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Abstract

It is well known that phase function methods allow for the numerical solution of a large class of
oscillatory second order linear ordinary differential equations in time independent of frequency.
Unfortunately, these methods break down in the commonly-occurring case in which the equation
has turning points. We resolve this difficulty by introducing a generalized phase function method for
second order linear ordinary differential equations with turning points. More explicitly, we prove
the existence of a slowly-varying “Airy phase function” which efficiently represents the solutions
of such an equation, and describe a numerical algorithm for constructing it. The running time
of our algorithm is independent of the magnitude of the logarithmic derivatives of the equation’s
solutions, which is a measure of their rate of variation that generalizes the notion of frequency to
functions which are rapidly varying but not necessarily oscillatory. Once the Airy phase function
has been constructed, any reasonable initial or boundary value problem can be readily solved and,
unlike step methods that only generate the values of a rapidly-varying solution at the nodes of
a sparse discretization grid that is insufficient for interpolation, the output of our scheme allows
for the evaluation of the solution at any point in the equation’s domain. We rigorously justify
our approach by proving not only the existence of slowly-varying Airy phase functions, but also
the convergence of our numerical method. Moreover, we present the results of extensive numerical
experiments demonstrating the efficacy of our algorithm.

Keywords: oscillatory problems, fast algorithms, ordinary differential equations

1. Introduction

Second order linear ordinary differential equations frequently arise in numerical and scientific com-
putations. Many of the equations which are encountered are either of the form

y′′(t) + ω2q(t, ω)y(t) = 0, a < t < b, (1)

with ω a real-valued parameter and q a smooth function such that q and its derivatives with respect
to t are bounded independent of ω, or they can be easily put into this form. Several widely-used
families of special functions, such as the Jacobi polynomials and the spheroidal wave functions,
satisfy equations of this type. They also arise in computations related to plasma physics [8, 6],
Hamiltonian dynamics [13] and cosmology [11, 1], to name just a few representative applications.

For the sake of notational simplicity, we will generally suppress the dependence of q on ω. This

Email address: bremer@math.toronto.edu (James Bremer)



causes no harm because of our assumption that q and its derivatives with respect to t of all orders
are bounded independent of ω. Moreover, we will focus on the commonly-occurring case in which
q has a single simple turning point in its domain [a, b]. Without loss of generality, we will suppose
that a < 0 < b, and that q(t) ∼ t as t → 0. In particular, q is strictly positive on (0, b) and strictly
negative on (a, 0). It is well known that, under these conditions, there exists a basis {y1, y2} in
the space of solutions of (1) which can be asymptotically approximated on various portions of the
interval [a, b] as follows:

(a) In any compact subinterval of (0, b], the estimates

y1(t) =
cos (α0(t))√

α′
0(t)

(
1 +O

(
1

ω

))
and y2(t) =

sin (α0(t))√
α′
0(t)

(
1 +O

(
1

ω

))
(2)

hold uniformly with respect to t as ω → ∞, where α0 is given by

α0(t) =
π

4
+ ω

∫ t

0

√
q(s) ds. (3)

(b) In any compact interval contained in [a, 0), the estimates

y1(t) =
exp (−β0(t))√

β′
0(t)

(
1 +O

(
1

ω

))
and y2(t) =

exp (β0(t))

2
√
β′
0(t)

(
1 +O

(
1

ω

))
(4)

hold uniformly with respect to t as ω → ∞, where β0 is defined via

β0(t) = ω

∫ t

0

√
−q(s) ds. (5)

(c) In any compact subinterval of [a, b], we have

y1(t) =
Bi (γ0(t))√

γ′0(t)

(
1 +O

(
1

ω

))
and y2(t) =

Ai (γ0(t))√
γ′0(t)

(
1 +O

(
1

ω

))
(6)

uniformly with respect to t as ω → ∞, where γ0 is defined by

γ0(t) =


(
3
2ω
∫ t
0

√
q(s) ds

) 2
3 if t ≥ 0

−
(
−3

2ω
∫ t
0

√
−q(s) ds

) 2
3 if t < 0

(7)

and Ai and Bi refer to the solutions of Airy’s differential equation

y′′(t) + ty(t) = 0 (8)

such that

Ai(0) =

√
π

3
2
3Γ
(
2
3

) , Ai′(0) =

√
π

3
1
3Γ
(
1
3

) , Bi(0) =

√
π

3
1
6Γ
(
2
3

) and Bi′(0) =
−3

1
6
√
π

Γ
(
1
3

) . (9)

We note that our definitions of Ai and Bi are nonstandard. It is more common for authors to work
with the functions

1√
π

Ai(−t) and
1√
π

Bi(−t), (10)
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which are solutions of

y′′(t)− ty(t) = 0. (11)

These are the definitions of the Airy functions which are used in [7] and [12], for example. However,
our convention is more suitable when treating equations of the form (1) for which q(t) ∼ t as t → 0,
and our choice of normalization ensures that the Wronskian of {Ai(t), Bi(t)}, and hence also of the
pair of asymptotic approximations appearing in (6), is 1.

It follows from (2), (4) and (6) that the solutions of an equation of the form (1) are rapidly varying
when ω is large. Indeed, if f(t) = y1(t) + iy2(t) and j is a positive integer, then

sup
a≤t≤b

∣∣∣∣∣f (j)(t)

f(t)

∣∣∣∣∣ = O
(
ωj
)

as ω → ∞. (12)

One obvious consequence is that the cost of representing the solutions of (1) over the interval [a, b]
via polynomial or piecewise polynomial expansions grows linearly with ω. Since standard solvers
for ordinary differential equations use such expansions to represent solutions either explicitly or
implicitly, their running times also increase linearly with ω.

In contrast to the rapidly-varying solutions of (1), α0, β0 and γ0 are slowly varying in the sense that
whenever f is equal to one of these functions, [c, d] is a compact interval in the domain of definition
of f and j is a positive integer, the quantity

sup
c≤t≤d

∣∣∣∣∣f (j)(t)

f(t)

∣∣∣∣∣ (13)

is bounded independent of ω. It follows that α0, β0 and γ0 can be represented via polynomial
expansions at a cost which is independent of ω. In particular, initial and boundary value problems
for (1) can be solved with O

(
ω−1

)
relative accuracy in time independent of ω by forming polynomial

expansions of α0, β0 and γ0 and making use of the approximations (2), (4) and (6).

It is well known that there exist higher order generalizations αM and βM of α0 and β0. Indeed,
for each nonnegative integer M and compact subinterval [c, d] of (0, b], there exist smooth functions
α : [c, d] → R and αM : [c, d] → R such that αM is slowly varying in the aforementioned sense,{

cos (α(t))√
α′(t)

,
sin (α(t))√

α′(t)

}
(14)

is a basis in the space of solutions of (1) given on the interval [c, d] and

α(t) = αM (t)

(
1 +O

(
1

ω2(M+1)

))
as ω → ∞. (15)

Similarly, for each compact subinterval [c, d] of [a, 0) and nonnegative integer M , there exist smooth
functions β : [c, d] → R and βM : [c, d] → R such that βM is slowly varying,{

exp (−β(t))√
β′(t)

,
exp (β(t))

2
√

β′(t)

}
(16)

is a basis in the space of solutions of (1) given on the interval [c, d] and

β(t) = βM (t)

(
1 +O

(
1

ω2(M+1)

))
as ω → ∞. (17)
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These estimates are often derived by analyzing the Riccati equation

r′(t) + (r(t))2 + ω2q(t) = 0 (18)

satisfied by the logarithmic derivatives of the solutions of (1); see, for instance, [15]. We will refer
to any α such that (14) is a basis in the space of solutions of (1) on some subinterval of [a, b] as
a trigonometric phase function for (1), and we call any β such that (16) is a basis in the space of
solutions of (1) on some subinterval of [a, b] an exponential phase function for (1).

While α0 and β0 admit simple expressions that are easy to evaluate numerically, the same is not
true of αM and βM when M is large. These functions are given by complicated expressions that
involve repeated integration and differentiation, with the consequence that neither symbolic nor
numerical calculations allow for their effective evaluation. Several recently introduced methods that
apply to equations of the form (1) for which q is strictly positive (i.e., in the oscillatory regime)
overcome this difficulty by numerically solving various nonlinear ordinary differential equations to
calculate a trigonometric phase function directly rather than constructing one of the asymptotic
approximations αM . The first such scheme, that of [3], considers the nonlinear differential equation

ω2q(t)− (α′(t))2 +
3

4

(
α′′(t)

α′(t)

)2

− 1

2

α′′′(t)

α′(t)
= 0, (19)

which we refer to as Kummer’s equation in light of the article [10]. The solutions of (19) comprise the
trigonometric phase functions for (1), and the method of [3] exploits the fact that (15) implies the
existence of a solution of (19) that can be regarded as slowly varying for the purposes of numerical
computation. Indeed, by choosing M to be large, we see that there exists a trigonometric phase
function which agrees to machine precision accuracy with a slowly-varying function, even for modest
values of ω. Of course, since almost all solutions of Kummer’s equation are rapidly varying, some
mechanism must be used to select this slowly-varying solution. The algorithm of [3] employs a
“windowing scheme” that entails smoothly deforming the coefficient q into a constant over a portion
of the solution domain.

The paper [15] introduces a faster and simpler algorithm which appears to be the current state
of the art for solving equations of the form (1) in the oscillatory case. It operates by numerically
constructing a slowly-varying solution of the Riccati equation (18). Once this has been done, a
slowly-varying trigonometric phase function α is obtained via the formula

r(t) = iα′(t)− 1

2

α′′(t)

α′(t)
(20)

that connects the solutions of (18) to those of (19). To identify the desired solution, (18) is discretized
over a small interval [a0, b0] in the solution domain via a Chebyshev spectral method and Newton’s
method is applied to the resulting system of nonlinear algebraic equations. The discretization grid
is chosen to be dense enough to represent the desired slowly-varying solution, but sparse enough
that it does not discretize the rapidly-varying ones. A proof that the Newton iterates converge to a
unique vector representing the desired solution of the Riccati equation provided that ω is sufficiently
large is given in [15]. Once the values of this solution are known on the small interval [a0, b0], an
initial value problem for (18) is solved in order to extend it to [a, b], and the desired slowly-varying
trigonometric phase function is constructed using (20).

Both of the phase function methods of [3] and [15] run in time independent of ω, allow for the solution
of any reasonable initial or boundary value problem for (1) and achieve accuracy on the order of
the condition number of the problem being solved. Moreover, unlike step methods which output
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the values of a rapidly-varying solution of (1) on a sparse grid of discretization nodes that does not
suffice for interpolation, the phase functions produced by [3] and [15] allow for the evaluation of
solutions anywhere in the interval [a, b] at a cost independent of ω.

While it is shown in [4] that trigonometric phase functions can represent the solutions of an equation
of the form (1) near a turning point, they exhibit complicated behavior there, with the consequence
that the cost to calculate trigonometric phase functions for second order linear ordinary differential
equations with turning points is high and typically increases with ω. Here, we address this difficulty
by introducing a generalized phase function method adapted to equations of the form (1) with
turning points.

We first show that, under our assumptions on q and for any nonnegative integer M , there exist a
smooth function γ : [a, b] → R and a smooth slowly-varying function γM : [a, b] → R such that{

Bi (γ(t))√
γ′(t)

,
Ai (γ(t))√

γ′(t)

}
(21)

is a basis in the space of solutions of (1) and

γ(t) = γM (t)

(
1 +O

(
1

ω2(M+1)

))
as ω → ∞. (22)

We will call any function γ such that (21) is a basis in the space of solutions of (1) an Airy phase
function for (1). While the estimates (15) and (17) follow easily from results which can be found in
many sources, (22) appears to be novel. The standard asymptotic approximations of the solutions
of (1), which are discussed in Chapter 11 of [12] and Chapter 2 of [7], among many other sources,
are of the different form

z
(
ω

2
3 ξ(t)

)
√
ξ′(t)

M∑
j=0

Aj(ξ(t))

ωj
+

z′
(
ω

2
3 ξ(t)

)
ω

4
3

√
ξ′(t)

M∑
j=0

Bj(ξ(t))

ωj
, (23)

where ξ(t) = ω− 2
3γ0(t) and z is taken to be Ai or Bi. We note that because (22) holds on any

compact interval in the solution domain of (1), it can be combined with standard asymptotic
estimates for the Airy functions to obtain (15) and (17). However, because (15) and (17) do not
hold in a neighborhood of the turning point, they cannot be used to derive (22).

Airy phase functions satisfy the nonlinear differential equation

ω2q(t)− γ(t)(γ′(t))2 +
3

4

(
γ′′(t)

γ′(t)

)2

− 1

2

γ′′′(t)

γ′(t)
= 0, (24)

which we will refer to as the Airy-Kummer equation, and we go on to prove that they can be
computed numerically by applying a method analogous to the algorithm of [15] to (24). That is, we
show that if (24) is discretized over a small interval [−a0, a0] via a Chebyshev spectral method and
Newton’s method is applied to the resulting system of nonlinear algebraic equations with the first-
order approximate γ0 used to form an initial guess, the iterates converge to a vector representing the
desired slowly-varying Airy phase function γ, provided a0 is sufficiently small and ω is sufficiently
large. We use γ0 as an initial guess because, unlike the higher order approximates γM , it can
be readily calculated. The analysis presented here to establish the estimate (22) and prove the
convergence of the Newton iterations for (24) is significantly more involved that that of [15] owing
to the much more complicated structure of the Airy-Kummer equation (24) vis-à-vis the Riccati
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equation (18).

As a last step in our algorithm, the function γ is extended to the entire solution domain [a, b] of (1)
by solving an initial value problem for (24). Here, we use an adaptive Chebyshev spectral method,
and the result is a collection of piecewise Chebyshev expansions representing the Airy phase function
γ and its first few derivatives. Once these expansions have been obtained, any reasonable initial
or boundary value problem for (1) can be easily solved. The running time of our algorithm is
independent of ω and the obtained solution can be readily evaluated at any point in [a, b] at a cost
which is independent of ω.

The scheme of this paper can be combined with the phase function method of [15] by computing
trigonometric or exponential phase functions in some regions and Airy phase functions in others,
and this is sometimes more efficient than using these algorithms separately. Moreover, our method
generalizes in a straightforward way to equations with multiple simple turning points: one simply
constructs multiple Airy phase functions, one for each turning point, using our method. The
situation regarding higher order turning points, however, is more complicated. While numerical
experiments show that a straightforward generalization of our numerical algorithm works well in
the setting of equations of the form (1) in which q(t) ∼ tσ as t → 0 with σ > −2, the analysis
presented here only applies when σ is −1, 0 or 1. In this paper, we will focus on equations with
simple turning points and we leave a treatment of other cases for future work.

The remainder of this paper is structured as follows. Section 2 discusses the necessary mathematical
and numerical preliminaries, and introduces the notation used in the rest of the paper. Our proof
of the existence of slowly-varying Airy phase functions is given in Section 3, while Section 4 gives
a proof that Newton’s method converges when it is applied to a spectral discretization of (24)
on a small interval containing the turning point. Section 5 details our algorithm for the numerical
computation of Airy phase functions, and we present the results of numerical experiments conducted
to assess its effectiveness in Section 6. We close with a few brief remarks regarding this work and
future directions for research in Section 7.

2. Preliminaries

2.1. Notation and conventions
We use ∂jK(t, s) for the partial derivative of a multivariate function K : Rn → R with respect to
its jth argument. We denote the Fréchet derivative of a map F : X → Y between Banach spaces
at the point x by DxF . The space of bounded linear functions X → Y is L(X,Y ), and we say a
function F : Ω ⊂ X → Y given on an open subset Ω in X is continuously differentiable provided
the map Ω → L(X,Y ) given by x 7→ DxF is continuous.

We use ∥f∥∞ for the uniform norm of the function f over its domain of definition. We let C1 ([c, d])
be the Banach space of functions f : [c, d] → R which have uniformly continuous derivatives. When
working with C1 ([c, d]), we will use the nonstandard norm

∥f∥ω = ω2 ∥f∥∞ + ω
∥∥f ′∥∥

∞ , (25)

which is defined for any positive value of ω. We will use bold symbols for elements of the Euclidean
space Rk, and denote the l∞

(
Rk
)

norm of a vector v by ∥v∥∞. We use diag (x) for the k × k
diagonal matrix whose diagonal entries are the elements of the vector x ∈ Rk. The Hadamard or
pointwise product of the vectors x and y is denoted x ◦ y. Moreover, if v =

(
v1 v2 · · · vk

)⊤,
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then, for each integer j, we use v◦j for the vector(
vj1 vj2 · · · vjk

)⊤
. (26)

We denote the Chebyshev polynomial of degree j by Tj , and use tcheb
1,k , tcheb

2,k , . . . , tcheb
k,k for the nodes

of the k-point Chebyshev extremal grid on [−1, 1], which are given by the formula

tcheb
i,k = cos

(
π
k − i

k − 1

)
. (27)

The k × k identity matrix is Ik, and we use Dk for the k × k spectral differentiation matrix which
takes the vector (

p
(
tcheb
1,k

)
p
(
tcheb
2,k

)
· · · p

(
tcheb
k,k

) )⊤
(28)

of values of a polynomial p of degree less than k at the Chebyshev nodes to the vector(
p′
(
tcheb
1,k

)
p′
(
tcheb
2,k

)
· · · p′

(
tcheb
k,k

) )⊤
(29)

of the values of its derivatives at the same nodes.

2.2. The Newton-Kantorovich theorem
In [9], Kantorovich generalized Newton’s method to the case of maps between Banach spaces and
gave conditions for its convergence. Here, we state a simplified version of the Newton-Kantorovich
theorem that can be found as Theorem 7.7-4 in Section 7.7 of [5]. Note that we have corrected a
minor typo in condition (5) of the theorem.

Theorem 1. Suppose that Ω is an open subset of the Banach space X, that Y is a Banach space
and that F : Ω ⊂ X → Y is continuously differentiable. Suppose also that there exist a point x0 ∈ Ω
and constants λ and η such that

1. Dx0F admits an inverse (Dx0F )−1 ∈ L(Y,X),

2. Bη (x0) ⊂ Ω,

3. 0 < λ <
η

2
,

4.
∥∥∥(Dx0F )−1 F (x0)

∥∥∥ ≤ λ and

5.
∥∥∥(Dx0F )−1 (DxF −DyF )

∥∥∥ ≤ 1

η
∥x− y∥ for all x, y ∈ Bη(x0).

Then, DxF has a bounded inverse DxF
−1 ∈ L(Y,X) for each x ∈ Bη(x0), the sequence {xn} defined

by

xn+1 = xn − (DxnF )−1 F (xn) (30)

is contained in the open ball

Bη−(x0), where η− = η

(
1−

√
1− 2λ

η

)
≤ η (31)
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and {xn} converges to a zero x∗ of F . Moreover, x∗ is the only zero of F in the ball Bη(x0) and,
for each n ≥ 0, we have

∥xn − x∗∥ ≤ η

2n

(
η−

η

)2n

. (32)

2.3. A Green’s function for an auxiliary differential equation related to the Airy functions
In Section 3, we use a Green’s function G(t, s) for the differential equation

z′′′(t) + 4tz′(t) + 2z(t) = 0 (33)

in order to form an integral operator to which we then apply a contraction mapping argument. It
is critical that G(t, s) and its first order partial derivatives ∂1G(t, s) and ∂2G(t, s) be bounded for
all (t, s) ∈ R× R. In addition, it will be necessary to choose a Green’s function which enforces the
condition z(0) = 0.

Fortunately, because the solutions of (33) are explicitly known, it is straightforward to construct a
Green’s function with the desired properties. Indeed,

φ1(t) = 2−
1
3 Ai2(t), φ2(t) = 2−

1
3 Bi2(t) and φ3(t) = 2−

1
3 Ai(t) Bi(t) (34)

is a triple of solutions of (33) whose Wronskian is 1, and the method of variations of parameters
can be used to show that

G0(t, s) =

{
−φ2(t) (φ1(s)φ

′
3(s)− φ′

1(s)φ3(s)) + φ3(t) (φ1(s)φ
′
2(s)− φ′

1(s)φ2(s)) if s ≤ t

−φ1(t) (φ2(s)φ
′
3(s)− φ′

2(s)φ3(s)) if s ≥ t
(35)

is a Green’s function for (33). The well-known asymptotic estimates

Ai(t) ∼ t−
1
4 cos

(
π

4
− 2

3
t
3
2

)
, Bi(t) ∼ t−

1
4 sin

(
π

4
− 2

3
t
3
2

)
as t → ∞ (36)

and

Ai(t) ∼ 1

2
t−

1
4 exp

(
−2

3
(−t)

3
2

)
, Bi(t) ∼ t−

1
4 exp

(
2

3
(−t)

3
2

)
as t → −∞ (37)

imply that G0(t, s) is bounded on R×R. Moreover, the estimates (36) and (37) can be differentiated
in order to see that the partial derivatives ∂1G0(t, s) and ∂2G0(t, s) are also bounded for all (t, s) ∈
R× R. Since Ai(0) ̸= 0, we can now define

G(t, s) = G0(t, s)−
Ai2(t)

Ai2(0)
G0(0, s) (38)

so that

z(t) =

∫ d

c
G(t, s)f(s) ds (39)

is a solution of the inhomogeneous equation

z′′′(t) + 4tz′(t) + 2z(t) = f(t), c < t < d, (40)

such that z(0) = 0. That G(t, s) and its partial derivatives ∂1G(t, s) and ∂2G(t, s) are bounded for
all (t, s) ∈ R× R is clear given the properties of G0 and Ai.
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2.4. Generalized phase functions
Trigonometric and exponential phase functions are particular cases of a more general construction
which we now discuss. It can be easily seen that the transformation

y(t) =
z(λ(t))√

λ′(t)
(41)

takes the solutions of

z′′(t) + q̃(t)z(t) = 0 (42)

to those of (1) provided λ satisfies the nonlinear ordinary differential equation

ω2q(t)− q̃(λ(t))(λ′(t))2 +
3

4

(
λ′′(t)

λ′(t)

)2

− 1

2

λ′′′(t)

λ′(t)
= 0. (43)

We will call (43) the generlized Kummer equation and refer to its solutions as generalized phase
functions for (1). Their utility lies in the fact that the combination of the solutions of (42) and the
transformation λ can be simpler in some fashion than the solutions of (1).

When q is strictly positive, one usually chooses q̃ to be 1. In this event, (43) becomes Kummer’s
equation (19) and (42) is

z′′(t) + z(t) = 0. (44)

Since {cos(t), sin(t)} is a basis in the space of solutions of (44), it follows that if α satisfies (19),
then (14) is a basis in the space of solutions of (1). That is, the solutions of Kummer’s equation are
trigonometric phase functions. When q is strictly negative, one typically takes q̃ = −1 so that (43)
becomes

ω2q(t) + (β′(t))2 +
3

4

(
β′′(t)

β′(t)

)2

− 1

2

β′′′(t)

β′(t)
= 0. (45)

Since, in this case, {exp(−t), exp(t)/2} is a basis in the space of solutions of (42), (16) is a basis in
the space of solutions of (1) whenever β satisfies (45). That is, the solutions of (45) are exponential
phase functions for (1).

In this paper, our interest is in the case in which the coefficient q in (1) has a simple turning point.
In this event, it is more appropriate to take q̃(t) = t so that (42) becomes Airy’s equation (8) and
(43) becomes the Airy-Kummer equation (24). Since the Airy functions Ai(t) and Bi(t) constitute
a basis in the space of solutions of (8), the solutions of (24) are Airy phase functions for (1).

3. Existence of slowly-varying Airy phase functions

In this section, we prove the estimate (22). Our argument is divided into three parts. In Subsec-
tion 3.1, we use the method of matched asymptotic expansions to show that, for all sufficiently large
ω, there exists a sequence u0, u1, . . . , uM of slowly-varying functions such that when the function
γM defined via

γM (t) = ω
2
3

(
u0(t) +

u1(t)

ω2
+ · · ·+ uM (t)

ω2M

)
(46)
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is inserted into the Airy-Kummer equation, the residual

RM (t) = ω2q(t)− γM (t)(γ′M (t))2 +
3

4

(
γ′′M (t)

γ′M (t)

)2

− 1

2

γ′′′M (t)

γ′M (t)
(47)

and its derivative are on the order of ω−2M . It will emerge during the course of our argument that
γ′M is nonzero on [a, b], so that (47) is well-defined, and we will also show that γM has only a single
(simple) zero t0 in [a, b]. In Subsection 3.2, we represent a solution γ of the Airy-Kummer equation
in the form

γ(t) =

∫ t

t0

γ′M (s) exp (2δ(s)) ds (48)

and derive an integral equation for the function δ. Finally, in Subsection 3.3, we use a contraction
mapping argument to show the existence of a solution of this integral equation whose L∞ ([a, b])
norm is on the order of ω−2(M+1). It follows by applying the integral mean value theorem to (48)
that, for each t ∈ [a, b], there exists a point ξ in [a, b] such that

γ(t) =

(∫ t

t0

γ′M (s) ds

)
exp(2δ(ξ)) = γM (t)

(
1 + 2δ(ξ) + (δ(ξ))2 + · · ·

)
. (49)

The estimate (22) follows immediately from (49) and the fact that the L∞ ([a, b]) norm of δ is on
the order of ω−2(M+1).

3.1. Formal asymptotic expansion
It is convenient to define the function

Q(t) =

∫ t

0

√
|q(s)| ds. (50)

By assumption, q is a smooth, q(t) ∼ t as t → 0 and the only zero of q in the interval [a, b] occurs
at the point 0. These properties of q together with l’Hôpital’s rule can be used to show that Q and
Q′ have the forms

Q(t) =
2

3
sign(t) |t|

3
2 Q0(t) and Q′(t) =

√
|t|Q1(t), (51)

where Q0 and Q1 are smooth and positive on [a, b].

We plug the ansatz (46) into the Airy-Kummer equation (24) and write the resulting expression as

ω2q(t)− ω2

 M∑
j=0

uj(t)

ω2j

 M∑
j=0

u′j(t)

ω2j

2

+

∞∑
j=0

Sj(u0(t), u1(t), . . . , umin(j,M)(t))

ω2j
= 0, (52)

where Sj is the coefficient of ω−2j in the formal expansion of the Schwarzian derivative

3

4

(
γ′′M (t)

γ′M (t)

)2

− 1

2

γ′′′M (t)

γ′M (t)
(53)

in inverse powers of ω obtained by expanding the parenthetical expression in the formula

1

γ′M (t)
=

1

ω
2
3u′0(t)

(
1 +

1

ω2

u′1(t)

u′0(t)
+

1

ω4

u′2(t)

u′0(t)
+ · · · 1

ω2M

u′M (t)

u′0(t)

)−1

(54)

in a Neumann series, plugging the result into (53) and making use of the obvious expressions for
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γ′′M and γ′′′M obtained from (46). By grouping terms in (52), we obtain an expression of the form

ω2F−1(Q(t), u0(t)) + F0(Q(t), u0(t), u1(t)) +
1

ω2
F1(Q(t), u0(t), u1(t), u2(t)) + · · ·+

1

ω2(M−1)
FM−1(Q(t), u0(t), . . . , uM (t)) + resM (t) = 0,

(55)

where

F−1 (Q(t), u0(t)) = sign(t)
(
Q′(t)

)2 − (u′0(t))2 (u0(t)) , (56)

each subsequent Fk takes the form

Fk(Q(t), u0(t), u1(t), . . . , uk(t), uk+1(t)) = −(u′0(t))
2uk+1(t)− 2u0(t)u

′
0(t)u

′
k+1(t) + resk(t) (57)

with

resk(t) = Sk(u0(t), . . . , uk(t)) −
∑

i1+i2+i3=k
0≤i1,i2,i3<k

ui1(t)u
′
i2(t)u

′
i3(t) (58)

and

resM (t) =

∞∑
j=M

Sj(u0(t), . . . , uM (t))

ω2j
−

4M∑
k=2M

1

ω2k

∑
i1+i2+i3=k
0≤i1,i2,i3≤M

ui1(t)u
′
i2(t)u

′
i3(t). (59)

The nonlinear differential equation F−1(Q(t), u0(t)) = 0 admits the solution

u0(t) = sign(t)

(
3

2
sign(t)Q(t)

) 2
3

. (60)

From (51), we see that

u0(t) = t (Q0(t))
2
3 and u′0(t) =

Q1(t)

(Q0(t))
1
3

(61)

so that u0 is smooth, u′0 is nonzero on [a, b] and the only zero of u0 on [a, b] is the simple zero at 0.
With our choice of u0, Fk becomes

Fk(Q(t), u0(t), u1(t), . . . , uk(t), uk+1(t)) = −2
2
3Q′(t)

d

dt

[
(3Q(t))

1
3 uk+1(t)

]
+ resk(t). (62)

We now view F0(Q(t), u0(t), u1(t)) = 0 as a first order linear ordinary differential equation defining
u1. The general solution is

u1(t) = (3Q(t, ω))−
1
3

(
C + 2−

2
3

∫ t

0

res0(s)

Q′(s)
ds

)
(63)

with C an arbitrary constant. We choose C = 0 so that u1 is equal to

2−
2
3

sign(t)
√
|t|(3Q0(t))

1
3

∫ t

0

res0(s)

sign(s)
√
|s|
√

q0(s)
ds. (64)

It is easy to see that

S0(u0(t)) =
3

4

(
u′′0(t)

u′0(t)

)2

− 1

2

u′′′0 (t)

u′0(t)
(65)
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is smooth on [a, b] since u′0(t) is nonzero there. It follows that res0(t) is also smooth. In particular,
u1(t) is of the form

f(t)

k(t)

∫ t

0

g(s)

k(s)
ds (66)

with f and g smooth functions and k(s) = sign(s)
√
|s|. It is straightforward, but somewhat tedious,

to use l’Hôpital’s rule to show that functions of the form (66) are smooth. We note that any other
choice of C would result in u1 being singular at 0. Since u1 is smooth, u0 is smooth and u′0 does
not vanish on [a, b],

S1(u0(t), u1(t)) = −3

2

u′1(t) (u
′′
0(t))

2

(u′0(t))
3 +

3

2

u′′1(t)u
′′
0(t)

(u′0(t))
2 +

1

2

u′′′0 (t)u
′
1(t)

(u′0(t))
2 − 1

2

u′′′1 (t)

u′0(t)
(67)

and also res1 are smooth on [a, b]. We can therefore apply the preceding argument to show that
there exists a smooth solution u2 of the first order linear ordinary differential equation

F1(Q(t), u0(t), u1(t), u2(t)) = 0. (68)

Continuing in this fashion gives us the desired sequence of smooth functions u0, u1, . . . , uM . By
construction, the uj are independent of ω when q is independent of ω and slowly-varying in the
sense discussed in the introduction when q depends on ω but its derivatives are bounded independent
of ω.

Now that u0, u1, . . . , uM have been constructed, we will show that the formal calculations used to
obtain the expansion of (53) are justified when ω is sufficiently large. To that end, we observe
that (46), together with the properties of u0 discussed above, imply that there is a constant ω0

such that, for all ω ≥ ω0, γ′M is nonzero on [a, b] and γM has exactly one zero t0 in [a, b]. It is
therefore acceptable to take the reciprocal of γ′M in (54). Moreover, it is clear that the Neumann
series used to expand the parenthetical expression in (54) is convergent for all sufficiently large ω,
and we increase ω0, if necessary, to ensure that this is the case for all ω ≥ ω0. It follows that, for all
ω ≥ ω0, the quantity resM given in (59) is well-defined. By the method of construction of the uj ,
resM is the only nonzero term in (55). Accordingly, the residual RM obtained when γM is inserted
into the Airy-Kummer equation is equal in magnitude to resM . Because resM is on the order of
ω−2M and the derivatives of the uj are bounded independent of ω, there exists a constant C1 such
that

sup
a≤t≤b

|RM (t)|∞ ≤ C1

ω2M
and sup

a≤t≤b

∣∣R′
M (t)

∣∣
∞ ≤ C1

ω2M
(69)

for all ω ≥ ω0.

Remark 1. The method used here to construct a formal asymptotic expansion representing a solu-
tion of the Airy-Kummer equation (24) can be applied to the generalized Kummer equation (43) when
q̃(t) = tσ, q(t) = tσq0(t) with q0 a smooth positive function and σ equal to −1, 0 or 1. Interestingly,
though, it fails for all other values of σ. Inserting

γ(t) = ω
2

2+σ

(
u0(t) +

u1(t)

ω2
+ · · ·+ uM (t)

ω2M

)
(70)

into (43) yields a sequence of differential equations defining the uj, the first of which is the nonlinear
equation

sign(t)(Q′(t))2 −
(
u′0(t)

)2
(u0(t))

σ . (71)
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For all real-valued σ > −2, (71) admits the smooth solution

u0(t) = sign(t)

(
2 + σ

2
sign(t)

∫ t

0

√
|q(s)| ds

) 2
2+σ

. (72)

However, the subsequent equation which defines u1 is

2
2

2+σQ′(t)
d

dt

[
((σ + 2)Q(t))

σ
2+σ u1(t)

]
= res0(t) :=

3

4

(
γ′′0 (t)

γ′0(t)

)2

− 1

2

(
γ′′′0 (t)

γ′0(t)

)
, (73)

and its general solution is

u1(t) =
2−

2
2+σ

((σ + 2)Q(t))
σ

2+σ

(
C +

∫ t

0

res0(s)

Q′(s)

)
, (74)

which has the form

f(t)

k(t)

(
C +

∫ t

0

g(s)

k(s)
ds

)
(75)

with k(t) ∼ |t|
σ
2 as t → 0. It can be readily seen that there is no choice of C which makes (75)

smooth for all smooth f and g unless σ is one of the special values −1, 0 or 1.

3.2. Integral equation formulation
We will now reformulate an integral equation for a function δ such that (48) satisfies the Airy-
Kummer equation. We will assume throughout this subsection that ω ≥ ω0, so that γ′M is nonzero
on [a, b] and t0 is the sole (simple) zero of γM in [a, b].

Inserting (48) into the Airy-Kummer equation yields

δ′′(t)−
γ′′M (t)

γ′M (t)
δ′(t) + exp(4δ(t))(γ′M (t))2

∫ t

t0

γ′M (s) exp(2δ(s)) ds

= ω2q(t) +
3

4

(
γ′′M (t)

γ′M (t)

)2

− 1

2

γ′′′M (t)

γ′M (t)
+
(
δ′(t)

)2
,

(76)

and we subtract (γ′M (t))2γM (t) from both sides of (76) to obtain

δ′′(t)−
γ′′M (t)

γ′M (t)
δ′(t) + exp(4δ(t))(γ′M (t))2

∫ t

t0

γ′M (s) exp(2δ(s)) ds− (γ′M (t))2γM (t)

= RM (t) +
(
δ′(t)

)2
,

(77)

where RM is given by (47). Expanding the exponentials appearing in (77) in power series and
moving all of the terms of order (δ(t))2 or higher to the right-hand side results in

δ′′(t)−
γ′′M (t)

γ′M (t)
δ′(t) + 4γM (t)

(
γ′M (t)

)2
δ(t) + 2

(
γ′M (t)

)2 ∫ t

t0

γ′M (s)δ(s) ds

= RM (t) + F (t, δ(t), δ′(t)),

(78)

where

F (t, δ(t), δ′(t)) =
(
δ′(t)

)2 − (γ′M (t)
)2 ∫ t

t0

γ′M (s)

(
(2δ(s))2

2
+

(2δ(s))3

3!
+ · · ·

)
ds
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− 4δ(t)
(
γ′M (t)

)2 ∫ t

t0

γ′M (s)

(
2δ(s) +

(2δ(s))2

2
+ · · ·

)
ds (79)

−

(
(4δ(t))2

2
+

(4δ(t))3

3!
+ · · ·

)(
γ′M (t)

)2 ∫ t

t0

γ′M (s) exp(2δ(s)) ds.

We next observe that if z solves the equation(
γ′M (t)

)2 (
z′′′(γM (t)) + 4γM (t)z′(γM (t)) + 2 (z(γM (t))− z(γM (t0)))

)
= f(t), a < t < b, (80)

with f(t) = RM (t) + F (t, δ(t), δ′(t)), and we let δ(t) = z′(γM (t)), then δ satisfies (78). Since γ′M is
nonvanishing on [a, b] and γM (t0) = 0, we can divide by (γ′M (t))2 and introduce the new variable
u = γM (t) in (80) to obtain

z′′′(u) + 4uz′(u) + 2 (z(u)− z(0)) = f
(
γ−1
M (u)

)( 1

γ′M (γ−1
M (u))

)2

, γM (a) < u < γM (b). (81)

Using the Green’s function G(t, s) defined in Section 2.3, we can express a solution of (81) as

z(u) =

∫ γM (b)

γM (a)
G(u, v)f

(
γ−1
M (v)

)( 1

γ′M (γ−1
M (v))

)2

dv. (82)

We note that G was chosen so that the function defined in (82) satisfies the condition z(0) = 0.
By differentiating (82) and letting u = γM (t), v = γM (s) in the resulting expression, we obtain the
integral equation

δ(t) = z′(γM (t)) =

∫ b

a
K(t, s)

(
RM (s) + F (s, δ(s), δ′(s))

)
ds, (83)

where

K(t, s) =
∂1G(γM (t), γM (s))

γ′M (s)
, (84)

RM is the residual (47) and F is given by (79).

We have arrived at the desired integral equation formulation (83) for the function δ. Our choice of
the Green’s function G(t, s) ensures that K(t, s) is on the order of ω−1, its derivatives are bounded
independent of ω and its antiderivatives are on the order of ω−2. In particular, using (36) and
(37), and the formulas derived from them through integration, it can be shown that there exists a
constant C2 such that

sup
a≤s,t≤b

|K(t, s)| ≤ C2

ω
and sup

a≤s,t≤b

∣∣∣K̃(t, s)
∣∣∣ ≤ C2

ω2
, (85)

where

K̃(t, s) =

∫ t

0
K(t, s) ds. (86)

Moreover, the formulas which result from differentiating (36) and (37) imply that we can adjust C2

such that the bounds

sup
a≤s,t≤b

|∂1K(t, s)| ≤ C2 and sup
a≤s,t≤b

∣∣∣∂1K̃(t, s)
∣∣∣ ≤ C2

ω
(87)
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hold in addition to (85).

3.3. Contraction mapping argument
In this subsection, we prove that there exists an r > 0 such that, for all sufficiently large ω, the
nonlinear integral operator

T [δ] (t) =

∫ b

a
K(t, s)

(
RM (s) + F (s, δ(s), δ′(s))

)
ds (88)

is a contraction on a closed ball of radius rω−2M in the Banach space C1 ([a, b]) endowed with the
norm ∥ · ∥ω defined in (25). Since

∥δ∥∞ ≤ r

ω2M+2
and ∥δ′∥∞ ≤ r

ω2M+1
(89)

when ∥δ∥ω ≤ rω−2M , it will immediately follow that, for all sufficiently large ω, there exists a
solution δ of (83) with ∥δ∥∞ ≤ rω−2(M+2). We will, once again, assume that ω ≥ ω0, so that γM
has the necessary properties and (69) holds. However, we note that this condition is not necessarily
sufficient for the argument of this section; i.e., it might be that we need ω to be strictly greater
than ω0 in order for T to be a contraction.

By construction, we have that

γM (t) = O
(
ω

2
3

)
and γ′M (t) = O

(
ω

2
3

)
as ω → ∞. (90)

It follows from (89) and (90) that each of the terms in (79) is on the order of ω−(4M+2) when
∥δ∥ω ≤ rω−2M . In particular, there exists a smooth function E, which is bounded independent of
ω, and such that

sup
a≤t≤b

∣∣F (t, δ(t), δ′(t))∣∣ ≤ E(r)

ω4M+2
(91)

for all ∥δ∥ω ≤ rω−2M . It follows from (85), (87) and (91) that∣∣∣∣∫ b

a
K(t, s)F (s, δ(s), δ′(s) ds

∣∣∣∣ ≤ C2E(r)

ω4M+3
(92)

and ∣∣∣∣∫ b

a
∂1K(t, s)F (s, δ(s), δ′(s) ds

∣∣∣∣ ≤ C2E(r)

ω4M+2
(93)

for all ∥δ∥ω ≤ rω−2M . Now integration by parts gives us the formula∫ b

a
K(t, s)RM (s) ds = K̃(t, b)RM (b)− K̃(t, a)RM (a)−

∫ b

a
K̃(t, s)R′

M (s) ds, (94)

where K̃ is the antiderivative of K defined in (86), and we combine (69) and (85) with (94) to see
that

sup
a≤t≤b

∣∣∣∣∫ b

a
K(t, s)RM (s) ds

∣∣∣∣ ≤ C1C2(b− a+ 2)

ω2M+2
. (95)
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We differentiate (94) and proceed as before, except we use (87) in place of (85), to obtain

sup
a≤t≤b

∣∣∣∣∫ b

a
∂1K(t, s)RM (s) ds

∣∣∣∣ ≤ C1C2(b− a+ 2)

ω2M+1
. (96)

By combining (92) and (95), we obtain the bound

∥T [δ]∥∞ ≤ C1C2(b− a+ 2)

ω2M+2
+

C2E(r)

ω4M+3
, (97)

which holds for all ∥δ∥ω ≤ rω−2M . Likewise, (93) and (96) show that∥∥T [δ]′
∥∥
∞ ≤ C1C2(b− a+ 2)

ω2M+1
+

C2E(r)

ω4M+2
(98)

for all ∥δ∥ω ≤ rω−2M . Now we let r = 2C1C2(b− a+ 2) and observe that (97) and (98) imply

∥T [δ]∥∞ ≤ r

ω2M+2
and

∥∥T [δ]′
∥∥
∞ ≤ r

ω2M+1
(99)

for all ∥δ∥ω ≤ rω−2M and all sufficiently large ω. That is, T preserves the closed ball of radius
rω−2M centered at 0 in the space C1 ([a, b]) endowed with the ∥ · ∥ω norm, provided ω ≥ ω0 is large
enough that

E(r)

ω2M+1
≤ C1(b− a+ 2). (100)

It remains to show that T is a contraction for sufficiently large ω. To that end, we observe that the
Fréchet derivative of T at the point δ is the linear operator

DδT [h] (t) =

∫ b

a
K(t, s)H(s, δ(s), δ′(s), h(s), h′(s)) ds, (101)

where H(s, δ(s), δ′(s), h(s), h′(s)) is

2δ′(t)h′(t)− 2
(
γ′M (t)

)2 ∫ t

t0

γ′M (s)

(
2δ(s) +

(2δ(s))2

2
+ · · ·

)
h(s) ds

− 4h(t)
(
γ′M (t)

)2 ∫ t

t0

γ′M (s)

(
2δ(s) +

(2δ(s))2

2
+ · · ·

)
ds

− 8δ(t)
(
γ′M (t)

)2 ∫ t

t0

γ′M (s) exp(2δ(s))h(s) ds (102)

− 4

(
4δ(t) +

(4δ(t))2

2
+ · · ·

)
h(t)

(
γ′M (t)

)2 ∫ t

t0

γ′M (s) exp(2δ(s)) ds

− 8

(
(4δ(t))2

2
+

(4δ(t))3

3!
+ · · ·

)(
γ′M (t)

)2 ∫ t

t0

γ′M (s) exp(2δ(s))h(s) ds.

Using (85), (89) and (90), we see that there exists a constant C3 which is independent of ω and
such that ∣∣∣∣∫ t

t0

K(t, s)H(s, δ(s), δ′(s), h(s), h′(s)) ds

∣∣∣∣ ≤ C3

ω2M+1
∥h∥∞ +

C3

ω2M+2
∥h′∥∞ (103)
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and ∣∣∣∣∫ t

t0

∂1K(t, s)H(s, δ(s), δ′(s), h(s), h′(s)) ds

∣∣∣∣ ≤ C3

ω2M
∥h∥∞ +

C3

ω2M+1
∥h′∥∞ (104)

whenever ∥δ∥ω ≤ rω−2M . It follows from (103) and (104) that

∥DδT [h]∥ω ≤ C3

ω2M+1
∥h∥ω (105)

for all ∥δ∥ω ≤ rω−2M , which shows that T is a contraction on the ball of radius r centered at
0 in C1 ([a, b]) provided ω is sufficiently large. This completes our proof of the existence of a
slowly-varying solution of the Airy-Kummer equation.

4. Convergence of the Newton-Kantorovich Method

In this section, we discretize the Airy-Kummer equation (24) over an interval of the form [−a0, a0]
via a Chebyshev spectral method and apply Newton-Kantorovich method to the resulting system
of nonlinear algebraic equations. We show that if the first order approximate γ0 is used to form an
initial guess, then the Newton iterates converge to a vector representing the slowly-varying solution
of the Airy-Kummer equation whose existence was established in the preceding section provided ω is
sufficiently large and a0 is sufficiently small. In the course of our proof, we will see that the number
of nodes k used to discretize the Airy-Kummer equation must be relatively small (we take k = 16
in the experiments of this paper, and this causes no difficulties). However, because the Chebyshev
spectral discretizations of the various functions which arise in the course of the proof converge as
a0 goes to 0, this does not impose a significant limitation on the applicability of our algorithm.

We divide our argument into four parts. In Subsection 4.1, we form the spectral discretization of the
Airy-Kummer equation. We then show in Subsection 4.2 that the Fréchet derivative of the operator
in question is invertible provided a0 is sufficiently small and ω sufficiently large. In Subsection 4.3,
we give a Lipschitz bound on the Fréchet derivative. Finally, we conclude our proof by applying the
Newton-Kantorovich theorem in Subsection 4.4.

4.1. Spectral discretization of the Airy-Kummer equation
We form a spectral discretization of the Airy-Kummer equation (24) by representing the unknown
solution γ and the coefficient q via the vectors

γ =
(
γ(t0) γ(t1) · · · γ(tk)

)⊤ (106)

and

q =
(
q(t1) q(t2) · · · q(tk)

)⊤ (107)

of their values at the extremal Chebyshev nodes t1, . . . , tk on the interval [−a0, a0], replacing the
differential operators with Chebyshev spectral differentiation matrices and requiring that the result-
ing system of semidiscrete equations hold at the nodes t1, . . . , tk. This procedure yields the system
of nonlinear algebraic equations R (γ) = 0, where R is the mapping Rk → Rk given by the matrix

R (γ) = ω2q−γ◦
(

Dk

a0
γ

)◦2
+
3

4

((
Dk

a0

)2

γ

)◦2

◦
(

Dk

a0
γ

)◦−2

− 1

2

((
Dk

a0

)3

γ

)
◦
(

Dk

a0
γ

)◦−1

. (108)

17



The Fréchet derivative of R at x is the linear mapping Rk → Rk given by the matrix

DxR =−
(
diag

(
Dk

a0
x

))2

− 2 diag (x) diag

(
Dk

a0
x

)
Dk

a0

− 3

2

(
diag

((
Dk

a0

)2

x

))2(
diag

(
Dk

a0
x

))−2 Dk

a0

+
1

2
diag

((
Dk

a0

)3

x

)(
diag

(
Dk

a0
x

))−2 Dk

a0

+
3

2
diag

((
Dk

a0

)2

x

)(
diag

(
Dk

a0
x

))−2(Dk

a0

)2

− 1

2

(
diag

(
Dk

a0
x

))−1(Dk

a0

)3

.

(109)

We let γ0 be the spectral discretization

γ0 =
(
γ0(t1) γ0(t2) · · · γ0(tk)

)⊤ (110)

of the first order asymptotic approximation γ0 defined via (7). Owing to our assumptions on q,
there exists a smooth function τ such that τ(t) = O

(
t2
)

as t → 0 and γ0(t) = ω
2
3 (t+ τ(t)). We

now write

γ0 = ω
2
3 (a0t+ τ + ϵ1) and

Dk

a0
γ0 = ω

2
3
(
1+ τ ′ + ϵ2

)
, (111)

where:

• t =
(
tcheb
1 tcheb

2 · · · tcheb
k

)⊤ and 1 =
(
1 1 · · · 1

)⊤;

• τ and τ ′ are the spectral discretizations

τ =
(
τ(t1) τ(t2) · · · τ(tk)

)⊤ and τ ′ =
(
τ ′(t1) τ ′(t2) · · · τ ′(tk)

)⊤ (112)

of the function τ and τ ′; and

• ϵ1 and ϵ2 are vectors which account for discretization error.

Since τ(t) = O
(
t2
)
, we have

∥τ∥∞ = O
(
a20
)

and
∥∥τ ′∥∥

∞ = O (a0) as a0 → 0, (113)

while the infinite differentiability of γ0 implies

∥ϵ1∥∞ = O
(
ak0

)
and ∥ϵ2∥∞ = O

(
ak−1
0

)
as a0 → 0. (114)

Moreover, because of the form of γ0 and our assumption that the derivatives of q are bounded
independent of ω, the asymptotic estimates (113) and (114) hold uniformly in ω. We close this
subsection by noting that, because the residual R0 defined in (47) is bounded independent of ω and
R (γ0) discretizes this quantity, we will have

R (γ0) = O (1) as ω → ∞, (115)

for any fixed a0 which is sufficiently small so that the spectral discretization of R (γ0) is accurate.
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4.2. The Fréchet derivative of R at γ0

It follows from (109) and (111) that the matrix representing the Fréchet derivative of R at γ0 can
be written in the form

Dγ0R = −ω
4
3 (Ik + 2diag(t)Dk + S) + T, (116)

where

S =
(
diag(τ ′)

)2
+ (diag(ϵ2))

2 + 2diag(τ ′) diag(ϵ2) + 2 diag(τ ′) + 2 diag(ϵ2)+

2 diag(t) diag(τ ′)Dk + 2diag(t) diag(ϵ2)Dk+

2diag(τ )
Dk

a0
+ 2diag(τ ) diag(τ ′)

Dk

a0
+ 2diag(τ ) diag(ϵ2)

Dk

a0
+

2diag(ϵ1)
Dk

a0
+ 2diag(ϵ1) diag(τ

′)
Dk

a0
+ 2diag(ϵ1) diag(ϵ2)

Dk

a0

(117)

and the operator norm of the matrix T is bounded independent of ω. The matrix Ik +2diag(t)Dk

is invertible and well-conditioned as long as k is of moderate size. From (113) and (114), it is clear
that the operator norm of S goes to 0 as a0 → 0. It follows from this and a standard Neumann
series argument that the operator

Ik + 2diag(t)Dk + S (118)

is invertible for all sufficiently small a0. Since the operator norm of S is bounded independent of
ω, a second routine Neumann series argument implies that Dγ0R is invertible provided (118) is
invertible and ω is sufficiently large. Moreover, it is clear from (116) that∥∥∥(Dγ0R)−1

∥∥∥
∞

= O
(
ω− 4

3

)
as ω → ∞. (119)

4.3. A Lipschitz bound for ∥DxR−DyR∥∞
From (109), we see that the Fréchet derivative of R at v can be written as

DvR =

3∑
j=0

diag (Ej (v))

(
Dk

a0

)j

, (120)

where the Ej are the nonlinear mappings Rk → Rk defined via the following formulas:

E0(v) = −
(

Dk

a0
v

)◦2
,

E1(v) = −2v ◦
(

Dk

a0
v

)
− 3

2

((
Dk

a0

)2

v

)◦2

◦
(

Dk

a0
v

)◦−3

+
1

2

((
Dk

a0

)3

v

)
◦
(

Dk

a0
v

)◦−2

,

E2(v) =
3

2

((
Dk

a0

)2

v

)
◦
(

Dk

a0
v

)◦−2

and

E3(v) = −1

2

(
Dk

a0
v

)◦−1

.

(121)
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Given any η > 0, it follows from (120) that

∥DxR−DyR∥∞ ≤
3∑

j=0

(
∥Ej (x)− Ej (y)∥∞

∥∥∥∥Dk

a0

∥∥∥∥j
∞

)

≤

 3∑
j=0

∥∥∥∥Dk

a0

∥∥∥∥j
∞

sup
v∈Bη(γ0)

∥DvEj∥∞

 ∥x− y∥∞

(122)

whenever x,y ∈ Bη (γ0). Simple calculations shows that the Fréchet derivatives of the Ej are given
by the matrices

DvE0 = −2 diag

(
Dk

a0
v

)
Dk

a0
,

DvE1 = −2

(
diag

(
Dk

a0
v

)
+ diag(v)

Dk

a0

)
− 3

2

(
− 3

(
diag

((
Dk

a0

)2

v

))2(
diag

(
Dk

a0
v

))−4 Dk

a0

+ 2 diag

((
Dk

a0

)2

v

)(
diag

(
Dk

a0
v

))−3(Dk

a0

)2
)

(123)

+
1

2

(
−2 diag

((
Dk

a0

)3

v

)(
diag

(
Dk

a0
v

))−3 Dk

a0
+

(
diag

(
Dk

a0
v

))−2(Dk

a0

)3
)
,

DvE2 =
3

2

(
−2 diag

((
Dk

a0

)2

v

)(
diag

(
Dk

a0
v

))−3 Dk

a0
+

(
diag

(
Dk

a0
v

))−2(Dk

a0

)2
)

and

DvE3 =
1

2

(
diag

(
Dk

a0
v

))−2 Dk

a0
.

It follows from (111), (113) and (114) that for sufficiently small a0, we can choose a constant C3

such that ∥γ0∥∞ ≤ C3ω
2
3 and each entry vj of the vector Dk

a0
γ0 satisfies the inequality

C3

2
ω

2
3 ≤ vj ≤ C3ω

2
3 . (124)

It follows that if

η <
C3a0

4 ∥Dk∥∞
ω

2
3 , (125)

then

∥v∥∞ ≤
(
1 +

a0
4 ∥Dk∥∞

)
C3ω

2
3 ,

∥∥∥∥Dk

a0
v

∥∥∥∥
∞

≤ 5C3

4
ω

2
3 and

∥∥∥∥∥
(

Dk

a0
v

)◦−1
∥∥∥∥∥
∞

≤ C3

4
ω

2
3 (126)

for all v ∈ Bη (γ0). Now (123) and (126) imply that for all v ∈ Bη (γ0),

∥DvE0∥∞ = O
(
ω

2
3

)
and ∥DvE1∥∞ = O

(
ω

2
3

)
as ω → ∞ (127)

while

∥DvE2∥∞ = O
(
ω− 4

3

)
and ∥DvE3∥∞ = O

(
ω− 4

3

)
as ω → ∞. (128)
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From (122), (127) and (128), we see that

∥DxR−DyR∥∞ = O
(
ω

2
3

)
∥x− y∥∞ as ω → ∞ (129)

for all x and y in Bη (γ0) provided (125) holds.

4.4. Application of the Newton-Kantorovich theorem
We are now in a position to apply the Newton-Kantorovich theorem. We choose a0 to be sufficiently
small that (115) holds, the operator (118) is invertible and such that (124) holds. From the discussion
in the preceding subsection, we know that if η satisfies (125), then the entries of the vector Dk

a0
v

are bounded away from 0 for all v ∈ Bη (γ0). It follows from this and (108) that the mapping R
is continuously differentiable on Bη (γ0), and we take the open set Ω in Theorem 1 to be Bη (γ0).
Condition (2) of the theorem is obviously satisfied. We showed in Subsection 4.2 that the Fréchet
derivative of R at γ0 is invertible provided ω is sufficiently large; that is to say, condition (1) of the
theorem is satisfied provided ω is large enough.

We now choose the parameters η and λ as follows:

λ =
∥∥∥(Dγ0R)−1R (γ0)

∥∥∥
∞

and η = ω
1
3 . (130)

The inequality (125) clearly holds for sufficiently large ω, and our choice of λ means that condition
(4) of the theorem is obviously satisfied. Now, combining (115) and (119) yields

λ = O
(
ω− 4

3

)
as ω → ∞, (131)

and it is immediate from (125) and (131) that condition (3) of the theorem is satisfied for sufficiently
large ω. It remains only to show that condition (5) holds. Combining (119) and (129) shows that∥∥∥(Dγ0R)−1 (DxR−DyR)

∥∥∥
∞

= O
(
ω− 2

3

)
∥x− y∥∞ as ω → ∞ (132)

whenever x and y are elements of Bη (γ0). It follows from this and our choice of η that condition
(5) is satisfied for sufficiently large ω.

Having established that all of the requirements of Theorem 1 are satisfied, it now follows that,
when ω is sufficiently large, there is a unique solution x∗ of R (x) = 0 in the ball Bη (γ0), and
the sequence {xj} of Newton-Kantorovich iterates generated by the initial guess x0 = γ0 converge
to x∗. Because the slowly-varying solution of the Airy-Kummer equation whose existence was
established in Section 3 converges to γ0 as ω → ∞, the vector γ∗ discretizing it will lie in the ball
Bη (γ0) for all sufficiently large ω. Moreover, since the equation R (x) = 0 discretizes the Airy-
Kummer equation which the slowly-varying solution satisfies, R (γ∗) ≈ 0. It follows that x∗, which
is the unique solution of the discretized equation in the ball Bη (γ0), must agree closely with the
discretization γ∗ of the slowly-varying solution. Finally, we observe that (32) together with (130)
and (131) give us the estimate

∥xj − γ∗∥∞ = O
(
ω

1
3
− 5

3
2j
)

as ω → ∞ (133)

on the rate at which the Newton iterates converge to x∗ ≈ γ∗.

Remark 2. Given any ϵ > 0, we can choose η = ω
2
3
−ϵ and the proof given here is still valid. In

this event,

∥xj − γ∗∥∞ = O
(
ω(

2
3
−ϵ)−2j(2−ϵ)

)
as ω → ∞. (134)
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It seems likely that if constants are carefully tracked and accounted for, then it will emerge that the
parameter η can be chosen to be on the order of ω

2
3 . If this is the case, then the Newton iterates

converge to γ∗ at the rate ω
2
3
−2j+1

.

5. Numerical construction of Airy phase functions

In this section, we describe our numerical method for calculating the slowly-varying Airy phase
function γ whose existence was established in Section 3. Our algorithm proceeds in three stages.
In the first stage, we numerically compute the values of the approximation γ0 defined via (7) at the
nodes of the k-point Chebyshev extremal grid on the small interval [−a0, a0]. In the second stage,
we use γ0 to form an initial guess for Newton iterations which converge to a vector giving the values
of the desired slowly-varying solution γ at the Chebyshev extremal nodes in [−a0, a0]. The first-
order approximate γ0 is used to form an initial guess because, unlike its higher order analogues γM ,
it can be readily calculated. In the final stage, we apply a standard adaptive Chebyshev spectral
method, with the computed values γ and its derivatives at 0 used as initial conditions, to compute
a piecewise Chebyshev expansion representing γ over the entire solution domain [a, b]. We detail
each of these three procedures in a subsection below.

It will be convenient to write the coefficient q(t) of (1) in the form tq0(t), where q0 is smooth and
positive on [a, b]. Our algorithm takes the following as inputs:

• an interval [a, b] containing 0 and over which the Airy-Kummer phase function γ is to be
computed;

• a sufficiently small subinterval of the form [−a0, a0] of [a, b] containing 0 on which to apply
the Newton-Kantorovich method;

• a positive integer k which controls the order of the Chebyshev expansions used to represent
γ;

• a positive real number ϵ specifying the desired precision for the calculations;

• the value of the parameter ω; and

• an external subroutine for evaluating q0.

It outputs (k − 1)st order piecewise Chebyshev expansions representing the Airy phase function γ
and its first two derivatives on the interval [a, b]. To be entirely clear, a (k − 1)st order piecewise
Chebyshev expansion on the interval [a, b] is an expansion of the form

m−1∑
i=1

χ[ξi−1,ξi)(t)

k−1∑
j=0

cijTj

(
2

ξi − ξi−1
t− ξi + ξi−1

ξi − ξi−1

)

+ χ[ξm−1,ξm](t)
k−1∑
j=0

cmjTj

(
2

ξm − ξm−1
t− ξm + ξm−1

ξm − ξm−1

) (135)

where a = ξ0 < ξ1 < · · · < ξm = b is a partition of [a, b], χI is the characteristic function on
the interval I and Tj is the Chebyshev polynomial of degree j. We note that the characteristic
function of a half-open interval appears in the first line of (135), whereas the characteristic function
of a closed interval appears in the second line. This ensures that exactly one of the characteristic
functions appearing in (135) is nonzero for each point t in [a, b].
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Once the piecewise Chebyshev expansions representing γ and its first two derivatives have been
constructed, both elements of a basis in the space of solutions of (1) and their first derivatives can
be readily evaluated at any point in [a, b] at a cost which is independent of ω. Of course, it follows
that a large class of initial and boundary value problems for (1) can be solved in time independent
of ω and the obtained solutions can be evaluated at arbitrary points in [a, b] in time independent
of ω.

5.1. Numerical evaluation of the asymptotic approximation
To evaluate γ0, we first compute the values of the function∫ t

0

√
|q(s)| ds =

∫ t

0

√
|s|
√

q0(s) ds (136)

at the nodes t1, . . . , tk of the Chebyshev extremal grid on [−a0, a0]. Because of the singularity
in the integrand, (136) cannot be evaluated efficiently using Clenshaw-Curtis or Gauss-Legendre
quadrature rules. We could use a Gauss-Jacobi rule, but we prefer another technique based on
monomial expansions. Although the numerical use of monomial expansions has historically been
viewed with suspicion owing to concerns regarding numerical stability, it is shown in [14] that under
widely-applicable conditions they are as stable as an orthogonal polynomial basis when used for
interpolation.

We proceed by numerically calculating the coefficients of a monomial expansion

p(t) =
k−1∑
j=0

cj

(
t

a0

)j−1

(137)

representing the smooth function
√
q0(t) over [−a0, a0]. This is done by solving the Vandermonde

system which results from enforcing the conditions

p(ti) =
√

q0(ti), i = 1, . . . , k. (138)

Inserting the expansion (137) into (136) and evaluating the integral yields

k−1∑
j=0

cj

∫ t

0

√
|s|
(

s

a0

)j−1

ds = a0
√

|t|
k−1∑
j=0

cj

j + 1
2

(
t

a0

)j

. (139)

Using (139), the values of the function (136) at the Chebyshev extremal nodes t1, . . . , tk can be
easily computed and, once this has been done, it is trivial to evaluate the function γ0 defined via
(7) at those same nodes. The output of the procedure of this subsection is the vector

γ0 ≈
(
γ0(t1) γ0(t2) · · · γ0(tk)

)⊤ (140)

approximating the values of the first order approximate γ0 at the extremal Chebyshev nodes on
[−a0, a0].

Remark 3. It is easy to generalize the procedure of this subsection to a nonsymmetric interval of
the form [a0, b0] containing 0. In this case, for the sake of numerical stability, it is best to use a
monomial expansion of the form

p(t) =
∑
j=0

cj

(
2

b0 − a0
t− b0 + a0

b0 − a0

)j−1

(141)
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to represent
√

q0(t) and the integrals which need to be evaluated are of the form∫ t

0

√
|s|
(
s− a0 + b0

2

)j−1

ds. (142)

An explicit expression for (142) can be written in terms of the Gaussian hypergeometric function
2F1(a, b; c; z), which can be easily evaluated via a three-term linear recurrence relation. The necessary
formulas can be found, for example, in Chapter 2 of [2].

5.2. Computation of γ over the interval [−a0, a0]

In this subsection, we describe our procedure for calculating the values of the desired slowly-varying
phase function γ over the small interval [−a0, a0]. Our method consists of using the Newton-
Kantorovich method to solve the discretized version R (γ) = 0 of the Airy-Kummer equation.

We use γ to denote the current iterate and, in the first instance, we take it to be equal to the vector
γ0. We let q be the vector defined in (107) and then form the vectors

γ′ =
1

a0
Dkγ, γ′′ =

1

a0
Dkγ

′ and γ′′′ =
1

a0
Dkγ

′′

that give the values of the first, second and third derivatives of the Chebyshev expansion represented
via γ at the Chebyshev nodes. Next, we repeatedly perform the following steps:

1. Form the vector r = R (γ), where R is defined via (108).

2. Form the matrix representing the Fréchet derivative DγR of the operator R defined in (108)
at the point γ. It is defined via Formula (109).

3. Solve the system of linear equations DγR (h) = −r.

4. Compute the quantity ζ = ∥h∥∞ / ∥γ∥∞.

5. Let γ = γ + h, γ′ = 1
a0

Dkγ, γ′′ = 1
a0

Dkγ
′ and γ′′′ = 1

a0
Dkγ

′′.

6. If ζ > ϵ, goto step 1. Otherwise, the procedure terminates.

Upon termination of the above procedure, we have the values of Chebyshev expansions representing
the desired slowly-varying Airy phase function γ and its first three derivatives on the interval
[−a0, a0]. We now use these expansions to calculate approximations of γ(0), γ′(0) and γ′′(0), and
these quantities comprise the output of this stage of our algorithm.

5.3. Extension of γ to [a, b]

We now use a standard adaptive Chebyshev spectral method to solve the Airy-Kummer equation
over the entire interval [a, b]. We impose the conditions that the obtained solution and its first two
derivatives agree with the values of γ(0), γ′(0) and γ′′(0) computed in the preceding stage of our
algorithm.

We describe the solver’s operation in the case of the more general problem{
y′(t) = F (t,y(t)), a < t < b,

y(0) = v
(143)

where F : R × Rn → Rn is smooth and v ∈ Rn. Obviously, the initial value problem for the
the Airy-Kummer equation we seek to solve can be put into the form (143). The spectral solver
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outputs n piecewise (k − 1)st order Chebyshev expansions, one for each of the components yi(t) of
the solution y of (143).

The solver proceeds in two stages. In the first, it constructs the solution over the interval [0, b].
During this stage, two lists of subintervals of [0, b] are maintained: one consisting of what we term
“accepted subintervals" and the other of subintervals which have yet to be processed. A subinterval
is accepted if the solution is deemed to be adequately represented by a (k − 1)st order Chebyshev
expansion on that subinterval. Initially, the list of accepted subintervals is empty and the list of
subintervals to process contains the single interval [0, b]. The solver proceeds as follows until the
list of subintervals to process is empty:

1. Find, in the list of subintervals to process, the interval [c, d] such that c is as small as possible
and remove this subinterval from the list

2. Solve the initial value problem{
u′(t) = F (t,u(t)), c < t < d

u(c) = w
(144)

If [c, d] = [0, b], then we take w = v. Otherwise, the value of the solutions at the point c has
already been approximated, and we use that estimate for w in (144). If the problem is linear,
a straightforward Chebyshev integral equation method is used to solve (144). Otherwise,
the trapezoidal method is first used to produce an initial approximation y0 of the solution
and then Newton’s method is applied to refine it. The linearized problems are solved using
a Chebyshev integral equation method. In any event, the result is a set of (k − 1)st order
Chebyshev expansions

ui(t) ≈
k−1∑
j=0

cijTj

(
2

d− c
t− d+ c

d− c

)
, i = 1, . . . , n (145)

which purportedly approximate the components u1, . . . , un of the solution of (144).

3. Compute the quantities √∑k−1

j=⌊ k
2
⌋+1

|cij |2√∑k−1
j=0 |cij |2

, i = 1, . . . , n (146)

where cij are the coefficients in the expansions (145). If any of the resulting values is larger
than ϵ, then split the subinterval into two halves

(
c, c+d

2

)
and

(
c+d
2 , d

)
and place them on the

list of subintervals to process. Otherwise, place the subinterval (c, d) on the list of accepted
subintervals.

At the conclusion of this stage, we have (k − 1)st order piecewise Chebyshev expansions represent-
ing each component of the solution over the interval [0, b], with the list of accepted subintervals
determining the partition of [0, b] associated with the piecewise expansions.

In its second stage, an analogous procedure is used to construct piecewise Chebyshev expansions
representing the solution over the interval [a, 0]. In each step, instead of choosing the unprocessed
interval [c, d] such that c is as small as possible and solving an initial value problem over [c, d], a
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terminal value problem of the form{
u′(t) = F (t,u(t)), c < t < d

u(d) = w,
(147)

where [c, d] is the unprocessed interval such that d is a large as possible, is solved. At the conclusion
of this second stage, we have a (k − 1)st order piecewise Chebyshev expansion representing each
component of the solution over the interval [a, 0], with the list of accepted subintervals determining
the partition of [a, 0] associated with the piecewise expansions. Obviously, amalgamating the piece-
wise expansions of the uj produced during the two stages gives us the desired piecewise Chebyshev
expansions of the components of the solution of (143) over the entire interval [a, b].

6. Numerical Experiments

In this section, we present the results of numerical experiments conducted to illustrate the properties
of our method. We implemented our algorithm in Fortran and compiled our code with version 14.2.1
of the GNU Fortran compiler. All experiments were performed on a desktop computer equipped
with an AMD 9950X processor and 64GB of RAM. This processor has 16 cores, but only one was
utilized in our experiments. In all of our experiments, we took the parameter k controlling the order
of the piecewise Chebyshev expansions used to represent Airy phase functions to be 16, and we set
precision parameter ϵ to be 10−13. To account for the vagaries of modern computing environments,
all reported times were obtained by averaging the cost of each calculation over 100 runs.

For the most part, we measured the accuracy of our method by using it to solve various initial
and boundary value problems for second order equations of the form (1). Because the condition
numbers of such problems grow with the parameter ω, the accuracy of any solver will deteriorate
with increasing ω. In the case of our algorithm, the mechanism by which accuracy is lost is well
understood. It computes the Airy phase functions themselves to high precision, but the magnitude
of the phase functions increases with the parameter ω, with the consequence that accuracy is lost
when the Airy functions are evaluated at large arguments in order to calculate the solutions of
the original differential equation. Our algorithm does, however, compute solutions of the original
differential equation with accuracy on the order of that predicted by the condition number of the
problem being solved.

There is one experiment in which we measured the accuracy of the Airy phase functions produced
by our algorithm directly. In the experiment of Subsection 6.3, we constructed Airy phase functions
representing associated Legendre functions of various degrees and orders using the algorithm of this
paper and then compared them with Airy phase functions produced via another technique in order
to show our algorithm computes Airy phase functions with high relative accuracy.

6.1. Initial value problems
In our first experiment, we used the algorithm of this paper to solve initial value problems of the
form {

y′′(t) + ω2q(t)y(t) = 0, −5 < t < 5,

y(0) = 1, y′(0) = 0
(148)

for various values of ω and choices of the coefficient q(t). More explicitly, for each of the coefficients

q1(t) = t+ t3, q2(t) = −1 + (1− t) exp(t) and q3(t) = t+
sin(3t)

3
(149)
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Figure 1: The results of the experiment of Section 6.1 in which a collection of initial value problems were solved using
our method. The upper-left plot gives the time, in milliseconds, required to compute each Airy phase function. The
plot in the upper right gives the number of coefficients in the piecewise Chebyshev expansions used to represent the
Airy phase functions. The plot in the lower left gives the relative accuracy of the obtained solutions of the initial value
problems in the nonoscillatory region, and the plot in the lower right reports the absolute accuracy of the obtained
solution in the oscillatory region.

and each ω = 28, 29, 210, . . . , 220, we used the algorithm of Section 5 to construct a slowly-varying
Airy phase function γ representing the solutions of (148). We then used each of these Airy phase
functions to calculate the solution of (148) at a collection of evaluation points in the interval (−5, 5)
and compared the obtained values with a reference solution constructed via an adaptive Chebyshev
spectral method.

Since each of the coefficients we consider is positive in the interval (0, 5) and negative in the interval
(−5, 0), the solutions of (148) oscillate in (0, 5) and are nonoscillatory in (−5, 0). Moreover, the
solutions increase very rapidly as the argument t decreases from 0 to −5. Indeed, in each case we
considered, the solutions of (148) were too large to represent via double precision numbers on much
of the interval (−5, 0). Accordingly, for each problem, we calculated the largest relative error in the
obtained solution at 1,000 equispaced evaluation points in the subinterval [ã, 0], where ã was chosen
so that γ (ã) = −100, and we used this quantity as our measure of the accuracy of the solution of
(148) obtained via our method in the nonoscillatory regime. Since

Ai(−100) ≈ 4.669498035610554× 10−291 and Bi(−100) ≈ 1.070779073708091× 10289, (150)
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Figure 2: Plots of the coefficients q1(t), q2(t) and q3(t) considered in the experiment of Section 6.1 when the parameter
ω is equal to 212, as well as plots of the derivatives of the corresponding Airy phase functions γ′

1(t), γ′
2(t) and γ′

3(t).

ã is close to the point at which the solutions become too large to represent using double precision
numbers. We note that the Airy phase functions themselves are computed accurately over the
entire interval [−5, 5] via our method. We also used the Airy phase functions to evaluate each
solution at 1, 000 equispaced evaluation points in the interval [0, 5] and compared those values with
the reference solution. Since the solutions are oscillatory here, we measured absolute rather than
relative errors at these evaluation points.

Figure 1 gives the results of this experiment. We observe that the running time of our algorithm
and the number of Chebyshev coefficients needed to represent the Airy phase functions are both
independent of the parameter ω. The errors in the obtained solutions of the initial value problems,
on the other hand, increase as ω grows. This is to be expected since the condition number of the
each of the problems we considered increases with ω and any numerical algorithm for solving these
problems will lose accuracy as ω increases. Plots of the coefficients q1(t), q2(t) and q3(t) and the
derivatives of the corresponding Airy phase functions γ′1(t), γ′2(t) and γ′3(t) when ω = 212 can be
found in Figure 2.

6.2. Boundary value problems
In our next experiment, we used the algorithm of this paper to solve the boundary value problem{

y′′(t) + ω2q(t, ω)y(t) = 0, 0 < t < 3,

y(0) = 1, y(3) = 1
(151)

for each ω = 28, 29, 210, . . . , 220 and the following choices of q:

q1(t, ω) = t+ t3, q2(t, ω) = sin(t) + 2 sin

(
t

4

)2

and q3(t, ω) =
t
(
cos2(3t) sin2(ω) + 2

)
t2 cos2(ω) + 1

. (152)
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We tested the accuracy of each solution by comparing its value at 1,000 equispaced evaluation points
in the solution domain (0, 3) to a reference solution constructed via an adaptive Chebyshev spectral
method. Since the solutions are oscillatory in the interval (0, 3), we measured absolute rather than
relative errors.

The results are given in Figure 3. As with the experiments of the preceding section, the errors in the
obtained solutions increase with ω. But again, this is to be expected since the condition numbers
of these boundary value problems grow with ω and a similar loss of accuracy will be experienced by
any numerical method. We also note that the errors exhibit greater variability than in the previous
experiment. This is due to greater variance in the condition numbers of the boundary value problems
we considered. Finally, we observe that the time required to compute the Airy phase function in the
case of the coefficient q3 varies noticeably with ω because, unlike the other coefficients, q3 depends
on ω.
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Figure 3: The results of the experiment of Section 6.2 in which a collection of boundary value problems were solved
using our method. The plot on the left gives the time, in milliseconds, required to compute each Airy phase function,
while the plot on the right gives the accuracy of the obtained solutions of the boundary value problems.

6.3. The associated Legendre differential equation
The standard solutions of the associated Legendre differential equation

(1− t2)y′′(t)− 2ty′(t) +

(
ν(ν + 1)− µ2

1− t2

)
y(t) = 0 (153)

on the interval (−1, 1) are the Ferrers functions of the first and second kinds Pµ
ν and Qµ

ν . Definitions
of them can be found in Section 14.3 of [7] or Section 5.15 of [12]. Equation (153) has singular
points at ±1, and, as long as ν > µ, it has two turning points in the interval (−1, 1). In order
to put this equation into a form suitable for our algorithm, we introduce the change of variables
t = tanh (x+ ξµν ), where

ξµν = arccosh

(√
ν(ν + 1)

µ

)
, (154)

which yields the new equation

y′′(x) +
(
−µ2 + ν(ν + 1) sech2(x− ξµν )

)
y(x) = 0. (155)
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Figure 4: Some of the results of the experiment of Section 6.3, which concern the associated Legendre functions. The
plot on the left gives the time required to compute each Airy phase function, while the plot on the right gives the
maximum relative error in the Airy phase functions calculated using the method of this paper.

The coefficient in (155) is smooth and while it has two turning points located at 0 and 2ξµν , because
of the symmetries of the associated Legendre functions, it suffices to consider it on the interval
(−∞, ξµν ) which contains only the turning point at 0.

For each µ = 107, 108, . . . , 1017 and each ν = 10µ, 100µ, 500µ, we used the algorithm of this paper
to construct an Airy phase function γµν representing the solutions of (155) over the interval [aµν , ξµν ],
where ξµν is as in (154) and aµν is chosen such that γµν (aµν ) = −15. We note that

Bi(−15) ≈ 3.364489547667594× 1016 and Ai(−15) ≈ 3.837296156948168× 10−18, (156)

so that the solutions of (155) are either of very large or very small magnitude at aµν .

We first tested the accuracy of each γµν by using it to evaluate a solution of (155) at 1, 000 equispaced
points in the solution domain and recording the largest observed relative error. Because the Ferrers
functions themselves are normalized such that Pµ

ν and Qµ
ν become astronomically large on portions

of (−1, 1), even for relatively small values of ν and µ, we choose to evaluate a different solution
instead. More explicitly, we considered the solution

Fµ
ν (x) = Q̃µ

ν (x) + iP̃µ
ν (x), (157)

where Q̃µ
ν and P̃µ

ν are given via the formulas

Q̃µ
ν (x) =

√
2

π

Γ (1 + ν + µ)

Γ (1 + ν − µ)
Q−µ

ν (tanh(x)) and P̃µ
ν (x) =

√
π

2

Γ (1 + ν + µ)

Γ (1 + n−m)
Pµ
ν (tanh(x)). (158)

The Wronskian of this pair is 1, which ensures that Fµ
ν is normalized in a reasonable way. Moreover,

P̃µ
ν and Q̃µ

ν determine a slowly-varying trigonometric phase function αµ
ν for (155) through the

relations

Q̃µ
ν (x) =

cos (αµ
ν (x))√

d
dxα

µ
ν (x)

, P̃µ
ν (x) =

sin (αµ
ν (x))√

d
dxα

µ
ν (x)

and lim
x→−∞

αµ
ν (x) = 0 (159)

It is beyond the scope of this paper to show that αµ
ν is, in fact, slowly varying, but we refer the

interested reader to [4]. Since the logarithmic derivative of Fµ
ν is the derivative of αµ

ν , its condition

30



27 29 211 213 215 217
10 15

10 12

10 9

10 6

10 3

100
Re

la
tiv

e 
Er

ro
r i

n 
AL

F
= 10

Actual

Cond #

27 29 211 213 215 217
10 15

10 12

10 9

10 6

10 3

100

Re
la

tiv
e 

Er
ro

r i
n 

AL
F

= 100
Actual

Cond #

27 29 211 213 215 217
10 15

10 12

10 9

10 6

10 3

100

Re
la

tiv
e 

Er
ro

r i
n 

AL
F

= 500
Actual

Cond #

27 29 211 213 215 217
101

102

103

104

105

Ch
eb

ys
he

v 
Co

ef
fic

ie
nt

s Trig phase α

Airy phase γ

27 29 211 213 215 217
101

102

103

104

105

Ch
eb

ys
he

v 
Co

ef
fic

ie
nt

s Trig phase α

Airy phase γ

27 29 211 213 215 217
101

102

103

104

105

Ch
eb

ys
he

v 
Co

ef
fic

ie
nt

s Trig phase α

Airy phase γ

Figure 5: Some of the results of the experiment of Section 6.3, which concerns the associated Legendre functions.
The plots on the top row compare the relative error in the evaluation of the function Fµ

ν defined via (157) with
the accuracy predicted by its condition number of evaluation. The plots on the bottom row report the number
of coefficients in the piecewise Chebyshev expansions of the Airy phase functions γµ

ν and the trigonometric phase
functions αµ

ν .

number of evaluation is slowly varying.

Next, for each pair of values of ν and µ considered, we used an alternate approach to construct
a second Airy phase function γ̃µν and measured the relative accuracy of γµν by comparing the two
phase functions at 1,000 equispaced points on the interval [aµν , ξµν ]. To construct γ̃µν , we first used
the algorithm of [15] to calculate the slowly-varying trigonometric phase function αµ

ν defined via
(159) and then composed it with the inverse of a slowly-varying trigonometric phase function αai

for Airy’s equation; that is, we let γ̃µν (t) = α−1
ai (αµ

ν (t)). The phase function αai is determined via
the requirements

Bi(x) =
cos (αai(x))√

α′
ai(x)

, Ai(x) =
sin (αai(x))√

α′
ai(x)

and lim
x→−∞

αai(x) = 0. (160)

That the composition γ̃µν is an Airy phase function for (155) follows from the formulas

Bi (γ̃µν (x))√
d
dx γ̃

µ
ν (x)

=
cos (αai (γ̃

µ
ν (x)))√

α′
ai (γ

µ
ν (x))

d
dx γ̃

µ
ν (x)

=
cos (αµ

ν (x))√
d
dxα

µ
ν (x)

= Q̃µ
ν (x) and

Ai (γ̃µν (x))√
d
dx γ̃

µ
ν (x)

=
sin (αai (γ̃

µ
ν (x)))√

α′
ai (γ

µ
ν (x))

d
dx γ̃

µ
ν (x)

=
sin (αµ

ν (x))√
d
dxα

µ
ν (x)

= P̃µ
ν (x).

(161)

The results of this experiment are given in Figures 4 and 5. We note that, in addition to the
maximum relative error observed while evaluating Fµ

ν using our algorithm, the plots on the top row
of Figure 5 report the maximum relative accuracy that is expected given the condition number of
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evaluation of Fµ
ν , which is, of course,

κµν = max
x1,...,x1000

∣∣∣∣∣xj d
dxF

µ
ν (xj)

Fµ
ν (xj)

∣∣∣∣∣ ϵ0, (162)

where ϵ0 ≈ 2.220446049250313 × 10−16 is machine zero for the IEEE double precision number
system. The plots on the bottom row of Figure 5 compare the number of coefficients in the piecewise
expansions of the trigonometric phase functions αµ

ν and of the Airy phase functions γµν . While both
functions are represented at a cost which is independent of µ, the trigonometric phase function is
several orders of magnitude more expensive to represent than the Airy phase function. Figure 6,
which contains plots of the derivatives of the trigonometric phase function αµ

ν and of the Airy phase
function γµν in the case ν = 2560 and µ = 256, makes clear why this is the case. In particular, it
shows that the derivative of αµ

ν exhibits complicated behavior near the turning point, while γµν is
extremely benign throughout the interval.
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Figure 6: Graphs of the derivatives of the Airy phase function γµ
ν (left) and the trigonometric phase αµ

ν (right)
over the interval [−1, 1] in the case µ = 256 and ν = 2560. The derivative of the trigonometric phase function is
significantly more expensive to represent via polynomial expansions than the Airy phase function, which is extremely
benign.

7. Conclusion

We have given a proof of the existence of slowly-varying Airy phase functions and described a nu-
merical method for rapidly computing them. Using our algorithm, a large class of second order
linear ordinary differential equations of the form (1) can be solved to high accuracy in time inde-
pendent of the parameter ω. This class includes many differential equations defining widely-used
special functions, as well as many equations with applications in physics and chemistry.

With some modification, our numerical method extends to the case of equations of the form

y′′(t) + ω2tσq(t)y(t) = 0, (163)

where q(t) ∼ 1 as t → 0, σ > −2 and ω is large. However, the analysis of this paper fails when σ is
not one of the special values −1, 0 or 1. The authors will discuss the necessary modifications to our
numerical algorithm and an alternative approach to the procedure of Section 3.1 in a future work.

In the experiment of Subsection 6.3, a second procedure for constructing slowly-varying Airy phase
functions was introduced. Namely, the inverse of a trigonometric phase function for Airy’s equation
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was composed with a trigonometric phase function for the associated Legendre equation in order to
form a slowly-varying Airy phase function for the associated Legendre equation. Methods of this
type might be useful for various numerical computations as well as for the derivation of asymptotic
approximations for the solutions of ordinary differential equations, and this approach warrants
further investigation.

Finally, we note that the efficient representation of solutions of second order linear ordinary dif-
ferential equations via generalized phase functions has many applications to the rapid evaluation
of special functions and their zeros, and to the rapid application of the related Sturm-Liouville
transforms. The authors also plan to explore these topics in future works.
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