
A Short Introduction to Operator Limits of Random Matrices
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Abstract. These are notes to a four-lecture minicourse given at the 2017 PCMI
Summer Session on Random Matrices. It is a quick introduction to the theory
of large random matrices through limits that preserve their operator structure,
rather than just their eigenvalues. This structure takes the role of exact formulas,
and allows for results in the context of general β-ensembles. Along the way, we
cover a non-computational proof of the Wiegner semicircle law, quick proofs for
the Füredi-Komlós result on the top eigenvalue, the BBP phase transition, as well
as local convergence of the soft-edge process and tail asymptotics for the TWβ

distribution.

1. The Gaussian Ensembles

1.1. The Gaussian Orthogonal and Unitary Ensembles. One of the earliest ap-
pearances of random matrices in mathematics was due to Eugene Wigner in the
1950’s. Let G be an n×n matrix with independent standard normal entries. Con-
sider the matrix

Mn =
G+Gt√

2
.

This distribution on symmetric matrices is called the Gaussian Orthogonal En-
semble, because it is invariant under orthogonal conjugation. For any orthogonal
matrix OMnO−1 has the same distribution as Mn. To check this, note that OG
has the same distribution as G by the rotation invariance of the Gaussian column
vectors, and the same is true for OGO−1 by the rotation invariance of the row vec-
tors. To finish note that orthogonal conjugation commutes with symmetrization.

Starting instead with a matrix with independent standard complex Gaussian
entries we would get the Gaussian Unitary ensemble. To see how the eigenvalues
behave, we recall the following classical theorem.

Theorem 1.1.1 (see e.g. [2]). Suppose Mn has GOE or GUE distribution then Mn has
eigenvalue density

(1.1.2) f(λ1, ..., λn) =
1

Zn,β

n∏
k=1

e−
β
4 λ

2
k

∏
i<j

|λi − λj|
β

with β = 1 for the GOE and β = 2 for the GUE.
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2 A Short Introduction to Operator Limits of Random Matrices

For convenience set Λ = Λn = {λi}
n
i=1 the set of eigenvalues of the GOE

or GUE. This notation will be used later to denote the eigenvalues or points in
whatever random matrix model is being discussed at the time.

From the density in Theorem 1.1.1 we can see that this is a model for n particles
that would like to be Gaussian, but the Vandermonde term

∏
i<j |λi−λj|

β pushes
them apart. Note that Tr M2

n/n
2 → 1 in probability (the sum of squares of

Gaussians), so the empirical quadratic mean of the eigenvalues is asymptotically√
n, rather than order 1. The interaction term has a very strong effect.
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Figure 1.1.3. Rescaled eigenvalues of a 1000×1000 GOE matrix

We begin by introducing a tridiagonal matrix model that has the same joint
density as the Gaussian ensembles. This model and Jacobi matrices more gener-
ally share many characteristics with differential operator theory including Sturm-
Liouville theory. In this section we derive the tridiagonal model for the Gaussian
unitary ensemble and then give tridiagonal models for a wider class of models
called β-ensembles. In Section 2 we begin by introducing two different notions
of graph convergence which are then used to prove the Wigner semicircle law.
In Section 3 we study the behavior of the largest eigenvalue of the GOE under
rank one perturbations. The behavior depends on the strength of the perturba-
tion and is called the Baik-Ben Arous-Péché transition. In Section 4 we introduce
the notion of local convergence and give a proof of local convergence at the soft
edge. We also study the tail behavior of the smallest eigenvalue of the Stochastic
Airy Operator which is the β > 0 generalization of the Tracy-Widom 1,2, and 4
laws. Section 5 gives a partial overview of results that are proved using operator
methods including other local limit theorems.

1.2. Tridiagonalization and spectral measure. The spectral measure of a matrix
at a vector (which we will take to be the first coordinate vector) is a measure
supported on the eigenvalues that reflects the local structure of the matrix there.
This is more easily seen in the case where the matrix is the adjacency matrix of a
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(possibly weighted) graph. In this case the spectral measure at coordinate vector
j gives information about the graph in the neighborhood of vertex j.

Definition 1.2.1. The spectral measure σA of a symmetric matrix A at the first
coordinate vector is the measure for which∫

xkdσA = Ak11.

From this definition it is not clear that the spectral measure exists. The ad-
vantage is that this definition can be extended to the operator setting in many
cases. For bounded operators (e.g. matrices) uniqueness is clear since probabil-
ity measures with compact support are determined by their moments (see e.g.
Kallenberg [21]). For finite matrices, the following alternative explicit definition
proves existence.

Exercise 1.2.2. Check that if λ1, ..., λn are the eigenvalues of A then

σA =
∑
i

δλiϕi(1)
2,

where ϕi is the ith normalized eigenvector of A.

The spectral measure is a complete invariant for a certain set of symmetries.
For this, first recall something more familiar.

Two symmetric matrices are equivalent if they have the same eigenvalues with
multiplicity. This equivalence is well understood: two matrices are equivalent
if and only if they are conjugates by an orthogonal matrix. In group theory
language, the equivalence classes are the orbits of the conjugation action of the
orthogonal group. There is a canonical representative in each class, a diagonal
matrix with non-increasing diagonals, and the set of eigenvalues is a complete
invariant.

Is there a similar characterization for matrices with the same spectral measure?
The answer is yes, for a generic class of matrices.

Definition 1.2.3. A vector v is cyclic for an n×n matrix A if v,Av, ...,An−1v is a
basis for the vector space Rn.

Theorem 1.2.4. Let A and B be two Hermitian matrices for which the first coordinate
vector is cyclic. Then σA = σB if an only if O−1AO = B where O is orthogonal matrix
fixing the first coordinate vector.

Let’s find a nice set of representatives for the class of matrices for which the
first coordinate vector is cyclic.

Definition 1.2.5. A Jacobi matrix is a real symmetric tridiagonal matrix with pos-
itive off-diagonals.

Theorem 1.2.6. For every Hermitian matrix A there exists a unique Jacobi matrix J such
that σJ = σA.
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Proof of Existence. It is possible to conjugate a symmetric matrix to a Jacobi matrix
by hand. Write our matrix in a block form,

A =

 a bt

b C

 .

Now let O be an (n− 1)× (n− 1) orthogonal matrix, and let

Q =

 1 0

0 O

 .

Then Q is orthogonal and

QAQt =

 a (Ob)t

Ob OCOt

 .

Now choose the orthogonal matrix O so that Ob is in the direction of the first
coordinate vector, namely Ob = |b|e1.

An explicit option for O is the following Householder reflection:

Ov = v− 2
〈v,w〉
〈w,w〉

w where w = b− |b|e1

Check that OOt = I, Ob = |b|e1.
Therefore

QAQt =



a |b| 0 . . . 0

|b|

0
... OCOt

0


.

Repeat the previous step, but this time choosing the first two rows and columns
to be 0 except having 1’s in the diagonal entries, and than again until the matrix
becomes tridiagonal. �

There are a lot of choices that can be made for the orthogonal matrices during
the tridiagonalization. However, these choices do not affect the final result. J is
unique, as shown in the following exercise.

Exercise 1.2.7. Show that two Jacobi matrices with the same spectral measure
are equal. (Hint: express the moments Jk1,1 of the spectral measure as sums over
products of matrix entries.)

The procedure presented above may have a familiar feeling. It turns out that
Gram-Schmidt is lurking in the background:
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Exercise 1.2.8. Suppose that the first coordinate vector e1 is cyclic. Apply Gram-
Schmidt to the vectors (e1,Ae1, ...,An−1e1) to get a new orthonormal basis. Show
that A written in this basis will be a Jacobi matrix.

1.2.1. Tridiagonalization and the GOE. The tridiagonalization procedure can
be applied to the GOE matrix, as pioneered by Trotter [33]. The invariance of
the distribution under independent orthogonal transformations yields a tractable
Jacobi matrix.

Proposition 1.2.9 (Trotter [33]). Let A be GOEn. There exists a random orthogonal
matrix fixing the first coordinate vector e so that

OAOt =



a1 b1 0 . . . 0

b1 a2
. . .

0
. . . . . . . . .

...
. . . an−1 bn−1

0 bn−1 an


with ai ∼ N(0, 2) and bi ∼ χn−i and independent. In particular, OAOt has the same
spectral measure as A.

Let v be a vector of independent N(0, 1) random variables of length k, then the
length of the vector has χ distribution with parameter k, χk

d
= ‖v‖. The density

of a χ random variable for k > 0 is given by

fχk(x) =
1

2
k
2 −1Γ(k/2)

xk−1e−x
2/2,

where Γ(x) is the Gamma function.

Proof. The tridiagonalization algorithm above can be applied to the random ma-
trix. After the first step, OCOt will be independent of a,b and have a GOE
distribution. This is because GOE is invariant by conjugation with a fixed O, and
O is only a function of b. The independence propagates throughout the algo-
rithm meaning each rotation defined produces the relevant tridiagonal terms and
an independent submatrix. �

Exercise 1.2.10. Let X be an n ×m matrix with Xi,j ∼ N(0, 1) (not symmetric
nor Hermitian). The distribution of this matrix is invariant under left and right
multiplication by independent orthogonal matrices. Show that such a matrix X
may be lower bidiagonalized such that the distribution of the singular values
is the same for both matrices. Note that the singular values of a matrix are
unchanged by multiplication by a orthogonal matrix.

(1) Start by coming up with a matrix that right multiplied with A gives you
a matrix where the first row is 0 except the 11 entry.

(2) What can you say about the distribution of the rest of the matrix after this
transformation to the first row?
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(3) Next apply a left multiplication. Continue using right and left multiplica-
tion to finish the bidiagonalization.

Let’s consider the spectral measure as a map J 7→ σJ from Jacobi matrices of
dimension n to probability measures on at most n points. We have seen that this
map is one-to-one. First we see that in fact spectral measures in the image are
supported on exactly n points.

Exercise 1.2.11. Show that a Jacobi matrix cannot have an eigenvector whose first
coordinate is zero. Conclude that all eigenspaces are 1-dimensional.

Second, for the set of such probability measures, the map J 7→ σJ is onto. This
is left as an exercise.

Exercise 1.2.12. For every probability measure σ supported on exactly n points
there exists an n× n symmetric matrix with spectral measure σ. The existence
part of Theorem 1.2.6 then implies that there exists a Jacobi matrix with spectral
measure σ.

1.3. β-ensembles. Let

(1.3.1) An =
1√
β



a1 b1 0 . . . 0

b1 a2
. . .

0
. . . . . . . . .

...
. . . an−1 bn−1

0 bn−1 an


,

that is a tridiagonal matrix with a1,a2, ...,an ∼ N(0, 2) on the diagonal and
b1, ...,bn−1 with bk ∼ χβ(n−k) and everything independent. We will frequently
use the notation ai = Ni in order to refer more directly to the distribution of the
random variable. Recall that if z1, z2, ... are independent standard normal random
variables, then z2

1 + · · ·+ z
2
k ∼ χ2

k.
If β = 1 then An is similar to a GOE matrix (the joint density of the eigenvalues

is the same). If β = 2 then An is similar to a GUE matrix.

Theorem 1.3.2 (Dumitriu, Edelman, [12]). If β > 0 then the joint density of the
eigenvalue of An is given by

f(λ1, ..., λn) =
1

Zn,β
e−

β
4
∑n
i=1 λ

2
i

∏
16i<j6n

|λi − λj|
β.

The spectral measure of a Jacobi matrix may be written as σJ =
∑n
j=1 δλjq

2
j ,

where λ1, ..., λn are the eigenvalues of the matrix and the q1, ...,qn are the as-
sociated the spectral weights with

∑
q2
i = 1. Recall that the map J 7→ σJ is a

bijection, so one possible strategy is to use this map to compute the distribution
of the eigenvalues and spectral weights from the Jacobi matrix entries by the
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change-of-variable formula. This is possible since the Jacobian determinant can
be computed

Dumitriu and Edelman used direct computation of the Jacobian of the map
(λ,q) → (a,b) to prove Theorem 1.3.2. This computation may be simplified by
working through the moments, which have a simple connection to both represen-
tations:

mk =

∫
xkdσ =

∑
λki q

2
i

One can look at maps from both sets to (m1, ...,m2n−1). Notice that 2n− 1 mo-
ments are required as there are 2n − 1 variables in both the spectral and tridi-
agonal basis. These are simple transformations and one can write down the
appropriate matrices and then find their determinants. These computations can
be found in [25], and yield the following.

Theorem 1.3.3 (Dumitriu, Edelman, Krishnapur, Rider, Virág, [12, 25]). Let V a
real-valued function, and a,b are chosen from then density proportional to

exp (−TrV(J))
n−1∏
k=1

b
kβ−1
n−k

assuming such a denisty exists (i.e. the total integral is finite). Then the eigenvalues have
distribution

(1.3.4) f(λ1, .., λn) =
1

Zn,β
exp

(
−
∑
i

V(λi)

)∏
i<j

|λi − λj|
β

and the qi are independent of the λ with (q1, ...,qn) = (ϕ1(1)2, ...,ϕn(1)2) have
Dirichlet(β2 , ..., β2 ) distribution.

Exercise 1.3.5. Show that when V(x) = x4, the sequence {(ai,bi), i > 1} with the
distribution from the theorem forms a time-inhomogeneous Markov Chain.

A result like this holds for general polynomial V , though one needs to take
bigger blocks of (ai,bi). This is exploited in [25] to get universality for the top
eigenvalue.

2. Graph Convergence and the Wigner semicircle law

The approach of operator limits is a case of the "objective method" pioneered
by Aldous. In limit theories, it is best to understand the limit of the a high-level
structured object, such as a matrix or a graph, rather than just its statistics (such
as eigenvalues, or graph-related quantities such as triangle density).

In this section we will use Jacobi matrices together with graph convergence
in order to give proofs of the Wigner semicircle law. The graphs themselves
are operators through their adjacency matrix. While it is not helpful here to
formalize this correspondence, we still think of graph convergence as an example
of operator limits.
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We begin by defining the spectral measure of a graph and give an introduc-
tion to different notions of graph convergence. We finish by proving the Wigner
semicircle law in two different ways using different notions of graph convergence.

2.1. Graph convergence. The proof of the Wigner semicircle law given here will
rest on a graph convergence argument. First we introduce the notions of con-
vergence needed for the proof. Examples will make the convergence easier to
understand.

We will be considering rooted graphs (G, ρ) where the root ρ is a marked
vertex. The spectral measure of (G, ρ) is the spectral measure of the adjacency
matrix A of G at the coordinate corresponding to ρ (which we will often just take
to be the first entry).

Note that the kth moment of the spectral measure is just the number of paths
of length k starting and ending at the root. In particular, moments up to 2k of the
spectral measure are determined by the k-neighborhood of ρ in G.

The definition of the spectral measure (1.2.1) works even for infinite graphs,
but it is again not a priori clear that it exists or it is unique.

· · · → · · · · · ·

Figure 2.1.1. Rooted convergence: n-cycles to Z

Definition 2.1.2. Rooted convergence. A sequence of rooted graphs (Gn, ρ) con-
verges to a limit (G, ρ) if for any radius r, the ball of radius r in Gn about ρ equals
that in G for all large enough n.

Examples 2.1.3. Two examples:

(1) The n cycle with any vertex chosen as the root converges to Z.
(2) The k by k grid with vertices at the intersection. With a vertex at the

center of the grid as the root, we get convergence to Z2.

For bounded degree graphs Gn, if (Gn, ρn) converges to (G, ρ) in the sense of
rooted convergence, then by definitions, the moments of the spectral measures
σn converge.

This implies two things. First, since the spectral measures graphs with degrees
bounded by b are supported on [−b,b], σn have subsequential weak limits on
[−b,b]. But such measures are determined by their moments, so the limit of σn
exists, and is the spectral measure of (G, ρ).

Since any bounded degree rooted infinite graph is a rooted limit of balls
around the root, we get

Proposition 2.1.4. Bounded degree rooted infinite graphs have unique spectral measure
defined by (1.2.1).
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Exercise 2.1.5. Consider a straight line with n vertices spaced evenly rooted at the
left end point. This sequence converges to Z+ in the limit. What is the limit of the
spectrum? It is the Wigner semicircle law, since the moments are Dyck paths. But
one can prove this directly, since the path of length n is easy to diagonalize. This
is an example where the spectral measure has a different limit than the eigenvalue
distribution.

Exercise 2.1.6. Consider the random d-regular graph (Gn, ρ) on n vertices in
the configuration model (for a given degree sequence, choose a uniform random
matching on the half edges attached to each vertex). Show that (Gn, ρ) converges
to the d-regular infinite tree in probability.

In the case where there is no designated root we will need a different notion
of convergence.

Definition 2.1.7 (Benjamini-Schramm, [4]). For a sequence of graphs {Gn} choose
a vertex uniformly at random to be the root. The graphs converge in the Benjamini-
Schramm sense if this random sequence of rooted graphs converges in distribu-
tion with respect to rooted convergence to a random rooted graph.

Benjamini-Schramm convergence is equivalent to convergence of local statis-
tics. This is the following statement. For every finite rooted graph (K, ρ) and
every r, the proportion of vertices in Gn whose ball radius r is rooted-isomorphic
to (K, ρ) converges to the probability that the ball of radius r in the limit is rooted-
isomorphic to (K, ρ).

Benjamini-Schramm limits of finite graphs are unimodular. For the special case
of randomly rooted regular graphs (G,o) unimodularity means that if for a uni-
formly chosen random neighbor v of ρ in G, the triple (G, ρ, v) has the same
distribution as (G, v, ρ). For the general case, in order to define unimodularity
the distributions have to first be biased by the degree of the root, see e.g. [27].

Exercise 2.1.8. Show that if G is a fixed connected finite regular graph with a ran-
dom vertex ρ, then (G, ρ) is unimodular if and only if ρ has uniform distribution.

The most intriguing open problem in this area is whether all infinite unimodu-
lar random graphs are Benjamini-Schramm limits. Those that are are called sofic.
For more on this see [1].

Proposition 2.1.9. Let G be a fixed finite graph and choose a root ρ uniformly at random
from the vertex set V(G). This defines a random rooted graph and its associated random
spectral measure σ. Then Eσ = µ is the eigenvalue distribution.

Proof. Recall that for the spectral measure of a matrix (and so a graph) we have

σ(G,ρ) =

n∑
i=1

δλiϕ
2
i(ρ)



10 A Short Introduction to Operator Limits of Random Matrices

Since ϕi is of length one, we have∑
ρ∈V(G)

ϕi(ρ)
2 = 1

hence
EσG,ρ =

1
n

∑
ρ∈V(G)

σG,ρ = µG. �

Example 2.1.10. The following are examples of Banjamini-Schramm convergence:

(1) A cycle graph converges to the graph of Z.
(2) A path of length n converges to the graph of Z.
(3) Large box of Zd converges to the full Zd lattice.

Notice that for the last two examples the probability of being in a neighborhood
of the edge goes to 0 and so the limiting graph doesn’t see the edge effects.

Exercise 2.1.11. A sequence of d-regular graphs Gn with n vertices is of essen-
tially large girth if for every k the number of k-cycles in Gn is o(n). Show that
Gn is essentially large girth if and only if it Benjamini-Schramm converges to the
d-regular tree.

Exercise 2.1.12. Show that for d > 3 the d-regular tree is not the Benjamini-
Schramm limit of finite trees. (Hint: consider the expected degree).

How is Benjamini-Schramm convergence related to the eigenvalue distribu-
tion? First, an exercise abound random probability measures, useful here and in
the sequel.

Exercise 2.1.13. Let νn be a sequence of random probability measures, and as-
sume that νn → ν in distribution with respect to the weak topology.

(1) Show that Eνn → Eν weakly.
(2) Assume that ν is deterministic. Let Fn be an arbitrary sequence of σ-fields.

Define the random probability measure E(νn|Fn) by E(νn|Fn)(A) = E(νn(A)|Fn)
for measurable sets A. Show that E(νn|Fn)→ ν in probability with respect to the
weak topology.

Assume that Gn → (G, ρ) in the Benjamini-Schramm sense. By the continuity
theorem (applied to the rooted convergence topology), the distribution of the
random spectral measures σn converges to the distribution of σG,ρ.

By Exercise 2.1.13 (1) this implies that the eigenvalue distributions converge as
well:

Theorem 2.1.14. Let Gn be a sequence of graphs with eigenvalue distributions µn. If
Gn → (G, ρ) in the Benjamini-Schram sense, then µn = Eσn → EσG,ρ weakly.

One can consider a more general setting of weighted graphs. This corresponds
to general symmetric matrices A. In this case we require that the neighborhoods
stabilize and the weights also converge. Everything above goes through.
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Example 2.1.15 (The spectral measure of Z). We use Benjamini-Schramm con-
vergence of the cycle graph to Z. First we compute the spectral measure of the
n-cycle Gn. We get that A = T + Tt where

T =



0 1

0 1
. . . . . .

. . . 1

1 0


.

The eigenvalues of T are the nth roots of unity ηi. Since A = T + T−1 the eigen-
values of A are ηi + η−1

i = 2<ηi. Geometrically, these are projections of the 2ηi,
that is points uniformly spaced on the circle of radius 2, to the real line.

In the limit, the measure converges to the projection of the uniform measure
on that circle, also called the arcsine distribution

σZ =
1

2π
√

4 − x2
1x∈[−2,2] dx.

Exercise 2.1.16. Let Bn be the unweighted finite binary tree with n levels. Sup-
pose a vertex is chosen uniformly at random from the set of vertices. Give the
distribution of the limiting graph.

2.2. Wigner’s semicircle law.

Theorem 2.2.1 (Wigner’s semicircle Law). Let Λn have β-Hermite distribution and
let µn = 1

n

∑n
j=1 δλj/

√
n be the empirical distribution of Λn/

√
n. Then

µn ⇒ µsc, where
dµsc

dx
=

1
2π

√
4 − x21x∈[−2,2] dx.

The following exercise provides the necessary tools to give several different
proofs of Wigner’s semicircle law. You can attempt the exercise first or read on in
order to see more details of the proof.

Exercise 2.2.2. Let A be a rescaled n×n Dumitriu-Edelman tridiagonal matrix

A =
1√
βn



a1 b1

b1 a2 b2

b2
. . . . . .
. . . an−1 bn−1

bn−1 an


, bi ∼ χβ(n−i), ai ∼ N(0, 2)

all independent, and suppose that A is the adjacency matrix of a weighted graph.

(1) Draw the graph with adjacency matrix A. (There can be loops)
(2) Suppose a root for your graph is chosen uniformly at random, what is the

limiting distribution of your graph?
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(3) What is the limiting spectral measure of the graph rooted at the vertex
corresponding to the first row and column?

(4) What is the limiting spectral measure of the unweighted graph?

Note that a Jacobi matrix can be thought of as the adjacency matrix of a
weighted path with loops. For all of the proofs of the Wigner semi-circle law
we will use the graph with the adjacency matrix given by the rescaled Dumitriu-
Edelman model given in Exercise 2.2.2, see Figure 2.2.3.

· · ·

1√
n
N1

1√
n
N2

1√
n
N3

1√
n
Nn−2

1√
n
Nn−1

1√
n
Nn

Nj ∼ N(0, 1)

χβ(n−1)√
βn

χβ(n−2)√
βn

χ2β√
βn

χβ√
βn

Figure 2.2.3. Unrooted rescaled Dumitriu-Edelman graph

Exercise 2.2.4. Check that χn −
√
n

(d)−−−−→
n→∞ N(0, 1/2).

Proof 1. [37]
Take the graph associated to the rescaled Dumitriu-Edelman tridiagonal matrix

shown in Figure 2.2.3, and then take a Benjamini-Schramm limit.
The convergence is in probability to a random rooted graph. Note that there

are two levels of randomness, one coming from the fact that we take a limit of
random weighted graphs (not just weighted graphs) and the second from the
fact that even deterministic graphs have Benjamini-Schramm given by a random
rooted graph. The first kind of randomness is lost in the limit, hence the conver-
gence in probability.

· · ·

√
n−1√
n

√
n−2√
n

√
2√
n

1√
n

↓

· · · · · · Z

√
U

√
U

√
U

√
U

√
U

√
U

Figure 2.2.5. Terms from the graph visible in Benjamini-
Schramm convergence.

Notice that an application of Exercise 2.2.4 will give us that it is enough to con-
sider the graph with no loops and deterministic edge labels

√
n−k
n . See Figure

2.2.5.
What is the limit? The structure clearly converges to Z. The edge weights

in a randomly rooted neighborhood converge in distribution to
√
U for a single

random variable U uniform in [0, 1]. Let σ denote the spectral measure Z with
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these edge weights. Theorem 2.1.14 and continuity theorem implies that µn → Eσ

in probability.
Now σ is a rescaling of the spectral measure of Z by

√
U. By Exercise 2.1.15 σ

is a scaled arcsine measure that corresponds to the projection of a circle of radius√
U.

√
U

Figure 2.2.6. The role of U in the limiting distribution and projection

The distribution of a point chosen with radius
√
U and uniform angle is in fact

a uniform random point in the disk. Thus Eσ is the projection of the uniform
measure on the disk to the real line. See figure 2.2.6. This is the semicircle law.

dµsc

dx
=

1
2π

√
4 − x21x∈[−2,2] dx.

�

Proof 2. Going back to the full matrix model of GOE, let An be 1/
√
n times the

tridiagonalization of GOE from a uniformly chosen random vertex v. This vertex
will correspond to the first coordinate in the tridiagonalization. Let Fn be a
sigma-field generated by the randomness in the nth GOE, but not the choice of
the vertex. Then with σn = σAn,v the empirical eigenvalue distribution of GOE
satisfies

µn = E(σn|Fn).

It suffices to show that σn converges to the semicircle law in probability, and
conclude by Exercise 2.1.13 (2).
An has 1/

√
n times the distribution (1.3.1). Consider the rooted limit of (An, v).

In Figure 2.2.3 v is the leftmost point on the graph.
This random weighted graph converges in probability with respect to the

rooted convergence topology to Z+. Therefore by the continuity theorem and
Theorem 2.1.14 σn → σZ+ = ρsc in probability, as required. �

The limit of the spectral measure at the first vertex should have nothing to
do with the limit of the eigenvalue distribution in the general case. The Jacobi
matrices that we get in the case of the GOE are special.
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3. The top eigenvalue and the Baik-Ben Arous-Péché transition

3.1. The top eigenvalue. The eigenvalue distribution of the GOE converges after
scaling by

√
n to the Wigner semicircle law. From this, it follows that the top

eigenvalue, λ1(n) satisfies for every ε > 0

P(λ1(n)/
√
n > 2 − ε)→ 1,

the 2 here is the top of the support of the semicircle law. However, the matching
upper bound does not follow and needs more work. This is the content of the
following theorem.

Theorem 3.1.1 (Füredi-Komlós [14]).
λ1(n)√
n
→ 2 in probability.

This holds for more general entry distributions in the original matrix model;
we have a simple proof for the GOE case.

Lemma 3.1.2. If J is a Jacobi matrix (a’s diagonal, b’s off-diagonal) then

λ1(J) 6 max
i

(ai + bi + bi−1).

Here we take the convention b0 = bn = 0.

Proof. Observe that J may be written as

J = −AAt + diag(ai + bi + bi−1),

where

A =


0
√
b1

−
√
b1

√
b2

−
√
b2

√
b3

. . . . . .


and AAt is nonnegative definite. So for the top eigenvalues we have

λ1(J) 6 −λ1(AA
t) + λ1(diag(ai + bi + bi−1)) 6 max

i
(ai + bi + bi−1).

We used subadditivity of λ1, which follows from the Rayleigh quotient represen-
tation. �

Applying this to our setting we get that

(3.1.3) λ1(GOE) 6 max
i

(Ni,χn−i + χn−i+1) 6 2
√
n+ c

√
logn

the right inequality is an exercise (using the Gaussian tails in χ) and holds with
probability tending to 1 if c is large enough. This completes the proof of Theorem
3.1.1.

This shows that the top eigenvalue cannot go further than an extra
√

logn
outside of the spectrum. Indeed we will see that

λ1(GOE) = 2
√
n+ TW1n

−1/6 + o(n−1/6)
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for some distribution TW1, so the bound above is not optimal.

3.2. Baik-Ben Arous-Péché transition. The approach taken here is a version of
a section in Bloemendal’s PhD thesis [7].

Historically random matrices have been used to study correlations in data sets.
To see whether correlations are significant, one compares to a case in which data
is sampled randomly without correlations.

Wishart in the 20s considered matrices Xn×m with independent normal entries
and studied the eigenvalues of XXt. The rank-1 perturbations below model the
case where there is one significant trend in the data, but the rest is just noise. We
consider the case n = m. A classical result is the following.

Theorem 3.2.1 (BBP transition). Let Xn be an n×n matrix with n < and independent
N(0, 1) entries, then

1
n
λ1

(
X diag(1 + a2, 1, 1, ..., 1)Xt

)
P−−−−→

n→∞ ϕ(a)2

where

ϕ(a) =

{
2 a 6 1

a+ 1
a a > 1.

Heuristically, correlation in the population appears in the asymptotics in the
top eigenvalue of the sample only if it is sufficiently large, a > 1. Otherwise, it
gets washed out by the fake correlations coming from noise. We will prove the
GOE analogue of this theorem, and leave the Wishart case as an exercise.

One can also study the distributional limit of the top eigenvalue. When a < 1
the distribution is unchanged from the unperturbed case, the limit being Tracy-
Widom. When a > 1 the top eigenvalue separates and has limiting Gaussian
fluctuations. Close to the point a = 1 a deformed Tracy-Widom distribution
appears, see [3], [5].

The GOE analogue answers the following question. Suppose that we add a
common nontrivial mean to the entries of a GOE matrix. When does this influ-
ence the top eigenvalue on the semicircle scaling?

Theorem 3.2.2 (Top eigenvalue of GOE with nontrivial mean).
1√
n
λ1(GOEn +

a√
n

11t) P−−−−→
n→∞ ϕ(a)

where 1 is the all-1 vector, and 11t is the all-1 matrix.

It may be surprising how little change in the mean in fact changes the top
eigenvalue!

We will not use the next exercise in the proof of 3.2.2, but include it to show
where the function ϕ comes from. It will also motivate the proof for the GOE
case.
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Exercise 3.2.3 (BBP for Z+). For an infinite graph, we can define λ1 by Rayleigh
quotients using the adjacency matrix A

λ1(G) = sup
v

〈v,Av〉
‖v‖2

2
.

(1) Show that λ1 is at most the maximal degree in G.
(2) Prove that for a 6 1

λ1(Z
+ + loop of weight a on 0) = ϕ(a).

Hint To prove the lower bound, use specific test functions. When a > 1, note that
there is an eigenvector (1,a−1,a−2, ...) with eigenvalue a+ 1

a . When a 6 1 use
the indicator of a large interval. The upper bound for a > 1 is more difficult; use
rooted convergence and interlacing.

We will need the following result.

Exercise 3.2.4. Let A be a symmetric matrix, let v be a vector of `2-norm at least
1, and let x ∈ R so that ‖Av− xv‖ 6 ε. Then there is an eigenvalue λ of A with
|λ− x| 6 ε. Hint: consider the inverse of A− Ix.

Proof of Theorem 3.2.2. The first observation is that because the GOE is an invari-
ant ensemble, we can replace 11t by vvt for any vector v having the same length as
the vector 1. We can replace the perturbation with

√
nae1et1. Such perturbations

commute with tridiagonalization.
Therefore we can consider Jacobi matrices of the form

J(a) =
1√
n


a
√
n+N1 χn−1

χn−1 N2 χn−2
. . . . . . . . .


Case 1: a 6 1. Since the perturbation is positive, we only need an upper bound.
We use the maximum bound from before. For i = 1, the first entry, there was
space of size

√
n below 2

√
n. For i = 1 the max bound still holds.

Case 2: a > 1
Now fix k and let v = (1, 1/a, 1/a2, ..., 1/ak, 0, ..., 0). Thus the error from the

noise will be of order 1/
√
n so that∥∥∥∥J(a)v− v(a+ 1

a
)

∥∥∥∥ 6 ca−k
with probability tending to 1.

By Exercise 3.2.4, J(a) has an eigenvalue λ∗ that is ca−k-close to a+ 1/a.
We now need to check that this eigenvalue will actually be the maximum.

Exercise 3.2.5. Let A,P be asymmetric matrices, with P > 0 of rank 1. Then the
eigenvalues of A and A+ P interlace and the shift under perturbation is to the
right.

Hint: use the Courant-Fisher characterization.
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By interlacing,

λ2(J(a)) 6 λ1(J(0)) = 2 + o(1) < a+ 1/a− cak

if we chose k large enough. Thus the eigenvalue λ∗ we identified must be λ1. �

4. The Stochastic Airy Operator

4.1. Global and local scaling. In the Wigner semicircle law the rescaled eigen-
values {λi/

√
n}ni=1 accumulate on a compact interval and so in the limit become

indistinguishable from each other. For the local interactions between eigenvalues,
the behavior of individual points has to prevail in the limit.

To make a guess at the correct spacing required to see individual points in the
limit we begin by pretending that they are quantiles of the Wigner semicircle law.
When n is large we get that for a < b ∈ [−2, 2]

#Λn ∩ [a
√
n,b
√
n] ≈ n

∫b
a
dµsc(x) = n

∫b
a

1
2π

√
4 − x2dx.

So we expect that for a ∈ (−2, 2) the process
√
n(4 − a2)(Λn−a

√
n) should have

average spacing 1
2π .

Exercise 4.1.1. Check that the typical spacing at the edge 2
√
n of Λn is of order

n−1/6.

The correct scales needed to obtain a local limit are give in Figure 4.1.2. These
notes will focus on the convergence result for the edge of the spectrum. The
statement for the bulk and more on the operator viewpoint will be discussed in
Section 5.

−2
√
n 2

√
n0

Λn

a
√
n

n1/6(Λn + 2
√
n)

0

√
nρsc(a)(Λn − a

√
n)

0

Figure 4.1.2. The scale of local interactions

4.2. The heuristic convergence argument at the edge. The goal here is to un-
derstand the limiting top eigenvalue of the Hermite β ensembles in terms of a
random operator. To do this we look at the geometric structure of the tridiagonal
matrix. Jacobi matrices are frequently associated with differential equations and
sometimes studied under the name of discrete Schrödinger operators. To see the
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connection with Schrödinger operators consider the following example:

A =


0 1

1 0 1

1 0
. . .

. . . . . .


The semi-infinite version of this is frequently called the discrete Laplacian. To
understand this name let m be large for f : R+ → R define the discretization
vf = (f(0), f(1/m), f(2/m), ...)t. Then B = m2(A− 2I) acts as a discrete second
derivative on f, in the sense that Bvf ≈ vf ′′ as m→∞. For this to hold in the first
entry we need to further assume that f satisfies a Dirichlet boundary condition
f(0) = 0. This convergence argument may be easily extended to matrices of
the form (A − 2I) +D where D is a semi-infinite diagonal matrix with entries
Dk = V( km ) for some function V : R → R. In this case the matrices converge to
the Schrödinger operator ∆+ V .

Now apply this type of convergence argument to the tridiagonal model for the
β-Hermite ensemble. To start we first need to determine which portions of the
matrix contribute to the behavior of the largest eigenvalue. Recall the Dumitriu-
Edelman matrix modelAn for the β-Hermite ensemble defined in equation (1.3.1).
Take u = c1e1 + c2e2 + · · · cnen where ek is the kth coordinate vector, and observe
that if we assume the ck vary smoothly we have

Anu =
1√
β

n∑
k=1

(ck−1ak + ck+1ak + ckbk)ek ≈
n∑
k=1

2ck
√
n− k ek.

We are interested in which eigenvectors u give us Anu = (2
√
n+ o(1))u. This

calculation suggests thar these eigenvectors should be concentrated on the first
k = o(n) coordinates. This suggests that the top corner of the matrix determines
the behavior of the top eigenvalue.

Returning to the β-Hermite case, by Exercise 2.2.4, for k� n we have

χn−k ≈
√
β(n− k) +N(0, 1/2) ≈

√
β(
√
n−

k

2
√
n
) +N(0, 1/2)

We can use this expansion to break the matrix mγ(2
√
nI−An) into terms:

mγ(2
√
nI−An) ≈ mγ

√
n


2 −1

−1 2 −1

−1 2
. . .

. . . . . .

+
mγ

2
√
n



0 1

1 0 2

2 0 3

3 0
. . .

. . . . . .
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+
mγ√
β


N1 Ñ1

Ñ1 N2 Ñ2

Ñ2 N3
. . .

. . . . . .

(4.2.1)

and assume that we have m = nα for some α. What choice of α should we make?
For the first term we want

mγ
√
n


2 −1

−1 2 −1

−1 0
. . .

. . . . . .


to behave like a second derivative. This means that mγ

√
n = m2 which gives

2α = αγ+ 1/2. A similar analysis can be done on the second term. This term
should behave like multiplication by t. For this we want m

γ
√
n

= 1
m which gives

αγ − 1/2 = −α. Solving this system we get α = 1/3 and γ = 1/2. For the
noise term, multiplication by it should yield a distribution (in the Schwarz sense),
which means that its integral over intervals should be of order 1. In other words,
the average of m noise terms times mγ should be of order 1. This gives γ = 1/2,
consistent with the previous computations.

This means that we need to look at the section of the matrix that is m = n1/3

and we rescale by n1/6. That is we look at the matrix

Hn = n1/6(2
√
nI−An)

acting on functions with mesh size n−1/3.

Exercise 4.2.2. Show that in this scaling, the second matrix in the expansion above
has the same limit as the diagonal matrix with 0, 2, 4, 6, 8.... on the diagonal (scaled
the same way).

Conclusion. Hn acting on functions with this mesh size behaves like a differen-
tial operator. That is

(4.2.3) Hn = n1/6(2
√
n−An) ≈ −∂2

x + x+
2√
β
b ′x = SAOβ,

here b ′x is white noise. This operator will be called the Stochastic Airy operator
(SAOβ). We also set the boundary condition to be Dirichlet. This conclusion can
be made precise. The heuristics are due to Edelman and Sutton [13], and the
proof to Ramírez, Rider, and Virág [29].

There are two problems at this point that must be overcome in order to make
this convergence rigorous. The first is that we need be able to make sense of that
limiting operator. The second is that the matrix even embedded an operator on
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step functions acts on a different space that the SAOβ so we need to make sense
of what the convergence statement should be.

Remarks on operator convergence

(1) Embed Rn into L2(R) via

ei 7→
√
m1[ i−1

m , im ).

This gives an embedding of the matrix An acting on a subspace of L2(R+).
(2) It is not clear what functions the Stochastic Airy Operator acts on at this

point. Certainly nice functions multiplied by the derivative of Brownian
motion will not be functions, but distributions. The only way we get
nice functions as results if this is cancelled out by the second derivative.
Nevertheless, the domain of SAOβ can be defined.

In any case, these operators act on two completely different sets of
functions. The matrix acts on piecewise constant functions, while SAOβ
acts on some exotic functions.

(3) The nice thing is that if there are no zero eigenvalues, both H−1
n and J−1

can be defined in their own domains, and the resulting operators have
compact extensions to the entire L2.

We will not do this in these notes, but the sense of convergence that
can be shown is

‖H−1
n − SAO−1

β ‖2→2 → 0.

This is called norm resolvent convergence, and it implies convergence of
eigenvalues and eigenvectors if the limit has discrete simple spectrum.
See e.g. Chapter 7 [31].

(4) The simplest way to deal with the limiting operator and the issues of
white noise is to think of it as a bilinear form. This is the approach we
follow in the next section. The kth eigenvalue can be identified using the
Courant-Fisher characterization.

Exercise 4.2.4. We will consider cases where a matrix An×n can be embedded as
an operator acting on the space of step function with mesh size 1/mn. In particu-
lar we can encode these step functions in to vectors vf = [f( 1

mn
), f( 2

mn
), ..., f( nmn )]

t.
Let A be the matrix

A =


−1 1

−1 1
. . . . . .

−1

 .

For which kn we get knAvf → vf ′?



Diane Holcomb and Bálint Virág 21

Exercise 4.2.5. LetA be the diagonal matrix with diagonal entries (1, 4...,n2). Find
a kn such that knAvf converges to something nontrivial. What is kn and what
does the limit converge to?

Exercise 4.2.6. Let J be a Jacobi matrix (tridiagonal with positive off-diagonal
entries) and v be an eigenvector with eigenvalue λ. The number of times that
v changes sign is equal to the number of eigenvalues above λ. More generally
the equation Jv = λv determines a recurrence for the entries of v. If we run
this recurrence for an arbitrary λ (not necessarily an eigenvalue) and count the
number of times that v changes sign this still gives the number of eigenvalues
greater than λ.

(1) Based on this give a description of the number of eigenvalues in the inter-
val [a,b].

(2) Suppose that vt = (v1, ..., vn) solves the recurrence defined by Jv = λv.
What is the recurrence for rk = vk+1/vk? What are the boundary condi-
tions for r that would make v an eigenvector?

4.3. The bilinear form SAOβ. Recall the Airy operator

A = −∂2
x + x

acting on f ∈ L2(R+) with boundary condition f(0) = 0. The equation Af = 0
has two solutions Ai(x) and Bi(x), called Airy functions. Note that the solution
of (A− λ)f = 0 is just a shift of these functions by λ.

Since only Ai2 is integrable, the eigenfunctions of A are the shifts of Ai with
the eigenvalues the amount of the shift. The kth zero of the Ai function is at
zk = −

( 3
2πk

)2/3
+ o(1), therefore to satisfy the boundary conditions the shift

must place a 0 at 0, so the kth eigenvalue is given by

(4.3.1) λk = −zk =

(
3
2
πk

)2/3
+ o(1).

The asymptotics are classical.
For the Airy operator A and a.e. differentiable, continuous functions f with

f(0) = 0 we can define

(4.3.2) ‖f‖2
∗ := 〈Af, f〉 =

∫∞
0
f2(x)x+ f ′(x)2 dx.

Let L∗ be the space of functions with ‖f‖∗ <∞.

Exercise 4.3.3. Show that there is c > 0 so that

‖f‖2 6 c‖f‖∗

for every f ∈ L∗. In particular, L∗ ⊂ L2.

Recall the Rayleigh quotient characterization of the eigenvalues λ1 of A.

λ1 = inf
f∈L∗,‖f‖2=1

〈Af, f〉.
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More generally, the Courant-Fisher characterization is

λk = inf
W⊂L∗,dimW=k

sup
f∈W,‖f‖2=1

〈Af, f〉,

where the infimum is over subspaces B.
For two operators A 6 B if for all f ∈ L∗

〈f,Af〉 6 〈f,Bf〉.

Exercise 4.3.4. If A 6 B, then λk(A) 6 λk(B).

Our next goal is to define the bilinear form associated with the Stochastic Airy
operator on functions in L∗. Clearly, the only missing part is to define∫∞

0
f2(x)b ′(x)dx.

At this point you could say that this is defined in terms of stochastic integration,
but the standard L2 theory is not strong enough – we need it to be defined in the
almost sure sense for all functions in L∗. We could define it in the following way:

〈f,b ′f〉“ = ”
∫∞

0
f2(x)b ′(x)dx = −

∫∞
0

2f ′(x)f(x)b(x)dx.

This is now a perfectly fine integral, but it may not converge. The main idea will
be to write b as its average together with an extra term.

b(x) =

∫x+1

x
b(s)ds+ b̃(x) = b̄(x) + b̃(x).

In this decomposition we get that b̄ is differentiable and b̃ is small. The average
term decouples quickly (at time intervals of length 1), so this term is analogous
to a sequence of i.i.d. random variables. We define the inner product in terms of
this decomposition as follows.

〈f,b ′f〉 := 〈f, b̄ ′f〉− 2〈f ′, b̃f〉

It follows from Lemma 4.3.7 below that the integrals on the right hand side are
well defined.

Exercise 4.3.5. There exists a random constant C so that we have the following
inequality of functions:

(4.3.6) |b̄ ′|, |b̃| 6 C
√

log(2 + x)

Now we return to the Stochastic Airy operator, the following lemma will give
us that the operator is bounded from below.

Lemma 4.3.7. For every ε > 0 there exists random C so that in the positive definite
order,

±b ′ 6 εA+CI,

and therefore
−CI+ (1 − ε)A 6 SAOβ 6 (1 + ε)A+CI.
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The upper bound here implies that the bilinear form is defined for all functions
f ∈ L∗.

Proof. For f ∈ L∗ by our definition,

〈f,b ′f〉 = 〈f, b̄ ′f〉− 2〈f ′, b̃f〉.

Now using bounds of the form −2yz 6 y2/ε+ z2ε we get the upper bound

〈f, (b̄ ′ + b̃2/ε)f〉+ ε‖f ′‖2.

By Exercise 4.3.5 there exists a random constant C so that

b̄ ′ + b̃2/ε 6 εx+C.

We get the desired bound for +b ′, and the same arguments works for −b ′. �

The above Lemma implies that the eigenvalues of Stochastic Airy should be-
have asymptotically the same as those of the Airy operator with the same bound-
ary condition. From the discussion at the start of Section 4.3 we will get the
following asymptotic result.

Corollary 4.3.8. The eigenvalues of SAOβ satisfy

λ
β
k

k2/3 →
(

2π
3

)2/3
a.s.

Proof. It suffices to show that a.s. for every rational ε > 0 there exists Cε > 0 so
that

(1 − ε)λk −Cε 6 λ
β
k 6 (1 + ε)λk +Cε,

where the λk are the Airy eigenvalues (4.3.1). But this follows from the operator
inequality of Lemma 4.3.7 and Exercise 4.3.4. �

One way to view the above Corollary is through the empirical distribution of
the eigenvalues as k → ∞. In this view the “density” behaves like

√
λ. More

precisely, the number of eigenvalues less than λ is of order λ3/2. This is the Airy-
β version of the Wigner semicircle law. Only the edge of the semicircle appears
here.

4.4. Convergence to the Stochastic Airy Operator. The goal of this section is
to give a rigorous convergence argument for the extreme eigenvalues to those
of the limiting operator. To avoid technicalities in the exposition, we will use
a simplified model, which has the features of the tridiagonal beta ensembles.
Consider the n×n matrix

Hn = n2/3


2 −1

−1 2 −1

−1 2
. . .

. . . . . .

+n−1/3diag(1, 2, 3, . . .)(4.4.1)
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+ diag(Nn,1,Nn,2, . . .).

Here for each n theNn,i are independent centered normal random variables with
variance 4

βn
−1/3. This is a simplified version of (4.2.1).

We couple the randomness by setting

Nn,i = b(in
−1/3) − b((i− 1)n−1/3)

for a fixed Brownian motion b which, here for notational simplicity, has variance
4/β. From now on we fix b and our arguments will be deterministic, so we drop
the a.s. notation.

We now embed the domains Rn of Hn into L2(R+) by the map

ei 7→ n1/61[ i−1
n1/3 , i

n1/3 )
,

and denote by R̃n the isometric image of Rn in this embedding. Let −∆n, xn
and bn be the images of the three matrix terms on the right of (4.4.1) under this
map, respectively. For f ∈ R̃n, let

‖f‖2
∗n = 〈f, (−∆n + xn)f〉

and recall the L∗ norm ‖f‖∗ from (4.3.2).
We will need some standard analysis Lemmas.

Exercise 4.4.2. Let f ∈ L∗ of compact support. Let fn be its orthogonal projection
to R̃n. Then fn → f in L2, and 〈fn,Hnfn〉 → 〈f,Hf〉 where H = SAOβ.

Let λn,k, λk denote the kth lowest eigenvalue of Hn and the Stochastic Airy
Operator H = SAOβ = −∂2

x + x+ b
′, respectively.

Proposition 4.4.3. lim sup λn,1 6 λ1.

Proof. For ε > 0 let f be of compact support and norm 1 so that 〈f,Hf〉 6 λ1 + ε.
Let fn be the projection of f to R̃n. Then by Exercise 4.4.2 we have

λn,1 6
〈fn,Hnfn〉
‖fn‖2 → 〈f,Hf〉 6 λ1 + ε.

Since ε is arbitrary, the claim follows. �

For the upper bound, we need a tightness argument for eigenvectors and eigen-
values.

Exercise 4.4.4. Show that for every ε > 0 there is a random constant C so that

±bn 6 ε(−∆n + xn) +CI

in the positive definite order for all n. Hint: use a version of the argument in
Lemma 4.3.7.

Note that this exercise implies

Hn > (1 − ε)(−∆n + xn) −CI

and since −∆n + xn is positive definite, it follows that λn,1 > −C, which is a
Füredi-Komlós type bound, but now of the right order! (Compare to 3.1.3).
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Exercise 4.4.5. Show that if f̃n → f uniformly on compact subsets with fn differ-
entiable and f ′ ∈ L2, then

lim inf
n→∞ ‖f ′n‖ > ‖f ′‖.

Exercise 4.4.6. Recall that bn is defined to be the image of b under the embedding
defined above. Show that for b̃n and b̄n defined as before we have that

b̃n → b̃ and b̄ ′n → b̄ ′

converge uniformly on compact subsets.

Proposition 4.4.7. Let fn ∈ R̃n with ‖fn‖∗n 6 c for all n. Then fn has a subsequential
limit f in L2 so that along that subsequence

lim inf〈fn,Hnfn〉 > 〈f,Hf〉.

Proof. Let

f̃n(x) =

∫x
0
∆nfn(s)ds.

Exercise 4.4.8. Show that f̃n − fn → 0 uniformly on compact subsets.

Note that by Cauchy-Schwarz

∣∣f̃n(t+ s) − f̃n(t)∣∣ = ∣∣∣∣∫t+s
t

∆fn(x)dx

∣∣∣∣ 6 √s‖∆fn‖, with fn(0) = 0.

Therefore the f̃n form an equicontinuous family of functions and an application
of the Arzela-Ascoli theorem gives us that there exists a continuous f and subse-
quence such that f̃n → f uniformly on compacts. Moreover we have that f̃ ′n are
in L2 and so there exists g ∈ L2 and a further subsequence along which f̃ ′n → g

weakly in L2. This follows from the fact that the balls are weak*-compact. By
testing against indicators of intervals we can show that we must have f ′ = g.

From the previous exercise we get the same convergence statements for the fn
and ∆fn.

Recalling the definition of the bilinear form we need to prove several different
convergence statements. First observe that

lim inf
n→∞ 〈fn, xnfn〉 > 〈f, xf〉.

This follows directly from the positivity of the integrand and Fatou’s lemma. That
second term lim infn→∞ ‖∆fn‖n > ‖f ′‖2 follows from Exercise 4.4.5. For the final
two terms involving b̃ and b̄ ′ we will need to make use of the L∗ bounds to cut
off the integral at some large number K.

We will first consider the term
∫
f2nb̄

′
ndx. For K large enough we have that∣∣∣∣∣

∫∞
0
f2nb̄

′
ndx−

∫K
0
f2nb̄

′
ndx

∣∣∣∣∣ 6
∫∞
K
f2n(C+

√
x)dx 6

∫∞
K
f2nxdx 6

C+
√
K

K
‖fn‖∗.

This error may be made arbitrarily small, therefore it will be enough to show
the necessary inequality on compact subsets of R+. This we do by observing
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that fn → f and b̄ ′n → b̄ ′ uniformly on compacts. The dominated convergence
theorem implies convergence of the integrals. The following exercise completes
the proof. �

Exercise 4.4.9. Prove that 〈fn, b̃n∆fn〉 → 〈f, b̃f ′〉. Use the same method of cutting
off the integral at large K and use convergence on compact subsets.
Hint: 2

∫∞
K |fg|ds 6 ε‖f‖2

2 +
1
ε‖g‖

2
2.

Proposition 4.4.10. lim inf λn,1 > λ1.

Proof. By Exercise 4.4.4, in the positive definite order,

Hn 6 (1 + ε)(−∆n + xn) +CI

but since ∆n + x is nonnegative definite, λ1,n 6 C.
Now let (fn, λn,1) be the eigenvector, lowest eigenvalue pair for Hn, so that

‖fn‖ = 1. Then by Exercise 4.4.4

(1 − ε)‖fn‖∗n 6 〈fn,Hnfn〉+C = λn,1 +C 6 2C.

Now consider a subsequence along which λn,1 converges to its lim inf. By Exer-
cise 4.4.7 we can find a further subsequence of fn so that fn → f in L2, and

lim inf λn,1 = lim inf〈fn,Hnfn〉 > 〈f,Hf〉 > λ1,

as required. �

Exercise 4.4.11. Modify the proofs above using the Courant-Fisher characteriza-
tion to show that for every k, we have λn,k → λk.

4.5. Tails of the Tracy Widomβ distribution.

Definition 4.5.1. We define the Tracy-Widom-β distribution

TWβ = −λ1(SAOβ)

In the case β = 1, 2, and 4 this is consistent with the classical definition. In these
cases the soft edge or Airy process may be characterized as a determinantal or
Pfaffian process. Tracy and Widom express the law of the lowest eigenvalue in
terms of a Painlevé transcendent [32].

The tails are asymmetric. Our methods can be used to show that as a → ∞
the right tail satisfies

P(TWβ > a) = exp
(
−

2 + o(1)
3

βa3/2
)

,

see [29]. Here we show that the left tail satisfies the following.

Theorem 4.5.2 ([29]).

P(TWβ < −a) = exp
(
−
β+ o(1)

24
a3
)

as a→∞.

Proof of the upper bound. Suppose we have λ1 > a, then for all f ∈ L∗ we have

〈f,Aβf〉 > a‖f‖2
2.
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Therefore we are interested in the probability

P

(
‖f ′‖2

2 + ‖
√
xf‖2

2 +
2√
β

∫
f2b ′dx > a‖f‖2

2

)
The first two terms are deterministic, and for f fixed the third term is a Paley-
Wiener integral. In particular, it has centered normal distribution with variance

4
β

∫
f4dx =

4
β
‖f‖4

4.

This leads us to computing

P
(
‖f ′‖2

2 + ‖
√
xf‖2

2 +N‖f‖
2
4 > a‖f‖

2
2

)
,

where N is a normal random variable with variance 4/β. Using the standard tail
bound for a normal random variable we get
(4.5.3)

P
(
‖f ′‖2

2 + ‖
√
xf‖2

2 +N‖f‖
2
4 > a‖f‖

2
2

)
6 2 exp

(
−
β(a‖f‖2

2 − ‖f
′‖2

2 − ‖f
√
x‖2

2)
2

8‖f‖4
4

.

)
We want to optimize over possible choices of f. It turns out the optimal f will
have small derivative, so we will drop the derivative term and then optimize the
remaining terms. That is we wish to maximize

(a‖f‖2
2 − ‖f

√
x‖2

2)
2

‖f‖4
4

.

With some work we can show that the optimal function will be approximately
f(x) ≈

√
(a− x)+. This needs to be modified a bit in order to keep the derivative

small, so we replace the function at the ends of its support by linear pieces:

f(x) =
√

(a− x)+ ∧ (a− x)+ ∧ x
√
a.

We can check that

a‖f‖2
2 ∼

a3

2
‖f‖ = O(a) ‖

√
xf‖2 ∼

a3

6
‖f‖4

4 ∼
a3

3
.

Using these values in equation (4.5.3) gives us the correct upper bound. �

Proof of the lower bound. We begin by introducing the Riccati transform: Suppose
we have an operator

L = −∂xx + V(x),

then the eigenvalue equation is

λf = (−∂xx + V(x))f.

We can pick a λ and attempt to solve this equation. The left boundary condition
is given, so one can check if the solution satisfies f ∈ L2, in which case we get
an eigenfunction. Most of the time this won’t be true, but we can still gain in-
formation by studying these solutions. To study this problem we first make the
transformation

p =
f ′

f
, which gives p ′ = V(x) − λ− p2, p(0) =∞.
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The following is standard part of the theory for Schrödinger operators of the form
SAOβ, although some technical work is needed because the potential is irregular.

Proposition 4.5.4. Choose λ, we will have λ 6 λ1 if an only if the solution to the Ricatti
equation does not blow up.

The slope field looks as follows. When V(x) = x and λ = 0 there is a right
facing parabola p2 = x where the upper branch is attracting and the lower branch
is repelling. The drift will be negative outside the parabola and positive inside.
Shifting the initial condition to the left is equivalent to shifting the λ to the right,
so this picture may be used to consider the problem for all λ.

Figure 4.5.5. Drift trajectories for p and the random ODE p−B

Now replace V(x) = x by V(x) = x+ 2√
β
b ′. The solution of the Ricatti equation

is now an Itô diffusion given by

(4.5.6) dp(x) = (x+ λ− p(x)2)dx+
2√
β
dbx, p(0) =∞.

In this case there is some positive chance of the diffusion moving against the
drift, including crossing the parabola. Drift trajectories for this slope field and
an example of the random slope field for the ODE satisfied by p−B are given in
Figure 4.5.5. If we use P−λ,y to denote the probability measure associated with
starting our diffusion with initial condition p(−λ) = y, then we get

P(λ1 > a) = P−a,+∞ (p does not blow up) .

Because diffusion solution paths do not cross, we can bound this below by start-
ing our particle at 1.

P−a,+∞ (p does not blow up) > P−a,1 (p does not blow up) .

We now bound this below by requiring that our diffusion stays in p(x) ∈ [0, 2] on
the interval x ∈ [−a, 0) and then choosing convergence to the upper edge of the
parabola after 0. This gives

P−a,1 (p does not blow up)

> P−a,1 (p stays in [0, 2] for x < 0) · P0,0 (p does not blow up) .

The second probability is a positive constant not depending on a. We focus on
the first event.
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A Girsanov change of measure can be used to determine the probability. This
change of measure moves us to working on the space where p is replaced by a
standard Brownian motion (started at 1). The Radon-Nikodym derivative of this
change of measure may be computed explicitly. We compute

E−a,1 [1(px ∈ [0, 2], x ∈ (−a, 0))]

= E−a,1

[
exp

(
β

4

∫0

−a
(x− b2)db−

β

8

∫0

−a
(x− b2)2dx

)
1(bx ∈ [0, 2], x ∈ (−a, 0))

]
.

Notice that when b stays in [0, 2], the density term can be controlled

β

4

∫0

−a
(x− b2)db ∼ O(a), and

β

8

∫0

−a
(x− b2)2dx ≈ −

β

24
a3,

while the probability of staying in [0, 2] is only exponentially small in a. This
gives us the desired lower bound. �

5. Related Results

This section will give a brief partial survey of other work that makes use of
the tridiagonal matrix models and operator convergence techniques that were
introduced in these notes. We will discuss two other local limits that appear in
the bulk and the hard-edge of a random matrix model. We will also briefly review
results that can be obtained about the limiting processes, connections to sum laws
and large deviations, connections to Painelevé, and an alternate viewpoint for
operator convergence.

5.1. The Bulk Limit In Section 4 we proved a limit result about the local behav-
ior of the β-Hermite ensemble at the edge of the spectrum. A similar result can be
obtained for the local behavior of the spectrum near a point a

√
n where |a| < 2.

The limiting process is the spectrum of the self-adjoint random differential
operator Sineβ given by

(5.1.1) f 7→ 2R−1
t

(
0 − d

dt

d
dt 0

)
f, f : [0, 1)→ R2,

where Rt is the positive definite matrix representation of hyperbolic Brownian
motion with variance 4/β in logarithmic time. This operator is associated with a
canonical system, see de Branges, [11]. It provides a link between the Montgomery-
Dyson conjecture about the Sine2 process and the non-trivial zeros of the Rie-
mann zeta function, the Hilbert-Pólya conjecture and de Brange’s attempt to
prove the Riemann hypothesis, see [34].

To be more specific, we have

Rt =
1

2y
Xts(t)Xs(t), s(t) = − log(1 − t).(5.1.2)
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where X satisfies the SDE

dX =

(
0 dB1

0 dB2

)
X, X0 = I,

and B1,B2 are two indepenent copies of Brownian motion with variance 4/β.
The boundary conditions are f(0)||(1, 0) and when β > 2 also f(1−)||X−1∞ (0, 1)t.
The ratio of entries in X−1

t (0, 1)t performs a hyperbolic Brownian motion in the
Poincare half plane representation, see [35].

Theorem 5.1.3 ([34],[35]). Let Λn have β-Hermite distribution and a ∈ (−2, 2) then√
4 − a2

√
n(Λn − a

√
n)⇒ Sineβ

where Sineβ is the point process of eigenvalues of the Sineβ operator.

Remark 5.1.4. Local limit theorems including the bulk limit given in Theorem
5.1.3 were originally proved for β = 1 and 2 and stated using the integrable
structure of the GOE and GUE. The GUE eigenvalues form a determinantal point
process, and the GOE eigenvalues form a Pfaffian point process with kernels
constructed from Hermite polynomials. The limiting processes may be identified
to looking at the limit of the kernel in the appropriate scale. A version for circular
ensembles with β > 0 is proved in [24].

The original description of the bulk limit process for the β-Hermite ensemble
was through a process called the Browning Carousel first introduced by Valkó
and Virág in [34]. The limiting process introduced there could also be described
in terms of a system of coupled stochastic differential equations which gave the
counting function of the process. In particular let αλ satisfy

(5.1.5) dαλ = λ
β

4
e−

β
4 tdt+ Re

[
(e−iαλ − 1)dZ

]
,

where Zt = Xt + iYt with X and Y standard Brownian motions and αλ(0) = 0.
The αλ are coupled through the noise term. Define Nβ(λ) = 1

2π limt→∞ αλ(t),
then Nβ(λ) is the counting function for Sineβ. This characterization is the one
used to prove all of the results about Sineβ presented in Section 5.4.

The circular unitary β-ensemble is a distribution on Cn with joint density
proportional to ∏

i<j

|λi − λj|
β

with respect to length measure on the unit circle. The local convergence to the
Sineβ process was first shown by Killip and Stoiciu [24]. Using the Killip-Nenciu
[22] representation, Valkó-Virág [35] show that the opeator Circn,β given by
(5.1.1) with hyperbolic Brownian motion replaced by a certain hyperbolic ran-
dom walk, has eigenvalues that are liftings of these λi to the universal cover R.
So the convergence of random matrices reduces to convergence of random walks!

In fact, the inverses of the finite-n and limiting operators can be coupled so
that they are close in Hilbert-Schmidt norm.
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Theorem 5.1.6 ([36]). There exists a coupling so that for all large n we have

‖Circ−1
β,n − Sine−1

β ‖HS 6
log6 n

n
.

Also, if · · · < λn,−1 < λn,0 < 0 < λn,1 < · · · are the eigenvalues of Circβ,n and λk are
the points of Sineβ ordered in the same way then for all large n we have∑

k∈Z

(
1
λk

−
1
λn,k

)2
6

log6 n

n
.

Moreover as n→∞ we have a.s.

max
|k|6 n1/4

log2 n

|λk − λn,k|→ 0.

It is the strongest coupling known so far, and it’s open whether one can do
better than the exponent 1/4.

5.2. The Hard–edge Limit There is another exciting local behavior that has a
general β > 0 limit process description. This process does not appear as a limit
of the β-Hermite ensemble, but does for the related β-Laguerre ensemble. Con-
sider a rectangular matrix n × p matrix Xn with p > n and xi,j ∼ N(0, 1) all
independent. The matrix

Mn = XnX
t
n

is a symmetric matrix which may be thought of as a sample covariance matrix
for a population with independent normally distributed traits. As in the case of
the Gaussian ensembles we could have started with complex entries and looked
instead at XX∗ to form a Hermitian matrix. The eigenvalues of this matrix have
distribution

(5.2.1) fL,β(λ1, ..., λn) =
1

Zβ,n,p

n∏
i=1

λ
β
2 (p−n+1)−1
i e−

β
2 λi
∏
j<k

|λj − λk|
β,

with β = 1. This generalizes to the β-Laguerre ensemble which is a set of points
with density fL,β for any β > 0. The matrix model Mn is part of a wider class
of random matrix models called Wishart matrices. This class of models was orig-
inally introduced by Wishart in the 1920’s.

As in the case of the Gaussian ensembles there is a limiting spectral measure
when the eigenvalues are in the correct scale.

Theorem 5.2.2 (Marchenko-Pastur law). Let λ1, ..., λn have β-Laguerre distribution,

νn =
1
n

n∑
i=1

δλi/n,

and suppose that np → γ ∈ (0, 1]. Then as n→∞
(5.2.3)

νn ⇒ σmp, where
dσmp

dx
= ρmp(x) =

√
(γ+ − x)(x− γ−)

2πγx
1[γ−,γ+],
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and γ± = (1±√γ)2.

Notice that this density can display different behavior at the lower end point
depending on the value of γ. For any γ < 1 we get that the lower edge has the
same

√
x type behavior that we see at the edge of the semi-circle distribution. In

this case the local limit is again the Airyβ process discussed in Section 4. We get
something different if γ = 1. This gives us γ− = 0 and the density simplifies to

ρmp(x) =
1

2π

√
4 − x

x
1[0,4].

In this case the lower edge has an asymptote at 0. In the case where p− n → ∞
this is conjectured to still produce soft-edge behavior and there are limited results
in this direction. In the case where p− n → a as n → ∞ we obtain a different
edge process at the lower edge called a hard-edge process. The name derives from
the fact that the process occurs when the spectrum of a random matrix is forced
against some hard constraint. Recalling the full matrix models for β = 1, 2 we
observe that the matrices are positive definite. This gives a hard lower constraint
of 0 for the eigenvalues. If p is close to n than this hard constraint on the lower
edge will be felt and so result in different local behavior.

We begin by defining the positive random differential operator

(5.2.4) Gβ,a = −e
(a+1)x+ 2√

β
b(x) d

dx

[
e
−ax− 2√

β
b(x) d

dx

]
,

where b(x) is a standard Brownian motion.

Theorem 5.2.5 (Ramírez, Rider, [28]). Let 0 < λ1 < λ2 < · · · have β−Laguerre distri-
bution with p−n = a and let Λ1(a) < Λ2(a) < · · · be the eigenvalues of the Stochastic
Bessel Operator Gβ,a on the positive half-line with Dirichlet boundary conditions, then

{nλ1,nλ2, ...,nλk}⇒ {Λ1(a),Λ2(a), ...,Λk(a)}

(jointly in law) for any fixed k <∞ as n→∞.

Remark 5.2.6. This result was originally conjectured with a different formulation
by Edelman and Sutton [13] using intuition similar to the method of proof used
for the soft edge. The actual result is proved instead by working with the in-
verses and a natural embedding of matrices as integral operators with piece-wise
constant kernels.

5.3. Universality of local processes Recall the definition of β-ensembles intro-
duced in (1.3.4) with the general potential function V(x). The three local processes
that we have discussed capture the local behavior for a wide range of these mod-
els. In particular for β-ensembles where the limiting spectral density has a single
measure of support and is non-vanishing in the interval as long as V(x) grows
fast enough it can be proved that these are the correct limit processes. This was
showed first for the bulk process by Bourgade, Erdős, and Yau [8]. For the soft
edge this was showed by two groups with slightly different conditions on V and
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β. Bourgade, Erdős, and Yau use analytical techniques involving Stieltjes trans-
forms [9], while Krishnapur, Rider, and Virág give a proof that makes use of the
operator convergence structure studied in these notes [25]. Finally a universality
result for the hard edge was shown again using operator methods related to those
introduced in these notes by Rider and Waters [30]

5.4. Properties of the limit processes For the Stochastic Airy Operator (4.2.3)
we saw that it was useful to have a family of stochastic differential equations that
characterizes the point process. The SDEs for SAOβ came from considering the
Ricatti equation. We can build a similar family of diffusions for the Stochastic
Bessel Operator introduced in (5.2.4). There is also a description for the counting
function of the bulk process in terms of SDEs which was given in (5.1.5). These
characterizations are be used to prove the results introduced in this section.

We will begin by discussing result for the Sineβ process. The first two results
are asymptotic results for the number of points in a large interval [0, λ]. Let
Nβ(λ) denote the number of points of Sineβ in [0, λ]. By looking at the integrated
expression of αλ we can check that ENβ(λ) = λ

2π we consider fluctuation around
the mean.

Theorem 5.4.1 (Kritchevski, Valkó, Virág [26]). As λ→∞ we have

1√
log λ

(
Nβ(λ) −

λ

2π

)
⇒ N(0,

2
βπ2 )

This result describes the distribution of the fluctuations on the scale of
√

log λ
there are other regimes. In particular for fluctuation on the order of cλ we have
the following.

Theorem 5.4.2 (Holcomb, Valkó [19]). The rescaled counting function Nβ(λ)/λ sat-
isfies a large deviation principle with scale λ2 and a good rate function βISineβ(ρ) which
can be written in terms of elliptic integrals.

Roughly speaking, this means for large λ

P(Nβ(λ) ∼ ρλ) ∼ e
−λ2ISineβ(ρ).

Remark 5.4.3. Results similar to Theorems 5.4.1 and 5.4.2 may be shown for the
hard edge process. The key observation is that there is an SDE description for the
counting function that may be treated using mostly the same techniques as those
used for the αλ diffusion that characterizes the Sineβ process [17].

The next result give the asymptotic probability of having a large number of
points in a small interval.

Theorem 5.4.4 (Holcomb, Valkó [20]). Fix λ0 > 0, then there exists c depending only
on β and λ0 such that for any n > 1 and 0 < λ 6 λ0 we have

P(Nβ(λ) > n) 6 e
−β

2 n
2 log(nλ )+cn log(n+1) log(nλ )+cn

2
.(5.4.5)
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Moreover, there exists an n0 > 1 so that for any n > n0, 0 < λ 6 λ0 we also have

P(Nβ(λ) = n) > e
−β

2 n
2 log(nλ )−cn log(n+1) log(nλ )−cn

2
.(5.4.6)

The previous three results focused on the number of points in a single interval.
In this situation we have the advantage that the αλ diffusion satisfies a simplified
SDE

dαλ = λ
β

4
e−

β
4 tdt+ 2 sin

(αλ
2

)
dB

(λ)
t ,

where the Brownian motion that appears B(λ) depends on the choice of param-
eter. The next two results require information multiple values of λ and so this
simplification cannot be used. The first is a result on the maximum deviation of
the counting function. This is closely related to questions on the maximum of
Im logΦn(x) where Φn(x) is the characteristic polynomial of the n×n tridiago-
nal model.

Theorem 5.4.7 (Holcomb, Paquette [18]).

max06λ6x[Nβ(λ) +Nβ(−λ) −
λ
π ]

log x
P−−−−→

x→∞ 2√
βπ

.

The next result is a type of rigidity for the Sineβ point process.

Definition 5.4.8. A point process X on a complete separable metric space E is
rigid if and only if for all bounded Borel subsets B of E, the number of points
X(B) in B is measurable with respect to the σ-algebra ΣE\B. Here ΣE\B is the
σ-algebra generated by all of the random variables X(A) with A ⊂ E\B.

A way of thinking about this is that if we have complete information about a
point process X outside of a set B, then this determines the number of points in B.
Notice that in a finite point process with n points this notion of rigidity follows
immediately since we must have X(B) +X(E\B) = n.

Theorem 5.4.9 (Chhaibi, Najnudel [10]). The Sineβ point process is rigid in the sense
of Definition 5.4.8.

5.5. Spiked matrix models and more on the BBP transition Recall that is Sec-
tion 3 we studied the impact of a rank one perturbation on the top eigenvalue
of the GOE. In that case we studied the case where the perturbation was strong
enough to be seen at the scale of the empirical spectral density. That is that the
location of the top eigenvalue when scaled down by

√
n depends on the strength

of the perturbation. These types of results may be refined further to consider the
impact of such a perturbation at the level of the local interactions. As in Section
3 we may look at two types of perturbations.

(1) For additive ensembles we study perturbations of the form GOEn+ a√
n

11t.
Here GOEn is the n× n full matrix model, and 1 is the all-1 vector, with
11t is the all-1 matrix.
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(2) For multiplicative type ensembles we take Xn×m be an n×m(n) matrix
with n < m(n) and independent N(0, 1) entries, then we study X diag(1+
a2, 1, 1, ..., 1)Xt.

Here we will focus on the additive case. In this case it can be shown that if T is
the tridiagonal matrix obtained by tridiagonalizing a GOE, then the correspond-
ing tridiagonal model will have the form T + (aβn+ aY)e1et1 for some random
variable Y with EY = 0 and EY2 bounded (here e1et1 is the n×nmatrix with a 1 in
the top left corner and 0 everywhere else). In the analogue to the soft edge limit
if we have n1/3(1 − a) → w ∈ (−∞,∞] then the top eigenvalues will converge
to the eigenvalues of the Stochastic Airy operator, but with a modified boundary
condition.

Exercise 5.5.1. Let

T = m2
n



1 + w
mn

−1

−1 2 −1

−1 2
. . .

. . . . . . −1

−1
. . .


.

Show that Tvf → −∂2
x for vf = [f(0), f( 1

mn
), f( 2

mn
), ..., f( nmn )] with an appropriate

boundary condition for f. Determine what the boundary condition should be.

We denote by Hβ,w the Stochastic Airy Operator defined in equation (4.2.3),
with boundary condition f ′(0) = wf(0), a Neumann or Robin condition with the
w = ∞ case corresponding to the Dirichlet condition of the original soft edge
process f(0) = 0.

Theorem 5.5.2 (Bloemendal, Virág, [5]). Let an ∈ R, and Gn ∼ GOEn + an√
n

11t,
and suppose that n1/3(1 − an)→ w ∈ (−∞,∞] and n→∞. Let λ1 > λ2 > · · · > λn
be the ordered eigenvalues of Gn. Then jointly for k = 1, 2, ... in the sense of finite
dimensional distributions we have

n1/6(2
√
n− λk)⇒ Λk as n→∞,

where Λ1 < Λ2 < · · · are the eigenvalues of H1,w.

As in the case of the eigenvalue problem for the stochastic Airy operator that
was originally studied (with boundary condition f(0) = 0) we may study the
Ricatti process introduced in (4.5.6). The new boundary condition for Hβ,w leads
us to the same diffusion with a different boundary condition

dpλ = (x+ λ− p2)dx+
d√
β
dbx, p(0) = w.

Relationships between the law of the perturbed eigenvalues and the original
Tracy-Widom distributions may be studied using the space-time generator for
this SDE.
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The generator gives a boudnary value problem representation for the Tracy-
Widomβ distribution. This can be solved explicitly for β = 2, 4. This gives fast
derivations of the famous Painlevé representation for the Tracy-Widom distribu-
tions without the use of determinantal formulas. See [5,6] for further results and
details. It is not known how to deduce Painlevé formulas for the Sineβ process
directly, even for β = 2.

5.6. Sum rules via large deviations Sum rules are a family of relationships used
and studied in the field of orthogonal polynomials that give a relationship be-
tween a functional on a subset of probability measures and the recurrence (or
Jacobi) coefficients of the orthogonal polynomials. It was recently recognized by
Gamboa, Nagel, and Rouault that these relationships can be obtained using large
deviation theory for random matrices [15]. This is a beautiful example of the
power of large deviation theory as well as a demonstration of the relationship
between the Jacobi data and spectral data of an operator. Here we will only state
the result for the semicircle distribution, but the methods have been used for a
wider range of models including the Marchenko-Pastur law and matrix valued
measures. The proof of the theorem for the Hermite/semicircle case is originally
due to Killip and Simon [23] using different methods. The real advance here is
the recognition that Large Deviations may be used to prove sum rules. These
techniques may then be used on a wider range of models.

Before introducing the theorem statement we introduce the Kullback-Leibler
divergence or relative entropy between two probability measures µ and ν

(5.6.1) K(µ|ν) =

{∫
R log dµdνdµ if µ� ν∞ otherwise.

Here µ� ν means that µ is absolutely continuous with respect to ν.
Now returning to the semicircle distribution we note that the Jacobi coefficients

for the semicircle measure are given by

(5.6.2) asck = 0, bsck = 1, for k > 1.

The corresponding orthogonal polynomials are the Chebyshev polynomials of
the second kind. Now suppose that µ is a probability measure on R with Jacobi
coefficients {ak,bk}k>1 and define

(5.6.3) IH(µ) =
∑
k>1

a2
k

2
+ bk − 1 − logbk.

Now suppose that supp(µ) = I ∪ {λ−i }
N−
i=1 ∪ {λ+i }

N+
i=1 with I ⊂ [−2, 2], λ−1 < λ−2 <

· · · < −2 and λ+1 > λ+2 > · · · > 2. and define

(5.6.4) F+
H(x) =

{∫x
2

√
t2 − 4dt if x > 2∞ otherwise,

and F−
H(x) = F+

H(−x).
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Theorem 5.6.5 (Killip and Simon [23], Gamboa, Nagel, and Rouault [15]). Let J be
a Jacobi matrix with diagonal entries a1,a2, ... ∈ R and off-diagonal entries b1,b2, ... > 0
satisfying supk bk + supk |ak| < ∞ and let µ be the associated spectral measure. Then
IH(µ) is infinite if supp(µ) 6= I∪ {λ−i }

N−
i=1 ∪ {λ

+
i }
N+
i=1 as given above. If µ has the desired

support structure than

IH(µ) = K(µsc|µ) +

N+∑
i=1

F+
H(λ

+
i ) +

N−∑
i=1

F−
H(λ

−
i )

where both sides may be infinite simultaneously.

This is the same IH given in (5.6.3). This gives us that for measures that are
“close enough” to semicircular (where IH(µ) is finite) we get that

∑
k>1

a2
k

2
+ bk − 1 − logbk = K(µsc|µ) +

N+∑
i=1

F+
H(λ

+
i ) +

N−∑
i=1

F−
H(λ

−
i ).

The important observation is that IH(µ) is a large deviation rate function for the
appropriate large deviation problem. Because the spectral data and the Jacobi
coefficient data can both be used to describe the asymptotic likelihood of the
same event the rate functions must coincide. See more details and more sum
rules in (e.g. for Marchenko-Pastur) in [15].

5.7. The Stochastic Airy semigroup The idea here will be to show convergence
of the moment generating function tridiagonal matrix model to the operator
e−

T
2 SAOβ . This work by Gorin and Shkolnikov makes use of the moment method

to prove this alternate version of convergence [16]. We begin by considering the
tridiagonal matrix model with the coefficients reversed
(5.7.1)

MN =
1√
β



a1 b1

b1 a2 b2

b2 a3
. . .

. . . . . . bN−1

bN−1 an


, bk ∼ χβk, ak ∼ N(0, 2).

We take A ⊂ R>0, T > 0, and define [MN,A]i,j = [MN]i,j1(
N−i+1/2
N1/3 , N−j+1/2

N1/3 ∈
A). Then we study the moments

M(T ,A,N) =
1
2

((
MN,A

2
√
N

)bTN2/3c
+

(
MN,A

2
√
N

)bTN2/3c−1
)

.

Theorem 5.7.2 (Gorin and Shkolnikov, [16]). There exist an almost surely symmetric
non-negative trace class operator UA(T) on L2(R>0) with UR>0(T) = e

− T
2 SAOβ almost

surely such that
lim
N→∞M(T ,A,N) = UA(T), T > 0
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in the following senses:

(1) Weak convergence: For any locally integrable f,g with subexponential growth at
infinity and πNf denote the appropriate projection of f onto step functions, and
T > 0 we have

lim
N→∞(πNf)tM(T ,A,N)(πNg) =

∫
R>0

(UA(T)f)(x)g(x)dx

in distribution and in the sense of moments.
(2) Convergence of traces: For any T > 0 we have

lim
N→∞Trace(M(T ,A,N)) = Trace(UA(T))

in distribution and in the sense of moments.

This is an alternate notion of operator convergence.
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