 ∈ S2

there exists a point s1 ∈ S1 such that
1) the inclusion G(s2) ⊆ Γ(s1) is valid, where G(s2), Γ(s1) are the polyhedra cor-

responding to the points s2 ∈ S2 and s1 ∈ S1 in the partitions R2(∆) and
R1(∆);

2) for every index 1 ≤ i ≤ k the inclusion Gi(s2) ⊆ Γi(s1) is valid, where Gi(s2),
Γi(s1) are, correspondingly, the i-th components of the S2- and S1-decompositions
of the polyhedra G(s2) and Γ(s1).

Example. Any consistency of any partitions of any collection of polyhedra is finer
than the tautological consistency of the tautological partitions of this collection of
polyhedra.

Theorem 1. Let a consistency S2 of a collection of partitions R2(∆i) be finer
than a consistency S1 of a collection of partitions R1(∆i). Suppose that an S2-
critical vertex A ∈ ∂∆ of the partition R2(∆) belongs to a polyhedron Γ from the
partition R1(∆) lying on the boundary of the polyhedron ∆. Suppose that the
polyhedron Γ belongs to the interior of the set KS1 ∩ ∂∆. Then if the polyhedron
Γ has positive dimensionality, then the combinatorial coefficient CA(S2) is equal to
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0. If, on the other hand, the polyhedron Γ is a vertex of the partition R1(∆), then
CA(S2) = CA(S1).

Proof. Let f and g be, correspondingly, an S1-characteristic map and an S2-
characteristic map of the sets KS1 and KS2 into the boundary of the positive
octant ∂Rn

+. Consider the restrictions of the maps f and g on a small sphere Sn−1

surrounding the vertex A in the boundary ∂∆ of the polyhedron ∆. It is easy to
see that under the linear homotopy ft = tf + (1 − t)g the small sphere Sn−1 gets
mapped into ∂Rn

+ \ 0, the complement of the center of coordinates in the boundary
of the positive octant. This proves theorem 1.

We will say that a partition of a collection of n polyhedra ∆1, . . . , ∆n in a linear
space L is S-developed on the boundary if the set KS contains the boundary of
the polyhedron ∆. For an S-developed on the boundary collection of partitions a
combinatorial coefficient is defined at every vertex of the partition R(∆) which lies
on the boundary of the polyhedron ∆.

For i = 1, . . . , n−1 let us fix certain vertices Ai in the partitions of the polyhedra
∆i. Consider the set V (A1, . . . , An−1) of vertices of the partition of the polyhedron
∆ belonging to the boundary of this polyhedron for which the points A1, . . . , An−1

are the components of the S-decomposition.

Theorem 2. For every S-developed on the boundary partition of a collection of
polyhedra ∆1, . . . , ∆n and for every choice of vertices Ai of the partitions R(∆i)
the following is true. The sum of the combinatorial coefficients of the vertices A of
the partition R(∆) of the polyhedron ∆ belonging to the set V (A1, . . . , An−1) is 0:

∑

A∈V (A1,...,An−1)

CA(S) = 0.

The proof of theorem 2 is almost word for word repeating the proof of theorem 2
from §1 and so we will skip it.

Remark. Theorem 2 is useful only for consistent collections of points A1, . . . , An−1

lying on the boundaries of the polyhedra ∆1, . . . , ∆n−1.
Let S be a consistency of a collection of partitions of the polyhedra ∆1, . . . , ∆n,

and let R(∆) be the corresponding partition of the polyhedron ∆ = ∆1 + · · ·+∆n.
We will say that a vertex A of this partition is S-locked in the polyhedron

Γ ⊂ R(∆) if A is a locked vertex of the polyhedron Γ relative to its S-decomposition
Γ = Γ1(s)+ · · ·+Γn(s). For an S-locked vertex A in the polyhedron Γ let us denote
by CA(Γ, S) the combinatorial coefficient of this vertex in the polyhedron Γ.

Theorem 3. Suppose that a vertex A of the partition R(∆) is S-locked in all the
polyhedra Γ from the partition R(∆) which contains this vertex. Then the sum of
numbers CA(Γ, S) over all the polyhedra Γ is equal to
1) zero, if A is an interior point of the polyhedron ∆;
2) the combinatorial coefficient CA(S), if A lies in the boundary of the polyhedron

∆.

Proof. The proof of this theorem is based on a simple homological reasoning. Let
On−1 be a (n− 1)-dimensional skeleton of the partition R(∆), i.e. the union of all
the polyhedra of the partition whose dimensionality does not exceed n − 1. The
polyhedra Γn−1 ⊂ On−1 of the dimensionality n − 1 can be of two types: interior
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and boundary. Every interior polyhedron Γn−1 enters in the boundary of exactly
two n-dimensional polyhedra from the partition R(∆). Further the orientations
of the polyhedron Γn−1 as the boundary of these polyhedra are different. Every
boundary polyhedron Γn−1 enters in the boundary of exactly one n-dimensional
polyhedron Γn, further its orientation as the boundary of the polyhedron Γn is the
same as the orientation of the boundary ∂∆.

The intersection of the skeleton On−1 with a small neighbourhood of the point
A is by definition contained in the set KS . Therefore we have a well-defined germ

f : (On−1, A) → (∂Rn
+, 0)

of the restrictions of a characteristic map on the skeleton.
The degree of the restriction of the germ of the map f on the boundary of the

polyhedron ∆ is equal to the coefficient CA(S). The degree of the restriction of the
germ of the map f on the boundary of any n-dimensional polyhedron Γ, A ∈ Γ,
Γ ⊂ R(∆), is equal to the coefficient CA(Γ, S).

For the calculation of these degrees let us fix a small neighbourhood U of the
point A in the (n − 1)-dimensional skeleton On−1 and let us take a regular value
c ∈ ∂Rn

+ of the map f sufficiently close to the point 0. Consider all the preimages
of point c lying in the neighbourhood U .

The coefficient CA(Γ, S) is equal to the calculated considering the signs of such
preimages of the point c on the boundary ∂Γ. Each preimage of a point c belonging
to an interior polyhedron Γn−1 will appear twice in the sum of numbers CA(Γ, S),
each time with a different sign. Each preimage of a point c belonging to a boundary
Γn−1 will appear only once in the sum of the numbers CA(Γ, S), moreover it will
appear with the right sign. The theorem now follows.

§4. A new formula for the mixed volume

In this paragraph we formulate and proof a new formula for the mixed volume
of polyhedra. In the general case this formula depends on the selection of specially
consistent subpartitions of the polyhedra. However in the case most important for
later on, when the collection of polyhedra is developed, the formula for the mixed
volume depends only on the polyhedra themselves, and the subpartitions are not
involved. In this case the formula for the mixed volume can be easily differentiated
with respect to the displacements of the vertices of polyhedra. The formula for the
derivative of the mixed volume by the vertex of the polyhedron is used in §11.

Let us first consider one simple but an important example. Let I1, . . . , In be n
transversal segments in Rn, and let ∆ be their Minkowski sum.

Lemma 1. The volume Vol∆ of the parallelepiped ∆ = I1 + · · ·+ In is given by
the following formula:

Vol∆ =
∑

A∈∆

(−1)nCA det(A1, . . . , An),

where the summation is conducted over all the vertices A of the parallelepiped
∆, CA is the combinatorial coefficient at the vertex A, and det(A1, . . . , An) is
the determinant of the matrix consisting of the vectors A1, . . . , An which are the
components of the decomposition of the vertex A.
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Proof. For every segment Ii let us fix one of its vertices li which we will call left,
the second vertex hi of this segment, which will be called right, is of the form
hi = li + ai, where ai is the vector from the first vertex of the segment to the
second. Consider the function ϕ assigning to n vectors x1, . . . , xn of the space
Rn the determinant det(x1, . . . , xn) of the matrix consisting of these vectors. This
function is multilinear. Using the calculation of combinatorial coefficients of the
vertices of the parallelepiped ∆ from theorem 1 in §1, we obtain

det(a1, . . . , an) = sign det(a1, . . . , an)
∑

A∈∆

(−1)nCA det(A1, . . . , An).

This is exactly the required statement since

Vol∆ = sign det(a1, . . . , an) det(a1, . . . , an).

We will say that a consistency S of partitionsR(∆1), . . . ,R(∆k) has the property
of inheritance if for every subset I = (i1, . . . , im) of the segment of integers (1, . . . , k)
the image SI of the set S under the projection

∏
1≤i≤k

R(∆i) →
∏
i∈I

R(∆i) defines a

consistency of the partitions R(∆i1), . . . ,R(∆im) of the polyhedra ∆i1 , . . . , ∆im .
It is easy to see that regular consistencies of regular partitions possess the prop-

erty of inheritance. It is easy to see as well that consistent partitions of polyhedra
connected to the partitions of their joins (see [7]) also possess the property of in-
heritance.

In a n-dimensional space L let us fix a volume form and let us fix an orientation.
Let us denote by Vol (∆1, . . . , ∆n) the mixed volume of the polyhedra ∆1, . . . , ∆n

lying in the space L.

Lemma 2. For every collection of partitions R(∆i) of the polyhedra ∆1, . . . , ∆n

and for every consistency S of these partitions satisfying the condition of inheri-
tance, holds the equality

Vol (∆1, . . . , ∆n) =
∑

s∈S

Vol (Γ1(s), . . . , Γn(s)).

Proof. Since, by definition, the mixed volume is the polarization of the volume form
Vol , the following equality holds:

n!Vol (∆1, . . . , ∆n) =
∑

I

(−1)n−#|I|Vol (
∑

i∈I

∆i),

where the outer summation is conducted over all the subsets I of the segment of
integers (1, . . . , n) and #|I| denotes the number of elements in the set I. Similarly,
for every consistent collection of polyhedra we have

n!Vol (Γ1(s), . . . , Γn(s)) =
∑

I

(−1)n−#|I|Vol (
∑

i∈I

Γi(s)).

All that is left to finish the proof is to use the relations

Vol (
∑

i∈I

∆i) =
∑

s∈S

Vol (
∑

i∈I

Γi(s)),

which follow from the additivity of volume and the property of inheritance of the
partition S.
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Lemma 3. Let S1 be a consistency of the collection of partitionsR(∆1), . . . ,R(∆k)
of the polyhedra ∆1, . . . , ∆k such that S1 possesses the property of inheritance.
Then it is possible to find a finer consistency S2 of the same partitions, also possess-
ing the property of inheritance, for which every S2-consistent collection of polyhedra
is affinely-independent.

Proof. The consistency described in the proof of lemma 3 in §2 has the required
properties.

Theorem 1. For every S-developed on the boundary collection of partitionsR(∆1),
. . . ,R(∆n) of the polyhedra ∆1, . . . , ∆n for which the consistency S possesses the
property of inheritance, the following formula holds:

n!Vol (∆1, . . . , ∆n) = (−1)n
∑

A∈∂∆

CA(S) det(A1, . . . , An).

The summation here is conducted over all the vertices A of the partition R(∆) lying
on the boundary of the polyhedron ∆; A1, . . . , An is a collection of S-consistent
vertices in the partitions of the polyhedra ∆1, . . . , ∆n such that A1 + · · ·+An = A.

Proof. 1. Let us choose a finer consistency S2 of the partitions R(∆1), . . . ,R(∆n)
which has the property of inheritance and for which every S2-consistent collection
of polyhedra is affinely-independent (see lemma 3). Let us denote by R2(∆) the
partition of the polyhedron ∆ corresponding to the consistency S2.

According to lemma 2, the mixed volume of the polyhedra ∆1, . . . , ∆n is equal
to the sum of the mixed volumes Vol (Γ1(s), . . . , Γn(s)) of all the S2-consistent
collections of polyhedra.

Vol (∆1, . . . , ∆n) =
∑

s∈S2

Vol (Γ1(s), . . . , Γn(s)).

2. By hypothesis all S2-consistent collections of polyhedra Γ1(s), . . . , Γn(s) are
affinely-independent, i.e. they satisfy the relation dim(Γ1(s) + · · · + Γn(s)) =
dimΓ1(s) + · · · + dim Γn(s). Therefore, either all the polyhedra Γi(s) are seg-
ments lying on affinely-independent lines, or among the polyhedra Γi(s) there is a
point.

3. Suppose that for s ∈ S2 there is a point among the polyhedra Γi(s). Then
the mixed volume Vol (Γ1(s), . . . , Γn(s)) is equal to zero. Furthermore, in this
case the combinatorial coefficient CA(Γ, S2) of every vertex A of the polyhedron
Γ(s) = Γ1(s) + · · ·+ Γn(s) is equal to zero.

4. Suppose that for s ∈ S2 all the polyhedra Γ1(s), . . . , Γn(s) are affinely-
independent segments. Then the mixed volume Vol (Γ1(s), . . . , Γn(s)) multiplied
by n! is equal to the volume of the parallelepiped Γ(s) = Γ1(s) + · · · + Γn(s).
According to lemma 1 we have

Vol (Γ(s)) =
∑

A∈Γ(s)

(−1)nCA(Γ, S2) det(A1, . . . , An),

where the summation is conducted over the set of vertices A in Γ(s), and A1 + · · ·+
An = A.
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5. By summing up the volumes of all the parallelepipeds Γ(s), s ⊂ S2 we obtain
the relation

n!Vol (∆1, . . . , ∆n) = (−1)n
∑

A∈R2(∆)

det(A1, . . . An)
∑

A∈Γ⊂R2(∆)

CA(Γ, S2).

Here the outer summation is conducted over the set of vertices A of the partition
R2(∆); A1, . . . , An is the S2-consistent collection of vertices such that A1 + · · · +
An = A. The inner summation is conducted over all the polyhedra Γ of the partition
R2(∆) which contain the vertex A.

6. According to theorem 3 from §3 applied to the consistency S2 of the partitions
R(∆i), we have:
a) for every vertex A of the partition R2(∆) lying inside the polyhedron ∆, the

sum ∑

A∈Γ⊂R2(∆)

CA(Γ, S2)

is equal to zero;
b) for every boundary vertex A ∈ ∂∆ of the partition R2(∆), the sum

∑

A∈Γ⊂R2(∆)

CA(Γ, S2)

is equal to CA(S2).
7. According to theorem 1 from §2 we have CA(S2) = 0 for every point A which

is not a vertex of the partition R(∆), and CA(S2) = CA(S) for every point A which
is a vertex of the partition R(∆).

8. By substituting in the formula in item 5 the expressions for the sums of combi-
natorial coefficients from items 6 and 7, we obtain the desired formula. Theorem 1
is proven.

Let us discuss the new formula for the mixed volume from theorem 1.

Lemma 4. For every S-developed on the boundary collection of partitionsR(∆1), . . . ,R(∆n)
of the polyhedra ∆1, . . . , ∆n, the value

n!VS(∆1, . . . , ∆n) = (−1)n
∑

A∈∂∆

CA(S) det(A1, . . . , An)

is conserved under parallel translations of the polyhedra ∆1, . . . , ∆n.

Proof. Let us show, for example, then the value n!VS(∆1, . . . , ∆n) is conserved
under the parallel translation of the polyhedron ∆n by the vector a. Indeed,

n!VS(∆1, . . . , ∆n−1,∆n + a)− n!VS(∆1, . . . , ∆n) =

= (−1)n
∑

A∈∂∆

CA(S) det(A1, . . . , An−1, a) =

= (−1)n
∑

A1,...,An−1

CA(S) det(A1, . . . , An−1, a)
∑

A∈∂∆

CA(S),
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where the inner summation is conducted over all the vertices A of the partition
R(∆) for which the points Ai for 1 ≤ i < n are the i-th components of its S-
decomposition. By virtue of theorem 2 in §3 all the inner sums

∑
A∈∂∆

CA(S) are

equal to 0. The lemma is proven.

Remark. For consistencies S with the property of inheritance (which holds for all
main examples of consistencies), lemma 4 follows from theorem 1. Theorem 2 in §3
and theorem 2 in §1 were found after theorem 1. The point of depart was the fact
that the mixed volume is conserved under parallel translations of the polyhedra.

Theorem 2. For every developed collection of the polyhedra ∆1, . . . , ∆n the iden-
tity

n!Vol (∆1, . . . , ∆n) = (−1)n
∑

CA det(A1, . . . , An).

holds. Here the summation is conducted over all the vertices A of the polyhedron
∆, and A1, . . . , AN are the components of the decomposition of the vertex A.

Proof. This theorem is a particular case of theorem 1 for tautological consistencies
of the tautological partitions of the polyhedra ∆1, . . . , ∆n.

Remark. Theorem 2 was initially found for the case when the polyhedra ∆1, . . . , ∆n

have integral vertices [4]. The proof in [4] is based in algebraic geometry and it
cannot be extended to the case of non-integral polyhedra. With certain extra
assumptions, theorem 2 was proven in [5]. These extra assumptions are crucial for
the proof and the proof in [5] cannot be carried over to the general case.

Let ∆ be a polyhedron in Rn, let A be one of its vertices, let L be the set of
the other vertices of this polyhedron ∆. For every vector h we can consider the
point (A + h) and define the polyhedron ∆(A + h) as the convex hull of the set
L ∪ (A + h). For example, by definition, the polyhedron ∆(A + 0) coincides with
the polyhedron ∆.

Now let ∆1, . . . , ∆n be a collection of polyhedra in Rn, and let Ai be one of
the vertices of the polyhedron ∆i. Let us consider the mixed volume V (h) of the
polyhedra ∆1, . . . , ∆i−1, ∆i(A + h), ∆i+1, . . . , ∆n as a function of the vector h.

Definition. Suppose that the function V (h) is differentiable by h at the point 0,
and let dV be its differential. We will call this differential the derivative of the mixed
volume by the vertex A of the polyhedron ∆i and we will denote this differential
by the symbol dAiVol (∆1, . . . , ∆n).

Theorem 3. The mixed volume of a developed collection of the polyhedra ∆1, . . . , ∆n

is differentiable with respect to every vertex of every polyhedron. The value of the
derivative dAiVol (∆1, . . . , ∆n) of the mixed volume by the vertex Ai of the poly-
hedron ∆i on the vector k ∈ Rn is given by the following formula:

dAiVol (∆1, . . . , ∆n)(k) =
1
n!

∑

A

(−1)nCA det(A1, . . . , Ai−1, k, Ai+1, . . . , An),

where the summation is conducted over vertices A of the polyhedron ∆ = ∆1 +
· · · + ∆n for which the i-th component of the decomposition coincides with the
vertex Ai, and Aj for j 6= i denotes the j-th component of the decomposition of
the vertex A.

Proof. Theorem 3 follows right away from the formula in theorem 2 for the mixed
volumes of a developed collection of polyhedra.
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§5. Product in a torus of points which
depend algebraically on parameters

In this paragraph we turn to algebraic geometry and make general remarks about
product of points, which algebraically depend on a parameter, in the group (C∗)n.
Theorem 3 in this paragraph plays an important role in further calculations.

Let f and g be two meromorphic functions on a compact algebraic curve. Let
us define the function R(f, g) of one complex variable t by the following formula:

(1) R(f, g)(t) =
∏

f(a)=t

g(a).

In this formula the product is taken over all the preimages a of the point t of the
map f , f(a) = t; the number g(a) enters in the product the number of times equal
to the multiplicity of the root a of the equation f(a) = t. The function R(f, g) is a
single-valued algebraic function, therefore it is a rational function. The main term
of the asymptotic of the function R(f, g) with t → ∞ can be defined by the main
terms of the asymptotics of the functions f and g at the poles of the function f .

Theorem 1. Let P be the set of poles of the function f and suppose that at the
points a in P we are given the main terms of the expansions of the functions f and
g. Namely, suppose that

f = c1(a)u−k1(a) + . . . , g = c2(a)u−k2(a) + . . . ,

where u is a local parameter on the curve in the neighbourhood of the point a,
u(a) = 0. Then the main term of the asymptotic of the function R(f, g) with
t → ∞ can be computed using these data. Namely, R(f, g) = ctk + . . . , where
k =

∑
a∈P

k2(a), and

c =
∏

a∈P

c
−k2(a)
1 (a)ck1(a)

2 (a)(−1)k2(a)+k1(a)k2(a).

Proof. In the neighbourhood of a pole a if the function f we have f = c1(a)u−k1(a)+
. . . , g = c2(a)u−k2(a) + . . . . For large t the equation f = t has k1(a) solutions near
the point a with the asymptotic u = t

− 1
k1(a) c1(a)

1
k1(a) ε + . . . , where ε is a root of

unity of degree k1(a). On these solutions

g ∼ t
k2(a)
k1(a) c1(a)−

k2(a)
k1(a) c2(a)εk2(a) + . . .

The product of the values of the function g over all the solutions of the equation
f = t lying in a neighbourhood of a point a is of the form

∏
t

k2(a)
k1(a) c1(a)−

k2(a)
k1(a) c2(a)εk2(a) + · · · =

tk2(a)c
−k2(a)
1 c

k1(a)
2 (−1)(k1(a)+1)k2(a) + . . .

(According to Vieta formula, the product of all the roots of unity of degree k1(a)
is equal to (−1)k1(a)+1; here we used this fact.) The main term of the asymptotic
of the function R(f, g)(t) is equal to the product of the found main terms of the
asymptotics over all the poles of the function f . Theorem 1 now follows.
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Theorem 2. Suppose that f and g are two meromorphic functions on a compact
algebraic curve. Suppose further that the support of the divisor of the function
f contains the support of the divisor of the function g (i.e. if at some point the
function g is 0 or ∞, then the function f at this point is also either 0 or ∞). Then
the equality R(f, g)(t) = ctk is true. The constant c and the degree k appearing in
this equality can be computed explicitly by the main terms of the functions f and
g at the poles of the function f .

Proof. According to theorem 2 the function R(f, g) has neither zeros nor poles in
C∗. Indeed, if the function f at a point a is equal to t and t 6= 0, t 6= ∞, then by
hypothesis the function g(a) is neither zero nor infinity as well. A rational function
having no zeros nor poles in C∗ is clearly equal to ctk. To determine the constants
c and k it is enough to use the computation in theorem 1 of the asymptotic of this
function as t →∞.

Suppose that π : X → (C∗)n is a meromorphic map of a compact curve X in
the complex torus (C∗)n with coordinates x1, . . . , xn. This map is given by a
collection of meromorphic functions fi = π∗xi. Let us begin with the definition
of the asymptotic power lines for the curve X = π(X) in the torus (C∗)n. Let
D be the union of the supports of the divisors of the functions f1, . . . , fn. In
the neighbourhood of a point a ∈ D let us choose a local parameter u such that
u(a) = 0. Suppose that c1(a)u−k1(a), . . . , cn(a)u−kn(a) are the main terms of the
Laurent series for the functions f1, . . . , fn in the neighbourhood of the point a. The
curve

(2) x1 = c1(a)u−k1(a), . . . , xn = cn(a)u−kn(a)

will be called the asymptotic power line of the curve X corresponding to the point
a ∈ D. The curve (2) depends on the point a but is independent of the choice of
the local parameter u.

In future we will deal with curves in the torus (C∗)n+1 having one selected
coordinate (C∗)n+1 = (C∗)n × C∗. The asymptotic line

x1 = c1(a)u−k1(a), . . . , xn+1(a) = cn+1(a)u−kn+1(a)

of the curve X will be called horizontal if the degree kn+1(a) is equal to 0. We will
say that along an asymptotic line the last coordinate approaches ∞ if the degree
kn+1(a) is positive.

Theorem 3. Suppose that X1 and X2 are two curves in (C∗)n × C∗. Suppose
further that these curves do not have horizontal asymptotes and have exactly the
same collection of asymptotic power lines on which the last coordinate approaches
infinity. Then for every value t0 of the parameter t the product in the group
(C∗)n×C∗ of all the points of intersection of the first curve X1 with the hyperplane
t = t0 and the product of all the points of intersection of the second curve X2 with
the same hyperplane t = t0 are equal.

The proof is obtained by applying theorem 2 to the normalizations X1 and X2 of
the curves X1 and X2. In the capacity of the function f we choose the coordinate t
and in the capacity of the function g we choose one by one all the other coordinates
in the torus (C∗)n. Since the curve X1 does not have horizontal asymptotes, none
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of the coordinates functions x1, . . . , xn can become zero or infinity when t 6= 0 and
t 6= ∞. Therefore theorem 2 is applicable and each of the coordinate functions
of the product of the points of intersection of the curve X1 with the hyperplane
t is the monomial ctk. The same is true for the curve X2. Moreover, the leading
terms of the asymptotic of the coordinate functions at the poles of the function
t on the curves X1 and X2 are exactly the same, because the curves X1 and X2

have the same asymptotic power lines on which the last coordinate t approaches
∞. Therefore theorem 3 follows from theorem 2.

Let H be an algebraic hypersurface in CN , let H = H1 ∪ · · · ∪Hk be the decom-
position of H into irreducible components, and let R1, . . . , Rk be the polynomials
in CN defining the irreducible equations of these components, i.e. Ri = 0 is the
irreducible equation for the component Hi. The functions Ri are defined up to
multiplication by a nonzero constant.

The map R : (CN \ H) → (C∗)k, where R = R1, . . . , Rk, will be called the
characteristic map of the complement CN \ H of the algebraic hypersurface H in
the space CN . The characteristic map is defined uniquely up to renumbering the
components of the map R and multiplying the map by a constant c ∈ (C∗)k.

Let us consider a multidimensional algebraic manifold X together with its mero-
morphic mapping π : X → CN in the N -dimensional complex space and its mero-
morphic mapping g : X → (C∗)n in the n-dimensional complex torus.

Let us assume that in CN there exist an algebraic hypersurface H and an alge-
braic subset Σ of codimension at least 2 such that

1) the manifold X together with its projection π define a ramified finite-sheeted
covering over the set U = (CN \H)\Σ. This means that every point in the set U has
a finite number of preimages under the mapping π, and this number of preimages,
counted with multiplicity, is constant and not equal to zero;

2) the meromorphic map g : X → (C∗)n is regular on the preimage π−1(U) of
the set U .

Suppose that the conditions 1) and 2) are satisfied. Let us define the function
R(π, g) on U by the following formula:

R(π, g)(x) =
∏

π(a)=x

g(a).

In this formula the product is taken over all the preimages a of the point x under
the mapping π, π(a) = x, and the element g(a) in the group (C∗)n enters in the
product (1) the number of times equal to the multiplicity of the root a of the
equation π(a) = x.

Theorem 4. The map R(π, g) : U → (C∗)n is regular. Suppose that R : (CN \
H) → (C∗)k is a characteristic map of the complement of the hypersurface H
in the space CN . Then there exist a constant c ∈ (C∗)n and a homomorphism
τ : (C∗)k → (C∗)n such that R(π, g) = cτ ◦R on the region U .

Proof. Every rational function with no zeros nor poles in the region CN \H is clearly
of the form c1R

m1
1 . . . Rmk

k , where c1 6= 0 and mi is an integer number. Furthermore,
every component Ri(π, g) of the product R(π, g) is a rational function in the region
U with no zeros nor poles in this region. By hypothesis the set Σ has codimension
at least 2, therefore the function Ri is regular in the set CN \H as well, moreover
has no zeros nor poles in this region. The theorem follows.
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§6. Product of roots of a system of equations

In this paragraph we consider the problem of calculating the product of the roots
of a sufficiently general system of equations with fixed Newton polyhedra. We show
that without making any assumptions about the choice of the Newton polyhedra,
this problem is just as difficult as the problem of finding the multidimensional
resultants (see, for example, [3]). Suppose that

(1) P1 = · · · = Pn = 0

is a system of equations in (C∗)n, where P1, . . . , Pn are Laurent polynomials whose
supports lie, correspondingly, in the Newton polyhedra ∆1, . . . , ∆n.

It is known [1] that almost all the systems (1) have exactly the same number of
solutions equal to n!Vol (∆1, . . . , ∆n), where Vol (∆1, . . . , ∆n) is the mixed volume
of the polyhedra ∆1, . . . , ∆n. Let us denote by M(P1, . . . , Pn) the point in the
torus (C∗)n which is equal to the product of roots of the system (1). By doing this,
we assume that the number of roots of the system (1), counted with multiplicity,
is equal to n!Vol (∆1, . . . , ∆n), and that every roots of the equation enters in the
product the same number of times as its multiplicity.

Remark. The function M(P1, . . . , Pn), assigning to the sufficiently general Laurent
polynomials P1, . . . , Pn the product of the roots in (C∗)n of the system of equations
(1), by definition depends on the Newton polyhedra ∆1, . . . , ∆n, because these
polyhedra enter in the definition of a sufficiently general system. So, when we talk
about the function M(P1, . . . , Pn) we always mean that some collection of polyhedra
∆1, . . . , ∆n is already fixed.

Our problem is to compute the function M(P1, . . . , Pn). We are going to describe
the full solution of this problem in the case when the collection of Newton polyhedra
∆1, . . . , ∆n is developed. But first let us consider a number of general notations,
definitions and comments.

Let P (x) =
∑

akxk, where x = x1, . . . , xn, k = k1, . . . , kn, xk = xk1
i . . . xkn

n ,
be a Laurent polynomial. With each integral polyhedron Γ ⊂ Rn and a Laurent
polynomial P let us associate a Laurent polynomial P (Γ) defined by the formula
P (Γ)(x) =

∑
ak(Γ)xk, where ak(Γ) = 0 if k /∈ Γ, and ak(Γ) = ak if k ∈ Γ.

Let us consider the system of equations P1 = · · · = Pn = 0 in which the Lau-
rent polynomial Pi have support inside the fixed polyhedra ∆i, Pi(x) =

∑
aikxk

where k ∈ ∆ (we do not assume here that the Newton polyhedron of the Laurent
polynomial Pi is equal to ∆i — the coefficients aik can be zero). To each face Γ
of the polyhedron ∆ = ∆1 + · · · + ∆n corresponds the collection of faces Γi ⊂ ∆i

such that Γ1 + · · · + Γn = Γ. Therefore with every face Γ of the polyhedron ∆ is
connected a “truncated system” of equations

(Γ) P1(Γ1) = · · · = Pn(Γn) = 0

in (C∗)n. If Γ is a characteristic face of the polyhedron ∆, then the system (Γ)
is, generally speaking, inconsistent. The system (1) is called ∆-nondegenerate at
infinity (relative to the fixed collection of polyhedra ∆1, . . . , ∆n) if the system (Γ)
is consistent for all proper faces Γ of the polyhedron ∆. According to Bernshtein’s
theorem [1] the number of roots of the system (1) is equal to n!Vol (∆1, . . . , ∆n) if
and only if the system (1) is ∆-nondegenerate at infinity.
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The space of all the systems of equations (1) with fixed polyhedra ∆1, . . . , ∆n

can be considered as the space CN = C|∆1|× · · · ×C|∆n|, where |∆i| is the number
of integral points in the polyhedron ∆i. To do this we have to assign to a system (1)
a point in CN whose collection of coordinates is the collection of all the coefficients
of all the Laurent polynomials Pi, this assignment is performed in such a way that
the coefficient aik of the Laurent polynomial Pi is equal to the coordinate in the
space C|∆i| of the corresponding point k ∈ ∆i.

Lemma 1. The closure BΓ, in the space CN of all the systems, of the set for which
the condition (Γ) is not satisfied is an irreducible algebraic manifold.

Proof. Dividing, if necessary, every equation of the system (Γ) on a certain mono-
mial, we can assume that every Laurent polynomial Pi(Γi) has a free term. The
original system (Γ) can be thus rewritten in the form

(Γ′) P̃1(Γ1)(x) = a1, . . . , P̃n(Γn)(x) = an, x ∈ (C∗)n,

where ai is the free term of the Laurent polynomial Pi(Γi) and P̃i(Γi) = Pi(Γi)−ai.
Let us denote by B′

Γ the algebraic manifold defined by the system (Γ′) in the space
CN × (C∗)n. The manifold B′

Γ is irreducible because it is biregularly equivalent to
the manifold CN−n × (C∗)n. The manifold BΓ is the closure of the projection of
the irreducible manifold B′

Γ. Therefore it is irreducible as well.

We are going to apply the results from the previous paragraph in the following
situation. Let the algebraic manifold X be the direct product (C∗)n × CN of the
torus (C∗)n and the space CN of all the systems whose equations have supports
in the given polyhedra ∆1, . . . , ∆n. The meromorphic maps f : X → CN and
g : X → (C∗)n are natural projections.

Let us introduce the following notation. If the manifold BΓ has dimension (n−1),
let us denote it by HΓ and let us define ΣΓ = ∅. If on the other hand the manifold
BΓ has dimension smaller than (n − 1), let us denote it by ΣΓ and let us define
HΓ = ∅. Denote by RΓ the polynomial defining the irreducible equation RΓ = 0
of the hypersurface HΓ (if HΓ = ∅, then RΓ = c 6= 0). Let H =

⋃
Γ⊂∆

HΓ and

Σ =
⋃

Γ⊂∆

ΣΓ, where the union is taken over all the characteristic faces Γ of the

polyhedron ∆ = ∆1 + · · · + ∆n. Applying theorem 4 from §5, we obtain the
following theorem.

Theorem 1. The product M(P1, . . . , Pn) of all the roots in (C∗)n of a system of
equations (1) gives a regular map of the region U = CN \H \Σ in the torus (C∗)n.
The map M(P1, . . . , Pn) can be regularly extended to the set CN \H. Every com-
ponent Mi(P1, . . . , Pn) of the map M(P1, . . . , Pn) is the product of some nonzero
constant ci with the product of some integral powers miΓ of the functions RΓ, i.e.
Mi(P1, . . . , Pn) = ci

∏
Γ⊂∆

RmiΓ
Γ . In particular, the product M(P1, . . . , Pn) does not

depend on the coefficients aik of the Laurent polynomials Pi which correspond to
the interior points k of the polyhedra ∆i.

Theorem 1 shows that the problem of calculating the product M(P1, . . . , Pn) of
roots of a system of equations is mainly reducible to the problem of calculating the
multidimensional resultants RΓ. This last problem is far from easy [3]. However
there is one broad class of systems for which nonetheless we have all the reasons
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to expect a simple answer. This is the class of systems for which the collection
of polyhedra ∆1, . . . , ∆n is developed. In this case every resultant RΓ is either
a constant or one of the coefficients of one of the Laurent polynomials Pi. Let
us consider this in more detail. Every characteristic face Γ of the polyhedron
∆ = ∆1 + · · ·+ ∆n for a developed collection of polyhedra is locked, i.e. there are
points among the components Γi of its decomposition Γ = Γ1 + · · ·+ Γn. Suppose
that these are the components with indices i1, . . . , im, and let ai1 , . . . , aim be the
coefficients of monomials corresponding to these points in the Laurent polynomials
Pi1 , . . . , Pim .

Lemma 2. If m = 1 then either RΓ = ai1 and HΓ is given by the equation ai1 = 0,
or HΓ is empty. If m > 1 then HΓ is empty a fortiori.

Proof. The condition of compatibility of the system (Γ) in the torus (C∗)n contains
the relations ai1 = · · · = aim

= 0, but, maybe, is not reducible to them. From this
lemma 2 follows.

§7. Reduction of the problem of finding
the product of roots to the simplest case

In this paragraph we will show how we can simplify the problem of finding
the product of roots of a system of equations with fixed Newton polyhedra. In
particular, we will reduce the problem of finding the product of roots of a system
of equations with developed Newton polyhedra to the simplest case of binomial
equations. For this purpose we introduce a new unknown — parameter t and make
the system homotopic in such a way that when t → ∞ it asymptotically breaks
down into a union of binomial systems.

We will need several new notations. Let ∆̃ be an integral polyhedron in Rn×R1,
let P =

∑
akxk be a Laurent polynomial in n variables, and let G be any integral

polyhedron in Rn. Let us define the Laurent polynomial P (G̃) =
∑

ak,l(G̃)xktl in
the following way: the coefficient ak,l will be equal to zero, if either the point (k, l)
is not an upper point of the polyhedron ∆̃, or the projection k ∈ Rn of this point
does not belong to the polyhedron G. In the opposite case, if the point (k, l) is an
upper point of the polyhedron ∆̃, and the point k ∈ G, we define ak,l(G̃) = ak,
where ak is the coefficient in the Laurent polynomial P in front of the monomial
xk.

Suppose that

(1) P1 = · · · = Pn = 0

is a system of equations in (C∗)n and suppose that the supports of the Laurent poly-
nomials P1, . . . , Pn belong to the fixed Newton polyhedra ∆1, . . . , ∆n. Assume that
the system (1) is nondegenerate at infinity relatively to the polyhedra ∆1, . . . , ∆n.

Suppose that ∆ = ∆1 + · · · + ∆n. Suppose further that ∆̃1, . . . , ∆̃n, and ∆̃ =
∆̃1+· · ·+∆̃n are integral polyhedra in Rn×R1, lying over the polyhedra ∆1, . . . , ∆n.
Suppose that R(∆1), . . . , R(∆n), R(∆) are the regular partitions of the polyhedra
∆1, . . . , ∆n, ∆ connected with the polyhedra ∆̃1, . . . , ∆̃n, ∆̃, and suppose that S
is the corresponding regular consistency of these partitions (see §2).

Theorem 1. Suppose that the following conditions are satisfied:
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1) for every polyhedron Γ ⊂ R(∆) such that dim Γ < n the system P1(Γ1) =
· · · = Pn(Γn) = 0 is inconsistent in the torus (C∗)n, where Γi is the i-th component
of the S-decomposition of the polyhedron Γ;

2) for every characteristic face G of the polyhedron ∆ the system P1(G̃1) = · · · =
Pn(G̃n) = 0 is inconsistent in the torus (C∗)n × (C∗), where Gi ⊂ ∆i is the i-th
component of the decomposition of the face G.

Then the following equality holds.

M(P1, . . . , Pn) =
∏

s∈S

M(P1(Γ1(s)), . . . , Pn(Γn(s)).

Proof. 1. Without loss of generality we can assume that all the systems of equations
which we consider in the proof are nondegenerate. Indeed, if the equality

M(P1, . . . , Pn) =
∏

s∈S

M(P1(Γ1(s)), . . . , Pn(Γn(s))

is proven for an open dense subset in the space of the systems satisfying the condi-
tions of the theorem, then by continuity it also holds for all the systems satisfying
the conditions of the theorem.

2. Let us consider the curve X1 defined in (C∗)n×C∗ by the system of equations

P1(∆̃1) = · · · = Pn(∆̃n) = 0.

3. The curve X1 does not have horizontal asymptots in (C∗)n×C∗. This follows
from the condition 2) of inconsistency of all the systems

P1(G̃1) = · · · = Pn(G̃n) = 0

for all the faces G of the polyhedron ∆ (see, for example, [6] about how to find the
asymptotic power lines of a curve).

4. Let us also consider the curve X2 which is the union over all the points s ∈ S
of the quasihomogeneous curves X(s) defined by the equations P1(Γ̃(s)) = · · · =
Pn(Γ̃n(s)) = 0.

5. The curves X1 and X2 =
⋃

s∈S

X(s) have exactly the same collection of as-

ymptotic lines on which the coordinate t approaches infinity. Indeed, this follows
from the theory of Newton polyhedra (see, for example, [6]) according to which the
asymptotic power lines of a curve are defined by the shortened systems

P1(Γ̃1(s)) = · · · = Pn(Γ̃n(s)) = 0.

The curve X2 by definition is the union of such asymptotic power lines of the curve
X1 on which the coordinate t approaches infinity.

6. According to theorem 3 from §5 for every t0 the products in the group
(C∗)n×C∗ of the points of intersection of the curve X1 with the hyperplane t = t0
and the points of intersection of the curve X2 with the same hyperplane t = t0 are
equal. Letting in this equality t = 1 and choosing projections on (C∗)n of two equal
products lying in (C∗)n × C∗, we obtain the equality

M(P1, . . . , Pn) =
∏

s∈S

M(P1(Γ1(s)), . . . , Pn(Γn(s)).
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The theorem is proven.

If the condition 1) of theorem 1 holds for almost all the systems of equations (1),
then with the condition 2) of theorem 2 the business is worse. Of course, for every
characteristic face G of the polyhedron ∆ the system

P1(G1) = · · · = Pn(Gn) = 0

in (C∗)n is almost always inconsistent. The point is that the polyhedra G1, . . . , Gn

can be parallelly translated in a (n−1)-dimensional subspace of Rn. In the result we
obtain an equivalent system with n equations which basically depends on a number
of unknowns which is smaller than n. However, if we add one more unknown t,
then the resulting system

P1(G̃1) = · · · = Pn(G̃n) = 0

can turn out, and, in the general case, does in fact turn out, consistent. The
condition 2, generally speaking, imposes considerable restrictions on the choice of
how to introduce the parameter t. These conditions will be observed if, for example,
not to introduce at all the parameter t in the monomials of the Laurent polynomials
Pi which correspond to the boundary points of the polyhedra ∆i. In other words,
if to choose the polyhedra ∆̃1, . . . , ∆̃ in Rn × R1 in such a way that the vertices
of the polyhedra ∆̃i, lying above the vertices of the polyhedra ∆i, belonged to
the hyperplane Rn × (0). For developed collections of polyhedra ∆1, . . . , ∆n the
condition 2) in theorem 1 is satisfied automatically. In the formulation of the next
corollary we suppose that the polyhedra ∆1, . . . , ∆n are the Newton polyhedra
of the Laurent polynomials P1, . . . , Pn, i.e. that the coefficients of the Laurent
polynomials Pi in front of monomials corresponding to the vertices of polyhedra ∆i

are nonzero.

Corollary 1. Let
P1 = · · · = Pn = 0

be a system of equations in (C∗)n nondegenerate at infinity, for which the col-

lection of Newton polyhedra ∆1, . . . , ∆n is developed. Suppose that ∆̃1, . . . , ∆̃n

are integral polyhedra lying over the polyhedra ∆1, . . . , ∆n, and suppose that
R(∆1), . . . ,R(∆n), R(∆) are the corresponding regular partitions with the regular
consistency S. Suppose that for every polyhedron Γ ⊂ R(∆) such that dimΓ < n
the system of equations P1(Γ1) = · · · = Pn(Γn) = 0 is inconsistent in the torus
(C∗)n, where Γi is the i-th component of the S-decomposition of the polyhedron
Γ. Then we have the following equality:

M(P1, . . . , Pn) =
∏

s∈S

M(P1(s), . . . , PN (s)).

Proof. In the hypothesis of corollary 1, the condition 2) of theorem 1 is satisfied
automatically. Indeed, by hypothesis, every characteristic face G of the polyhedron
∆ is locked. This means that among the components of its decomposition G =
G1 + · · · + Gn there is a component Gj = k which is a point — a vertex of the
polyhedron ∆j . By hypothesis, the coefficient ajk in front of the monomial xk in
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the Laurent polynomial Pj is not equal to zero. Therefore the equation Pj(G̃j) = 0
will have the from aijx

ktl = 0 and it will be inconsistent in the torus (C∗)n × C∗.
So corollary 1 follows from theorem 1.

Sometimes it is useful to apply corollary 1 not to the system of equations it-
self, but to a somewhat modified system. Suppose that ∆̃1, . . . , ∆̃n is a collec-
tion of polyhedra lying over the polyhedra ∆1 . . . , ∆n such that any consistent
collection Γ1(s), . . . , Γn(s) of polyhedra from the corresponding regular partitions
R(∆1), . . . ,R(∆n) is affinely independent. Let us associate with the partitions
R(∆1), . . . ,R(∆n) the collection of Laurent polynomials T1, . . . , Tn whose coeffi-
cients are defined by the following rule. The coefficient Tik of the Laurent poly-
nomial Ti in front of the monomial xk is equal to: zero, if the point k is not a
vertex of the partition R(∆i); the coefficient Pik in front of the monomial xk in the
Laurent polynomial Pi, if the point is a vertex of the polyhedron ∆i; one, in every
other case, i.e. if the point k is not a vertex of the polyhedron ∆i, but is one of the
vertices of the partition R(∆i) of this polyhedron.

Theorem 2. For a system of equations P1 = · · · = Pn = 0 in (C∗)n with devel-
oped collection of Newton polyhedra ∆1, . . . , ∆n, and for a collection of polyhedra
∆̃1, . . . , ∆̃n defining a regular partition of the polyhedra ∆1, . . . , ∆n in such a way
that any collection of consistent polyhedra Γ1(s), . . . , Γn(s) is affinely-independent,
the following formula holds:

M(P1, . . . , Pn) =
∏

s∈S

M(T1(Γ1(s)), . . . , Tn(Γn(s))).

Proof. 1. The products of the roots in (C∗)n of the systems of equations P1 = · · · =
Pn = 0 and T1 = · · · = Tn = 0 are the same. Indeed, these systems have exactly
the sane developed collection of Newton polyhedra and the same coefficients at the
vertices.

2. For every polyhedron Γ ⊂ R(∆) of dimension smaller than n among the com-
ponents Γ1(s), . . . , Γn(s) of its S-decomposition there is necessarily a vertex. This
follows from the affine independence of the polyhedra Γ1(s), . . . , Γn(s). Suppose
that Γi(s), one of such components, is an itegral point k ∈ ∆i. The coefficient Tik

in front of the monomial xk is nonzero by construction (it is equal to one, if k is
not a vertex of the polyhedron ∆i, or it is equal to the nonzero coefficient aik of
the Laurent polynomial Pi, if k is a vertex of the polyhedron ∆i). Therefore the
system T1(Γ1(s)) = · · · = Tn(Γn(s)) = 0 in (C∗)n is inconsistent. Using corollary 1
concludes the proof.

Theorem 2 reduces the problem of calculating M(P1, . . . , Pn) for systems of
equations with a developed collection of Newton polyhedra to the following two
problems.

Problem 1. The problem of calculating the product M(T1(s), . . . , Tn(s)) for bi-
nomial systems of equations.

In the situation of theorem 2 every consistent system T1(Γ1(s)) = · · · = Tn(Γn(s)) =
0 can be only binomial. From the condition of the affine independence it follows
that either there are points among the polyhedra Γi(s) and then the correspond-
ing of equations is inconsistent, or all the polyhedra Γ1(s), . . . , Γn(s) are segments.
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By construction the Laurent polynomials Ti(Γi(s)) in this case contain only two
monomials with nonzero coefficients which correspond to the vertices of the seg-
ment Γi(s). The problem of calculating the product of roots of a binomial system
of equations is not difficult. In fact, such a system can be even solved explicitly. It
is especially easy to find the components of the product up to a sign. However, we
need the complete answer, which must be also in a convenient form. Therefore we
will consider the problem 1 in detail in the following paragraphs.

Problem 2. The problem of calculating the products of the found elements M(T1(Γ1(s)), . . . , Tn(Γn(s)))
over all the consistent systems of binomial equations.

If the answer to the problem 1 is written in a convenient form, then, as we
will see later, the problem 2 can be easily solved with the help of the technique of
combinatorial coefficients (developed in §§1–4.)

§8. The product of preimages of a homomorphism

Let τ be a homomorphism of a commutative group G1 onto a commutative group
G2 and suppose that the kernel of τ contains a finite number N of elements. Using
the homomorphism τ let us construct the map M : G2 → G1 which associates to
every point a in the group G2 the element M(a) in the group G1 which is equal
to the product of all the preimages of the point a under the map τ . How does the
element M(a) depend on the point a and the homomorphism τ? In this paragraph
we discuss this question and give a full answer in the case of homomorphisms of
groups G1 and G2 isomorphic to a n-dimensional torus (C∗)n.

Lemma 1. For every point a ∈ G2, the N -th power of its preimage does not depend
on the choice of the preimage. The map a 7→ (τ−1(a))N defines a homomorphism
from the group G2 to the group G1.

Proof. Two different preimages b1 and b2 of the point a differ by a preimage q of
the element e, b1 = b2q, τ(q) = e. For every element q we have qN = e since by
hypothesis the group ker τ contains N elements. Moreover, if an element b1 is one
of the preimages of a point a1, and an element b2 is one of the preimages of a point
a2, then the element b1b2 is one of the preimages of the product a1a2. Therefore
the map a 7→ (τ−1(a))N is a homomorphism.

The following lemma is just as elementary.

Lemma 2. We have the equality M = (τ−1)N · C, where C is some element of
the group G1. Therefore for every pair of points a0, x ∈ G2 we have the equality
M(a0x) = M(a0)(τ−1(x))N .

Let us now compute the map (τ−1)N for a homomorphism τ from the torus
G1 = (C∗)n to another torus G2 = (C∗)n. Such homomorphism is given by an
integer-values real linear map Aτ from the Lie algebra g1 of the torus G1 to the
Lie algebra g2 of the torus G2. The condition of being integral-valued consists in
the fact that the operator Aτ maps the lattice of algebraic one-parameter groups
Zn ⊂ g1 of the first torus to the lattice of algebraic one-parameter groups of the
second torus. On real subspaces of the algebras g1 and g2 a Haar’s measure is
defined; it is normalized by the following condition: the value of the measure on a
parallelepiped generated by any basis in the lattice Zn of one-parameter groups is
equal to one.

It is easy to check the following
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Lemma 3. The homomorphism τ : (C∗)n → (C∗)n has a finite number of preim-
ages if and only if the linear map Aτ : g1 → g2 is nondegenerate. The number
N of preimages of the homomorphism τ is equal to | detAτ | = A∗τµ2/µ1. The
homomorphism (τ−1)N : G2 → G1 is given by the linear map

| detAτ |A−1
τ : g2 → g1.

Let us now write the map (τ−1)N in coordinates. Let us fix the representation
of the tori G1 and G2 in the form of the Descartes products of the groups C∗ with
some fixed characters (coordinates) on them.

After this fixation every point x of the torus G1 is defined by a collection of
nonzero numbers x = x1, . . . , xn; every point c of the torus G2 is defined by a
collection of nonzero numbers c = c1, . . . , cn; the homomorphism τ is defined by a
collection of characters χ1, . . . , χn, where τ(x) = χ1(x), . . . , χn(x).

To the characters χ1, . . . , χn correspond integral points k1, . . . , kn in the lattice
of characters Zn such that χi(x) = xki = xki1

1 · · ·xkin
n , where ki = ki1, . . . , kin,

i = 1, . . . , n. The kernel of the homomorphism τ contains | detK| elements, where
K is the matrix with the elements kij . We want to calculate the element (τ−1(c))N

in the group G1. Let us fix the character χ = xkn+1 , kn+1 = kn+1,1, . . . , kn+1,n,
we will calculate the number χ((τ−1(c))N . It is clear that the calculation of such
number for every character χ is equivalent to the calculation of the point (τ−1(c))N .
The following lemma 4 is a reformulation of lemma 3. In this reformulation we use
the coordinates and instead of the map Aτ we use the adjoint map K = A∗τ .

Lemma 4. The number χ(τ−1(c))| det K| is equal to

c
det(kn+1,k2,...,kn)sign det(K)
1 . . . cdet(k1,...,kn−1,kn+1)sign det(K)

n ,

where τ = xk1 , . . . , xkn , χ = xkn+1 , c = c1, . . . , cn.

Let us return to the general situation. To apply lemma 2 we need to calculate
M(a0) for some fixed point a0. For points a0 ∈ G2 for which a2

0 = e the problem is
significantly simpler.

In the groups G1 and G2 let us consider the subgroups R1 and R2 consisting of
the elements whose square is equal to e. The intersection of the group R1 with the
kernel of the homomorphism τ contains a finite number of elements.

Let τ0 : R1 → R2 be the restriction of the homomorphism τ on the group R1. The
homomorphism τ0, generally speaking, is not “onto.” Let us denote by Trace τ0(a)
the product of all the preimages of a point a ∈ R2 under the homomorphism τ0. If
the point a does not have any preimages, then let Trace τ0(a) = e.

Lemma 5. For any point a ∈ R2 the following equality holds:

Trace τ0(a) = M(a).

Proof. The set τ−1(a) is invariant with respect to the action of involution G1 →
G−1

1 . Indeed, if τ(b) belongs to the group R2, then τ(b−1) = τ(b) since every
element in the group R2 is equal to its inverse element. The set τ−1

0 (a) if fixed by
the action of involution G1 → G−1

1 since every element in the group R1 is equal to
its inverse element. Furthermore, if the elements b and b−1 in the set τ−1(a) do
not coincide, then under multiplication they cancel each other.
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Lemma 6. Let R be a finite abelian group such that all of its elements have order
two. Then if the number of elements in the group R is not equal to two, then the
product if all the elements in the group R is equal to e. If this group contains
exactly two elements, then the product is equal to the non-identity element of this
group.

Proof. The group R is isomorphic to a group Zm
2 . Therefore if the group R contains

more than two elements, then it can be represented in the form of the product
R = P ×Q of two non-identity groups P and Q. It is clear that

∏

a∈R

a =

(∏

b∈P

b

)q

×

∏

c∈Q

c




p

,

where p and q are correspondingly the numbers of elements in the groups P and
Q. In this case the numbers p and q are even, while all the elements b and c have
order 2. Lemma 6 is proven.

Suppose that the groups R1 and R2 are isomorphic to the group Zm
2 , and suppose

that τ : R1 → R2 is a homomorphism of these groups. Using the homomorphism τ
let us construct the map Trace τ : R2 → R1 assigning to each point a the product
of its preimages. We do not assume here that the map τ is “onto.” The product
of an empty set of elements in the definition of the map Trace τ we will consider
equal to e.

Lemma 7. For a homomorphism τ : R1 → R2, the map Trace τ : R2 → R1 is
computed in the following way:

1) if ker τ = e, then Trace τ = τ−1;
2) if the group ker τ contains more than two elements, then Trace τ = e;
3) if the group ker τ contains exactly two elements, then on the image of the

group R1 the map Trace τ is equal to the non-identity element of the group ker τ ,
and on the complement to the image of the group R1 the map Trace τ is equal to
the identity element e.

The proof is obtained by applying lemma 6 to the group R = ker τ .
In the calculations in §11 we will need the case when the groups R1 and R2

are the subgroups of standard n-dimensional tori G1 and G2 which contain all the
elements of order two in these tori. We will identify the elements x ∈ R1 and c ∈ R2

of these groups with the points x = x1, . . . , xn, c = c1, . . . , cn, all coordinates of
which are equal to ±1. To every homomorphism τ : G1 → G2 of the standard tori
G1 and G2 corresponds its restriction on the group R1 which we will also denote
by the same symbol τ , τ : R1 → R2. In the calculations in §11 we will need the
following

Definition 1. Let us denote by F(k1, . . . , kn) the function which assigns to a
collection of n integral points k1, . . . , kn in the lattice Zn the element of the group
R1 ⊂ (C∗)n defined by the formula

F(k1, . . . , kn) = Trace τ (−1).

In this formula τ is the restriction on the group R1 of the homomorphism τ : (C∗)n →
(C∗)n given by the formulas c1 = xk1 , . . . , cn = xkn , and −1 is the element of the
group R2 ⊂ (C∗)n all of whose components are equal to −1, i.e. −1 = (−1, . . . ,−1).
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Lemma 7 contains the complete description of the function F(k1, . . . , kn). The
coordinates of a point F(k1, . . . , kn) will be written explicitly later in corollary 1.

Let us now turn to writing the map Trace τ in coordinates. The restriction of
the character xk of the group (C∗)n on the subgroup R1 depends not on the vector
k ∈ Zn itself, but on its image in the quotient group Zn/2Zn. Let τ : R1 → R2

be the restriction of the homomorphism τ : → (C∗)n given the formulas c1 =
xk1 , . . . , cn = xkn . To describe the point Trace τ let us consider one more character
xkn+1 and let us compute its value on this point. We will consider the vectors
k1, . . . , kn, kn+1 as elements of the vector space Zn/2Zn over the field Z/2Z.

The following lemma 8 is the coordinate description of lemma 7.

Lemma 8. For a homomorphism τ : R1 → R2 given by the collection of characters
k1, . . . , kn, for any character kn+1 on the group R1, and for any point c ∈ R2 the
value of the character kn+1 on the point Trace τ (c) is computed as follows:

1) if the rank of the vectors k1, . . . , kn+1 in the vector space Zn/2Zn over the
field Z/2Z is smaller than n, then kn+1(Trace τ (c)) = 1;

2) if the vectors k1, . . . , kn+1 in Zn/2Zn are related by the unique relation λ1k1+
· · ·+ λn+1kn+1 = 0, λi ∈ Z/2Z, then

kn+1(Trace τ (c)) = (−1)cλ1
1 . . . cλn

n (−1)λn+1 ,

where c1, . . . , cn are the coordinates of the point c.

It is sufficient to calculate Trace τ (c) for only one point c (see lemma 2). From
lemma 8 it is clear that the preimage of the point c = −1 depends on the characters
k1, . . . , kn+1 in the most symmetrical way. We will write the answer separately for
this point.

For the formulation of the answer we will need the definition of a remarkable
function F of (n + 1) integral vectors k1, . . . , kn, kn+1 ∈ Zn with values in Z/2Z.
This function F does not depend on the vectors k1, . . . , kn, kn+1 themselves, but
rather on their classes k1, . . . , kn, kn+1 modulo 2. In the next paragraph we will
describe more explicitly the role of the function F in linear algebra over the field
Z/2Z.

Definition 2.

F (k1, . . . , kn, kn+1) =





0, if the rank of the system of vectors k1, . . . , kn, kn+1

over the field Z/2Z is not equal to n,

(λ1 + · · ·+ λn+1 + 1) mod 2, if the vectors

k1, . . . , kn, kn+1 are related over the field Z/2Z
by a unique relation
λ1k1 + · · ·+ λn+1kn+1 ≡ 0 mod 2.

Corollary 1. Suppose that a homomorphism τ is given by the collection of char-
acters k1, . . . , kn. Then kn+1(F(k1, . . . , kn)) = (−1)F (k1,...,kn,kn+1).

Let us consider the system of binomial equations in (C∗)n

(1)
Q1x

q1 + R1x
r1 = 0,

...
Qnxqn + Rnxrn = 0,
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where Qi, Ri are nonzero complex numbers, qi, ri are vectors in the lattice Zn,
x = x1, . . . , xn, xqi and xri are monomials. Denote by det K the determinant of
the matrix composed of the vectors ki = qi− ri. Suppose that k ∈ Zn is an integral
vector and χk = xk is the character of the torus (C∗)n which corresponds to this
vector.

Theorem 1. Suppose that the vectors ki are linearly independent. Then the value
of the character χk on the product in the group (C∗)n of all the solutions aj of the
system (1) is calculated by the following formula:

χk(
∏

aj) = (−1)F (k1,...,kn,k)

(
R1

Q1

)det(k,k2,...,kn)sign det K

. . .

(
Rn

Qn

)det(k1,...,kn−1,k)sign det K

.

Proof. The original system of the binomial equations can be rewritten in the form

xk1 = −R1

Q1
,

...
xkn = −Rn

Qn
.

Thus, in the theorem we are talking about calculating the value of the charac-
ter kn+1 = k on the product of all the preimages of the point (−1)c, where

c =
R1

Q1
, . . . ,

Rn

Qn
, under the homomorphism τ given by the collection of charac-

ters k1, . . . , kn. All we need to do is to use lemma 2 for a0 = −1, lemma 4, and
corollary 1.

Remark. For a particular symmetric system (1), for which all the coefficients Qi

and Ri are equal to 1, it is required to compute the product of the preimages of
the point c = −1. This explains why the value of the product M(a) is particularly
simple for the point a = −1.

§9. Analog of the determinant for (n + 1) vectors
in a n-dimensional space over the field Z/2Z

A determinant of n vectors in a n-dimensional linear space over the field Z/2Z
is the unique nonzero multilinear function of n vectors (taking values in the field
Z/2Z) which is invariant relative to linear transformations and equal to zero if the
rank of n vectors is smaller than n.

It turns out that there exists a unique function of (n + 1) vectors in a n-
dimensional space over the field Z/2Z which possesses exactly the same properties.
In this paragraph we discuss this function in detail. We encountered it in theorem 1
of the previous paragraph, it appears in Parshin-Kato* theory ([2], [10]), it will be
required to us in the formulation of the theorem in §11. Let us repeat the definition
of this function.

*As I found from A. N. Parshin, the function F and the related linear algebra weren’t know
to him, however exactly the same function occurs in the symbols he created.
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Definition. Let us denote by F the following function of (n + 1) vectors in a
n-dimensional linear space over the field Z/2Z, F takes values in Z/2Z:
a) the function F (k1, . . . , kn+1) is equal to zero, if the rank of the collection of

vectors k1, . . . , kn+1 is smaller than n;
b) the function F (k1, . . . , kn+1) is equal to λ1 + · · · + λn+1 + 1, if the vectors

k1, . . . , kn+1 are related by the unique relation λ1k1 + · · ·+ λn+1kn+1 = 0.

Lemma 1. The function F

1) is GLn(Z/2Z)-invariant, i.e. for any linear transformation A ∈ GLn(Z/2Z) the
equality F (k1, . . . , kn+1) = F (Ak1, . . . , Akn+1) holds;

2) is equal to zero on the collections of vectors k1, . . . , kn+1 whose rank is smaller
than n;

3) is multilinear.

Proof. The properties 1 and 2 are basically contained in the definition of the func-
tion F . For the proof of the property 3, it is sufficient to show that for every fixed
collection of vectors k1, . . . , kn the function ϕ(k) = F (k1, . . . , kn, k) is linear.

The rank of the system of vectors k1, . . . , kn can be equal to n, be equal to n−1,
or be smaller than n− 1. Let us consider these three cases separately.

1. The rank is equal to n. In this case the vectors k1, . . . , kn form a basis in the
linear space and the vector k can be represented in a unique way as their linear
combination k = λ1k1 + · · ·+λnkn. Then ϕ(k) = F (k1, . . . , kn, k) = (λ1 + · · ·+λn)
mod 2 and so is a linear function of k.

2. The rank is equal to n − 1. In this case the function ϕ vanishes on the
hyperplane Λ spanned by the vectors k1, . . . , kn, and it assumes a constant value
on the complement to this hyperplane. Indeed, if k ∈ Λ, then the rank of the
system of vectors k1, . . . , kn, k is smaller than n, so the function F (k1, . . . , kn, k)
is equal to zero. If k 6∈ Λ, then the vectors are related by a unique relation not
depending on the vector k, hence the function ϕ is constant on the complement to
the hyperplane Λ. The function which possesses such property in a linear space
over the field Z/2Z is clearly linear.

3. The rank is smaller than n − 1. In this case the function ϕ(k) is identically
equal to zero, and, therefore, it is a linear function of k.

Lemma 2. There exists a unique nonzero function F which satisfies the properties
1–3 of lemma 1.

Proof. It is enough to define a multilinear function on all collections ei1 , . . . , ein+1

of vectors from the standard basis e1, . . . , en. From the property 2 it follows that
the function can be not equal to zero only if in the collection all the vectors except
for two are different. From the property 1 it follows that on all such collections the
function F takes the same value. If this value is equal to zero, then the function
F is zero. The only other remaining possibility is that this value is equal to one.
This possibility corresponds to the function F defined above, which according to
lemma 1 is indeed GLn(Z/2Z)-invariant.

Lemma 3. In coordinates the function F can be expressed by the formula

F (k1, . . . , kn+1) =
∑

j>i

∆ij ,
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where ∆ij is the determinant of the (n × n) matrix whose first (n − 1) columns
represent the sequence of vectors k1, . . . , kn+1 from which the vectors with indices i
and j are deleted, and the last column is the coordinate-wise product of the vectors
ki and kj .

Proof. The function
∑
j>i

∆ij is a multilinear function of vectors k1, . . . , kn+1. On

collections of vectors from the standard basis it clearly coincides with the function
F .

Let us mention another explicit formula for the function F .
Let us begin with the explicit description of the relationship between (n + 1)

vectors in a n-dimensional space. To define an ordered collection of (n + 1) vectors
k1, . . . , kn+1 in the n-dimensional linear space Ln is the same thing as to define a
linear map A : Ln+1 → Ln for which A(ei) = ki, where e1, . . . , en+1 is the standard
basis in Ln+1.

The dual map A∗ : Ln∗ → L(n+1)∗ is given by the ordered collection of n covectors
— the images of the basis covectors v∗i . Using the collection of covectors A∗v∗i we
can define a vector λ ∈ Ln+1 which is the vector product of these vectors. (To
define the vector product we need a volume form. We assume that the volume
form is fixed in such a way that its value ω(e∗1, . . . , e

∗
n+1) on the dual basis is equal

to 1. The vector λ is now defined by the relation 〈λ, a∗〉 = ω(a∗ ∧Av∗1 ∧ · · · ∧Av∗n),
which should be true for any covector a∗.)

In the basis e1, . . . , en+1 the i-th component of the vector λ is equal to the
determinant which is obtained by removing the i-th row from the matrix composed
of the vectors k1, . . . , kn+1. We have the following obvious relation:

∑
∆iki = 0.

Lemma 4. The function
∏

1≤i≤n+1

(1+∆i) is equal to zero if the vectors k1, . . . , kn+1

generate the space Ln. In the opposite case this function is equal to one.

Proof. The minors ∆i, i = 1, . . . , (n+1), are the coordinates of the vector product of
the vectors A∗v1, . . . , A

∗vn (rows of the matrix composed of columns k1, . . . , kn+1).
The vectors generate the space if and only if at least one of the minors ∆i is not
equal to zero (and therefore it is equal to one).

Lemma 5. The following formula is true:

F (k1, . . . , kn+1) = (1 + ∆1 + · · ·+ ∆n+1) +
∏

1≤i≤n+1

(1 + ∆i).

Proof. If the vectors k1, . . . , kn+1 do not generate the whole space Ln, then all the
minors ∆i are equal to zero and F = 1 + 1 = 0 (everything is happening in the
field Z/2Z). If the vectors k1, . . . , kn+1 do generate the whole space, then they are
related by a unique relation

∑
∆iki = 0. In this case

∏
(1+∆i) = 0 (see lemma 4).

By the definition of the function F we have

F (k1, . . . kn+1) = (1 + ∆1 + · · ·+ ∆n+1),

just as was required to prove.
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§10. Polyhomomorphisms and representation of functions
of a parallelepiped through functions of its vertices

Is it possible to represent a function of a parallelepiped as a linear combination of
functions of its vertices? In the general case, the answer is, of course, negative, but
sometimes it is possible to do so. For us it is especially important that it is possible
to do so for the function which assigns to the parallelepiped ∆ = I1 + · · ·+ In the
product of roots of the system of binomial equations whose Newton polyhedra are
the segments I1, . . . , In. In this paragraph we will first discuss the general question
of polarization of a map f : Gn → G1 from a cartesian power of one abelian group
to another abelian group. Then we are going to apply the result to the question in
hand.

The map f : Gn → G1 from the direct sum Gn = G + · · ·+ G of n copies of the
abelian group G to the abelian group G1 will be called a polyhomomorphism if for
every i, 1 ≤ i ≤ n, and every fixed collection {aj} of elements in the group G, i 6= j,
1 ≤ j ≤ n, the restriction h(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an) of the map f on
the i-th component is a homomorphism, i.e. h(x + y) = h(x) + h(y). Multilinear
maps between linear spaces are examples of polyhomomorphisms. In this section
we give a description of polyhomomorphisms in terms of difference equations.

Let us consider the following operators in the space of maps from n-th power of
the group G to the group G1.

The shift operator Li
a in the i-th coordinate by a fixed element a ∈ G. This opera-

tor translates the map ϕ(x1, . . . , xn) to the map ϕ(x1, . . . , xi−1, xi+a, xi+1, . . . , xn).
The shift operators for different elements a and indices i commute among them-
selves. The relation Li

a+b = Li
a + Li

b is true.
The finite difference operator Di

a in the i-th coordinate. This operator is defined
by the formula Di

a = Li
a − I, where I is the identity operator.

Lemma 1. The following equality holds:

Di
a+b = Di

a + Di
b + Di

a ◦Di
b.

Proof. We have:

Di
a ◦Di

b = (Li
a − I) ◦ (Li

b − I) = Li
a+b − Li

a − Li
b + I = Di

a+b −Di
a −Di

b.

Definition. The map ϕ : Gn → G1 will be called polarizable if for every collection
of elements a1, . . . , an the map D1

a1
◦ · · · ◦Dn

an
ϕ translates the whole group Gn in

the same element of the group G1. The map f : Gn → G1 defined by the formula
f(a1, . . . , an) = D1

a1
◦ · · · ◦Dn

an
ϕ will be the polarization of the polarizable map ϕ.

We will be interested in the following problem.

Problem. Is the given map f : Gn → G1 a polarization of some polarizable map ϕ?
If it is, then find all the maps ϕ for which this is true.

The following theorem gives the answer to the question above.

Theorem 1. The map f : Gn → G1 is a polarization of some polarizable map
ϕ : Gn → G1 if and only if the map f is a polyhomomorphism and the map ϕ is of
the form

ϕ = f +
∑

1≤i≤n

ϕi,
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where ϕi is any map from Gn to G1 which does not depend on the i-th coordinate.

Proof. 1. If the map ϕ : Gn → G1 is polarizable, then its polarization is a polyho-
momorphism. Indeed, let us show, for example, that the map h(x) = D1

x ◦ D2
a2
◦

· · · ◦Dn
an

ϕ is a homomorphism, i.e. h(x + y) = h(x) + h(y).
We have h(x + y) = D1

x+y ◦ · · · ◦ Dn
an

ϕ. According to lemma 1, h(x + y) =
h(x) + h(y) + D1

x ◦D1
y ◦D2

a2
◦ · · · ◦Dn

an
ϕ. By hypothesis the map ϕ is polarizable.

Therefore the map P = D1
y ◦ D2

a2
◦ · · · ◦ Dn

an
ϕ is constant, and so D1

xP = 0, as
required.

2. If the map f is a polyhomomorphism, then D1
a1
◦· · ·◦Dn

an
f = f(a1, . . . , an). In-

deed, Dn
an

f(x1, . . . , xn) = f(x1, . . . , xn−1, xn+an)−f(x1, . . . , xn−1, xn) = f(x1, . . . , xn−1, an).
Repeating this argument, we will get the required equality.

3. The polarization of the sum
∑

1≤i≤n

ϕi, in which the map ϕi does not depend

on the i-th coordinate, is identically zero. Indeed, let us check, for example, that
the polarization of the map ϕ1 : Gn → G1, which does not depend on the first
coordinate, is identically equal to zero. We have: Da1 ◦ · · · ◦Danϕ1 = Da2 ◦ · · · ◦
Dan

(Da1ϕ1). But (Da1ϕ1) ≡ 0 since ϕ1 does not depend on the first coordinate.
The statement is proved.

4. If the polarization of the map ϕ is identically equal to zero, then ϕ =
∑

1≤i≤n

ϕi,

where the map ϕi does not depend on the i-th coordinate. Indeed, if D1
a1
◦ · · · ◦

Dn
an

ϕ ≡ 0, then D1
a1
◦ · · · ◦ Dn

an
ϕ(0, . . . , 0) = 0. The last equality means that

ϕ(a1, . . . , an) +
∑
I

(−1)#IϕI = 0, where I is a non-empty subset of a segment

(1, . . . , n) of natural numbers; #I is the number of points in the subset I; and
ϕI(x1, . . . , xn) = ϕ(y1, . . . , yn), where yi = xi if i 6∈ I, and yi = 0 if i ∈ I. ¿From
this it follows that the map ϕ is a linear combination of the maps ϕI , each of which
does not depend on coordinates with indices i ∈ I. This concludes the proof of the
statement.

The theorem now follows from the steps 1–4.

Let us come back to geometry. Let I1, . . . , In be n transversal segments in
Rn, and let ∆ = I1 + · · · + In be their Minkowski sum. Each vertex A of the
parallelepiped ∆ is the sum of some vertices Ai of the segments Ii: A = A1+· · ·+An.
In each segment Ii let us fix one of its vertices li which we are going to call left; the
second vertex hi of this segment will be called right and it has the form hi = li +ai,
where ai is the vector from the first vertex to the second.

Suppose that ϕ is any map from a collection of n vectors in the space Rn to an
abelian group G1.

Lemma 2. The value of the map D1
a1
◦ · · · ◦ Dn

an
ϕ on the collection of vectors

l1, . . . , ln is equal to

(−1)nsign det(a1, . . . , an)
∑

A∈∆

CAϕ(A1, . . . , An),

where the summation is conducted over all the vertices A = A1 + · · · + An of the
parallelepiped ∆.

Proof. The value of the map D1
a1
◦ · · · ◦Dn

an
ϕ on the collection of vectors l1, . . . , ln

is clearly equal to ∑

A∈∆

(−1)L(A)ϕ(A1, . . . , An),
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where L(A) is the number of left vertices of the segments I1, . . . , In among the points
A1, . . . , An such that

∑
Ai = A. For every vertex A the equality H(A)+L(A) = n

holds, where H(A) is the number of right vertices of the segments I1, . . . , In among
the points A1, . . . , An such that

∑
Ai = A. Lemma 2 now follows from theorem 1 in

§1 where we calculated the combinatorial coefficients of a collection of n transversal
segments.

Let us fix an integral vector k ∈ Zn. For any n integral vectors k1, . . . , kn let
us denote by Fk(k1, . . . , kn) the element F (k1, . . . , kn, k) in the field Z/2Z (see §9).
Let us consider the parallelepiped ∆ in Rn with integral vertices.

Definition. The Fk-volume of the integral parallelepiped ∆ is the following num-
ber Fk(∆). Let us fix any vertex Q of the polyhedron ∆ and denote by Q1, . . . , Qn

the n neighbouring vertices of this parallelepiped. By the Fk-volume Fk(∆) of the
integral parallelepiped ∆ we will call the element in the field Z/2Z which is equal
to Fk(Q1 −Q, . . . , Qn −Q).

The element Fk(∆) is well-defined, i.e. it does not depend on the choice of the
vertex Q and the order of a neighbouring vertex. Indeed, the function Fk does not
change under a permutation of vectors or multiplication of certain vectors by (−1)
(exactly as the function the absolute value of the determinant).

Lemma 3. The Fk-volume of an integral parallelepiped ∆ = I1 + · · ·+ In, where
Ii are transversal integral segments, is computed by the following formula:

Fk(∆) ≡
∑

A∈∆

(−1)nCAFk(A1, . . . , An) mod 2 ≡
∑

A∈∆

Fk(A1, . . . , An) mod 2.

Proof. The function ϕ which assigns to n vectors k1, . . . , kn in the space Zn/2Zn

the element Fk(k1, . . . , km) of the field Zn/2Zn is a multilinear map. According
to theorem 1 the map D1

a1
◦ · · · ◦Dn

an
ϕ is constant and is equal to Fk(a1, . . . , an).

According to lemma 2 we have

Fk(∆) = (−1)n
∑

A∈∆

CAFk(A1, . . . , An) mod 2,

as required to prove.

Now we can rewrite the answer in the theorem 1 from §8. It will be useful to
change the notation a bit as well. In (C∗)n let us consider the system of binomial
equations

(1)

P1(q1)xq1 + P1(r1)xr−1 = 0,
...

Pn(qn)xqn + Pn(rn)xrn = 0,

in which Pi(qi) and Pi(ri) are nonzero complex numbers. Let us denote by Ii the
segment with vertices qi and ri. (In the formula below we will denote by the symbol
Ai any of the vertices qi, ri of the segment Ii, and we will denote by the symbol
Pi(Ai) its corresponding combinatorial coefficient Pi(qi) or Pi(ri).) Let us denote
by ∆ the Minkowski sum of the segments I1, . . . , In.
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Theorem 2. Suppose that the parallelepiped ∆ has the full dimensionality, i.e.
n = dim∆. Then the value of the character χk on the product of roots aj of the
system (1) is computed by the following formula:

χk(
∏

(aj)) =
∏

A∈∆

((−1)F (A1,...,An,k)P1(A1)− det(k,A2,...,An) . . .

Pn(An)− det(A1,...,An−1,k))(−1)nCA ,

where the product is conducted over all the vertices A of the parallelepiped ∆,
A = A1 + · · · + An, Ai ∈ Ii; and CA is the combinatorial coefficient at the vertex
A.

Proof. The required formula can be obtained by rewriting the formula from theo-
rem 1 in §8 using lemma 3.

§11. Product of roots of a system of
equations with general Newton polyhedra

In this paragraph we finish solving the problem of calculating the product of
roots of a system of equations with a developed collection of Newton polyhedra.
The answer is given in two completely dissimilar forms. In the first one the answer
is expressed as a product of certain expressions which are called Parshin symbols.
The product is taken over all the vertices of the sum of Newton polyhedra which
correspond to the equations of the system. Every Parshin symbol enters in the
product in the power equal, up to the sign, to the combinatorial coefficient of the
corresponding vertex. In the second form, the answer, up to signs, is expressed as
the product of a system of coefficients corresponding to the Laurent polynomials;
the product is taken over all the vertices of all the Newton polyhedra. Every
coefficient of a Laurent polynomial enters in the product in the vector power equal,
up to multiplication by (−n!), to the derivative of the mixed volume of the Newton
polyhedra by the corresponding vertex.

Suppose that

(1) P1 = · · · = Pn = 0

is a system of equations in (C∗)n for which the collection of Newton polyhedra
∆1, . . . , ∆n is developed. Let ∆ = ∆1+· · ·+∆n be the sum of these polyhedra. Let
us fix a character χk : (C∗)n → C∗ and let us compute the value of the character χk

on the point M(P1, . . . , Pn), the product of all the roots of the system of equations
(1).

We will need the following definition.

Definition. For every vertex A of the polyhedron ∆ we define the Parshin-Kato
symbol [P1, . . . , Pn, χk]A of the Laurent polynomials P1, . . . , Pn and the character
χk in the following way. Let A = A1 + · · ·+ An be the decomposition of the vertex
A ∈ ∆, Ai ∈ ∆i. Define

[P1, . . . , Pn, χk]A =

= (−1)F (A1,...,An,k)(P1(A1))− det(k,A2,...,An) . . . (Pn(An))− det(A1,...,An−1,k).
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Theorem 1. For the system of equations (1) the value of the character χk on the
product M(P1, . . . , Pn) of roots of the system is computed by

χk(M(P1, . . . , Pn)) =
∏

A∈∆

([P1, . . . , Pn, χk]A)(−1)nCA ,

where the product is conducted over all the vertices A of the polyhedron ∆ =
∆1 + · · ·+ ∆n, and CA is the combinatorial coefficient at the vertex A.

Proof. Let us use theorem 2 in §7. We have the equality

M(P1, . . . , Pn) =
∏

s∈S

M(T1(Γ1(s)), . . . , Tn(Γn(s))).

Theorem 1 is already proven for binomial systems of equations (see theorem 2 in
§10). Let us use this fact.

χk(
∏

s∈S

M(T1(Γ1(s)), . . . , Tn(Γn(s)))) =

=
∏

s∈S

∏

A∈Γ(s)

[T1(Γ1(s)), . . . , Tn(Γn(s)), χk](−1)nCA(Γ,S)
A ,

where the inner product is conducted over all the vertices A of the parallelepiped
Γ(s). Furthermore, for every vertex A of the partitionR(∆) the symbol [T1(Γ1(s)), . . . , Tn(Γn(s)), χk]
does not depend on the choice of the polyhedron Γ(s) containing the vertex A. Let
us denote this symbol by [T1, . . . , Tn, χk]A. We have

χk(M(P1, . . . , Pn)) =
∏

A∈R(∆)

[T1, . . . , Tn, χk]
(−1)nP

A∈Γ⊂R(∆) CA(Γ,S)

A .

From theorem 3 and theorem 4 in §3 it follows that
∑

A∈Γ⊂R(∆)

CA(Γ, S) = 0 for all

the vertices A in the partition R(∆) which are not the vertices of the polyhedron ∆,
and

∑
A∈Γ⊂R(∆)

CA(Γ, S) = CA for all the vertices A of the polyhedron ∆. Therefore

χk(M(P1, . . . , Pn)) =
∏

A∈∆

[T1, . . . , Tn, χk](−1)nCA

A .

To conclude the proof we only need to remark that at every vertex A of the poly-
hedron ∆ by definition we have the equality

[T1, . . . , Tn, χk]A = [P1, . . . , Pn, χk]A.

The theorem is proven.

Let us now rewrite the formula for the element M(P1, . . . , Pn) in a completely
different form. For this we will need the notion from §4 of the derivatives of the
mixed volume by the vertices of the polyhedra. Let us turn to definition of the
necessary notions.
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The Newton polyhedra are located in the space Rn of characters of the group
(C∗)n; to every integral point k ∈ Rn corresponds the character χk : (C∗)n → C∗
which maps the point x to the number xk. The dual space (Rn)∗ to the space
Rn is the space of one-parameter subgroups in the group (C∗)n; to every integral
point m = m1, . . . , mn corresponds the one-parameter subgroup tm : C∗ → (C∗)n

which assigns to every nonzero number t the point x = x1, . . . , xn, where x1 =
tm1 , . . . , xn = tmn .

For a developed collection of integral polyhedra ∆1, . . . , ∆n every derivative
n!dAiVol (∆1, . . . , ∆n) is an integral covector on the space Rn. Therefore to the
derivative n!dAi

Vol (∆1, . . . , ∆n) corresponds a one-parameter group in the space
(C∗)n. For every nonzero complex number t 6= 0 the element tn!dAi

Vol (∆1,...,∆n)

in the group (C∗)n is defined. In the new version of the formula for the element
M(P1, . . . , Pn) we will use these notations.

For a developed collection of integral polyhedra ∆1, . . . , ∆n let us define the
element M0(∆1, . . . , ∆n) of the group (C∗)n as the product of roots of the system
of equations P1 = · · · = Pn = 0 such that
1) the polyhedron ∆i is the Newton polyhedron of the Laurent poynomial Pi;
2) all the coefficients aik of the Laurent polynomial Pi =

∑
aikxk at monomials

xk, which correspond to the vertices k of the polyhedron ∆i, are equal to one.
From theorem 1 we can see that the element M0(∆1, . . . , ∆n) is defined correctly.
From the same theorem we can see that M2

0 (∆1, . . . , ∆n) = 1. Now let us define
the element M1(P1, . . . , Pn) of the group (C∗)n by the formula M1(P1, . . . , Pn) =
M(P1, . . . , Pn)M−1

0 (∆1, . . . , ∆n).

Theorem 2. For every system of equations P1 = · · · = Pn = 0 with the devel-
oped collection of Newton polyhedra ∆1, . . . , ∆n, the element M1(P1, . . . , Pn) of
the group (C∗)n is defined by the formula

M1(P1, . . . , Pn) =
∏

1≤i≤n

∏

Ai∈∆i

Pi(Ai)−n!dAi
Vol (∆1,...,∆n),

where the inner product is conducted over all the vertices Ai of the polyhedra
∆i; Pi(Ai) is the number equal to the coefficient of Laurent polynomial Pi at
the monomial corresponding to the vertex Ai; and n!dAiVol (∆1, . . . , ∆n) is a one-
parameter subgroup in the group (C∗)n which corresponds to the derivative of the
mixed volume Vol (∆1, . . . , ∆n) by the vertex Ai.

The element M0(∆1 . . . , ∆n) is defined by the formula

M0(∆1, . . . , ∆n) =
∏

A∈∆

F(k1, . . . , kn)CA ,

where F(k1, . . . , kn) ⊂ (C∗)n is the function defined in §8; the product is conducted
over all the vertices A of the polyhedron ∆ = ∆1 + · · ·+∆n; and k1, . . . , kn are the
components of the decomposition of the vertex A.

Proof. Theorem 2 is a reformulation of theorem 1. For the inference of this refor-
mulation it is enough to use the formula for the mixed volume from theorem 3 §4
and the formula for the components of the point F(k1, . . . , kn) from corollary 1 §8.
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