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Abstract

The Levin method is a well-known technique for evaluating oscilla-
tory integrals, which operates by solving a certain ordinary differential
equation in order to construct an antiderivative of the integrand. It
was long believed that this approach suffers from “low-frequency break-
down,” meaning that the accuracy of the calculated value of the integral
deteriorates when the integrand is only slowly oscillating. Recently pre-
sented experimental evidence, however, suggests that if a Chebyshev
spectral method is used to discretize the differential equation and the
resulting linear system is solved via a truncated singular value decom-
position, then no low-frequency breakdown occurs. Here, we provide a
proof that this is the case, and our proof applies not only when the
integrand is slowly oscillating, but even in the case of stationary points.
Our result puts adaptive schemes based on the Levin method on a
firm theoretical foundation and accounts for their behavior in the pres-
ence of stationary points. We go on to point out that by combining an
adaptive Levin scheme with phase function methods for ordinary differ-
ential equations, a large class of oscillatory integrals involving special
functions, including products of such functions and the compositions
of such functions with slowly-varying functions, can be easily evaluated
without the need for symbolic computations. Finally, we present the
results of numerical experiments which illustrate the consequences of our
analysis and demonstrate the properties of the adaptive Levin method.
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1 Introduction

The Levin method, which was introduced in [1], is a classical technique for
evaluating integrals of the form∫ b

a

f(x) exp(ig(x)) dx, (1)

where f is slowly varying, g is real-valued and slowly varying and g′ is of large
magnitude. It operates by solving the ordinary differential equation

p′(x) + ig′(x)p(x) = f(x) (2)

in order to find a function p such that

d

dx
(p(x) exp(ig(x))) = f(x) exp(ig(x)). (3)

The value of the integral (1) is then equal to

p(b) exp(ig(b))− p(a) exp(ig(a)). (4)

Under the assumptions made above, (2) admits a slowly-varying solution
p0, which means that (1) can be computed rapidly. Moreover, although the
differential operator

L [p] (x) = p′(x) + ig′(x)p(x) (5)

appearing on the left-hand side of (2) has a one-dimensional nullspace con-
sisting of all multiples of the function η(x) = exp(−ig(x)), the equation (2)
can still be solved accurately via a spectral collocation method if some care is
taken. In particular, as long as the chosen grid of collocation nodes is dense
enough to resolve f and g′, but not sufficiently dense to resolve η, the matrix
discretizing the differential operator L will be well-conditioned and inverting it
will result in a high-accuracy approximation of the slowly-varying solution p0.

When the magnitude of g′ is sufficiently small, any grid of collocation nodes
dense enough to resolve f and g′ will also resolve η. As a consequence, the
corresponding spectral discretization of L will have a small singular value and
numerical difficulties can arise in the course of solving (2). This phenomenon
is known as “low-frequency breakdown,” and it was commonly considered to
be a significant limitation of Levin methods. The recent articles [2, 3] present
experimental evidence showing that, when Chebyshev spectral methods are
used to discretize the differential equation (2) and the resulting linear sys-
tem is solved via a truncated singular value decomposition, no low-frequency
breakdown seems to occur.

Here, we prove that this is the case. We first show that, when g′ is nonvanishing,
the Levin equation admits a well-behaved solution that can be approximated
by a polynomial expansion at a cost which depends on a measure of the com-
plexity of f , g′ and the inverse function g−1 of g, as well as the ratio of the
maximum and minimum absolute values of g′, but not on the magnitude of
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g′. This result improves on those presented in [1] and its follow-up [4] by han-
dling the case in which g′ is of positive, but arbitrarily small, magnitude and
by explicitly showing that the cost of representing the well-behaved solution
of the Levin equation via a polynomial expansion is independent of the mag-
nitude of g′ (note that the assumptions made in both [1] and [4] fail to hold
when g′ is of sufficiently small positive magnitude). We then consider the case
in which g′ is of small magnitude, possibly with zeros. In this event, g need
not be invertible, but we show that the Levin equation nonetheless admits a
well-behaved solution, and that this solution can be approximated by a poly-
nomial expansion at a cost which decreases as the magnitude of g′ decreases.
We use these two results to prove that, when the Levin equation is discretized
via a Chebyshev spectral collocation method and the resulting linear system
is solved using a truncated singular value decomposition, high accuracy is
obtained regardless of the magnitude of g′ and whether or not g′ has zeros.
We note that our analysis also improves on the analysis of [5], in which the
authors prove that there exists a solution p to the Levin equation such that

∥p′∥L2([a,b])= O(∥g′∥−1/(k+1)
L∞([a,b]) ) on an interval containing a stationary point of

order k, for which they provide initial conditions, since their solution can have
higher order derivatives which grow with ∥g′∥L∞([a,b]).

One implication of the absence of low-frequency breakdown is that the Levin
method can be used as the basis of an adaptive integration scheme — since
adaptive subdivision reduces the effective magnitude of g′, such an approach
requires that the method remain accurate regardless of the magnitude of g′.

An adaptive Levin scheme of this kind, based on collocation at Chebyshev
points, was proposed by Moylan in [6]. It was shown to be effective in the pres-
ence of stationary points, before the absence of low-frequency breakdown was
directly observed in [2, 3]. Another adaptive Levin scheme was later proposed
in [7], which uses collocation points in the vicinity of the endpoints to attain
higher asymptotic orders in the magnitude of g′, on those intervals where g′ is
of large magnitude. Unlike Moylan’s scheme, the method of [7] assumes that
the locations of the stationary points are known in advance.

One distinctive feature of Moylan’s scheme is that it is based on a more general
version of the Levin method introduced in [8]. In particular, the integrand is
of the form ∫ b

a

w(x) · f(x) dx (6)

with f : [a, b] → Cn slowly varying and w: [a, b] → Cn a solution of a system of
ordinary differential equations

w′(x) = A (x)w(x) (7)

whose coefficient matrix A : [a, b] → Cn×n is also slowly varying. The scheme
of [8] operates by finding a slowly-varying vector field F: [a, b] → Cn satisfying
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the system of differential equations

F′(x) + A (x)tF(x) = f(x) (8)

and evaluating (6) via the formula

F(b) ·w(b)− F(a) ·w(a). (9)

Moylan’s algorithm adaptively decomposes the domain of an oscillatory inte-
gral and uses the above formulation of the Levin method to evaluate it over
each subinterval. An implementation of this scheme using Wolfram’s Math-
ematica package is described in [6], and experimental evidence showing that
it works well in practice in the low-frequency regime, and even in the case of
stationary points, is presented. However, all of the estimates discussed in [6]
break down in the low-frequency regime. Moreover, the implementation of the
adaptive Levin method described in [6] relies heavily on symbolic and arbi-
trary precision computations, including in the solution of the linear system
which arises when (8) is discretized.

One advantage of the Moylan scheme over an adaptive scheme based on the for-
mulation of [1] is the great generality of the integrands which can be expressed
as solutions of systems of the form (7) with slowly-varying coefficient matri-
ces. However, most oscillators of interest are solutions of scalar differential
equations of the form

y(n)(t) + qn−1(t)y
(n−1)(t) + · · ·+ q1(t)y

′(t) + q0(t)y(t) = 0 (10)

whose coefficients are slowly varying, and it is well known that such equations
admit slowly-varying phase functions. More explicitly, under mild conditions
on the coefficients q0, . . . , qn−1, there exist slowly-varying ψ1, . . . , ψn such that

{exp (ψj(t)) : j = 1, . . . , n} (11)

is a basis in the space of solutions of (10). This observation underlies the WKB
method and almost all other techniques for the asymptotic approximation
of solutions of ordinary differential equations in the high-frequency regime
(see, for instance, [9], [10] and [11, 12, 13]). See also [14], which contains a
careful proof of the existence of slowly-varying phase functions for second order
differential equations that can be extended to the case of higher order scalar
equations without too much difficulty. A numerical algorithm for constructing
slowly-varying phase functions for scalar equations of the form (10) in time
independent of frequency is described in [15]. Specialized methods for the case
of second order linear ordinary differential equations are described in [16] and
[17]. Because many oscillators of interest satisfy second order linear ordinary
differential equations (e.g., Bessel functions, Jacobi polynomials, spheroidal
wave functions and Hermite polynomials), the experiments of this article focus
on this case and we use the algorithm of [17] in order to construct the necessary
slowly-varying phase functions.
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The existence of slowly-varying phase functions for scalar differential equations
and the ability to rapidly compute them via the numerical schemes of
[15, 16, 17] imply that an adaptive method based on Levin’s original formula-
tion suffices to evaluate a huge class of oscillatory integrals. Moreover, when
phase-function representations of oscillators have been computed, integrals
involving the products of oscillators or the composition of an oscillator with a
slowly-varying function can be evaluated in a straightforward fashion. This is
in contrast to Moylan’s adaptive scheme, which requires knowledge of a sys-
tem of differential equations satisfied by whatever combination of oscillators is
being considered. Moylan’s scheme relies heavily on Mathematica’s symbolic
capabilities to derive the necessary differential equations in such situations.

The remainder of this article is structured as follows. Section 2 discusses the
requisite mathematical and numerical preliminaries. Section 3 contains our
analysis showing that the Levin equation always admits a well-behaved solu-
tion. In Section 4, we use the results of Section 3 to establish that no accuracy
is lost when a Chebyshev collocation scheme is used to discretize the Levin
equation and the resulting system of linear equations is solved via a truncated
singular value decomposition. In Section 5, we give a detailed description of
the adaptive Levin method. In Section 6, we discuss phase function methods
for second order linear ordinary differential equations. In Section 7, we present
the results of numerical experiments conducted to demonstrate the properties
of the adaptive Levin method. Finally, we close with a few brief remarks in
Section 8.

2 Preliminaries

2.1 Notation and conventions

We use capital script letters such as A for matrices, and the names of vec-
tors are displayed using a bold font. We denote by L∞ (Ω) the Banach space
of functions which are essentially bounded on the Lebesgue measurable sub-
set Ω of R, and by Cn ([a, b]) the Banach space of functions (a, b) 7→ C whose
derivatives through order n are uniformly continuous and hence admit contin-
uous extensions to [a, b]. We denote by M ([a, b]) the Banach space of complex
Radon measures on [a, b], which is the dual of C0 ([a, b]), and by |µ| the total
variation of µ ∈ M ([a, b]). The notation ∥x∥X is used for the norm of an ele-
ment x of one of the Banach spaces X mentioned above. The Euclidean norm
of a vector x ∈ Cn is ∥x∥2, and ∥A ∥2 is the Cn → Cn Euclidean operator
norm of the n× n matrix A .

We denote by C∞ ([a, b]) the set of functions which are infinitely differentiable
and whose derivatives of all orders are uniformly continuous on (a, b), and
use S (R) for the Schwartz space of infinitely differentiable functions whose
derivatives of all orders are rapidly decaying functions. The space of tempered
distributions is S′ (R). We often write ⟨φ, f⟩ for the action of the tempered
distribution φ on the function f ∈ S (R), although we occasionally use other
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notations for this when their meanings are clear. The support of φ ∈ S′ (R) is
the complement of the union of all open sets U such that ⟨φ, f⟩ = 0 whenever
f ∈ S (R) has support contained in U . The order of a tempered distribution
φ is the least nonnegative integer n with the property that for each compact
set K ⊂ R there exists a constant MK such that

|⟨φ, f⟩| ≤MK sup
0≤k≤n

sup
x∈K

∣∣Dkf(x)
∣∣ (12)

for every function f ∈ S (R) whose support is contained in K (we note that
every tempered distribution has finite order). The space of tempered distribu-
tions of order n which are supported on [a, b] can, of course, be identified with
the dual space of Cn ([a, b]).

We use the convention

f̂(ξ) =
1

2π

∫ ∞

−∞
f(x) exp(−iξx) dx (13)

for the Fourier transform of f ∈ S (R) (this is slightly nonstandard, but quite

convenient when discussing the Levin equation). Of course, f̂ ∈ S (R) and we
have

f(x) =

∫ ∞

−∞
f̂(ξ) exp(iξx) dξ. (14)

We extend the Fourier transform to a mapping S′(R) → S′ (R) in the usual
way, via the formula ⟨φ̂, g⟩ = ⟨φ, ĝ⟩. If φ is compactly supported on [a, b],
then its Fourier transform coincides with the function φ̂(ξ) = ⟨φ, ηξ⟩, where
ηξ(x) = 1/(2π) exp(−iξx). The Schwartz-Paley-Wiener theorem asserts that φ̂
is entire in this case, and gives bounds on its growth at infinity. Likewise, if φ̂
is compactly supported on [a, b], then φ is the entire function defined via the
formula φ(x) = ⟨φ̂, νx⟩ with νx(ξ) = exp(iξx). If the Fourier transform of φ
is supported on the finite interval [−c, c], then we say that φ has bandlimit c.
Note that we do not require that c be the smallest positive real number with
this property.

The notation x ≲ y indicates that there is some constant C > 0 not depending
on either x or y, such that x ≤ Cy.

2.2 Chebyshev interpolation

We use Tn to denote the Chebyshev polynomial of degree n and

−1 = xcheb

1,k < xcheb

2,k < . . . < xcheb

k,k = 1 (15)

for the k-point grid of extremal Chebyshev nodes on the interval [−1, 1]. That
is,

xcheb

j,k = cos

(
π
k − j

k − 1

)
, j = 1, . . . , k. (16)
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It is well known that

2

k − 1

k∑
j=1

′′
Tn
(
xcheb

j,k

)
Tm
(
xcheb

j,k

)
=


1, if n = m = 1, . . . , k − 2,

2, if n = m = 0, k − 1,

0, if n ̸= m; n,m < k,

(17)

where the double prime symbol after the summation indicates that the first
and last term of the series are weighted by 1/2 (this formula can be found,
for instance, in Chapter 4 of [18]). If f ∈ C∞ ([−1, 1]), then we use Pk [f ] to
denote the Chebyshev expansion of the form

k−1∑
n=0

anTn(x) (18)

which agrees with f at the nodes (15). It follows from (17) that the coefficients
in (18) are given by

an =


1

k − 1

k∑
j=1

′′
Tn
(
xcheb

j,k

)
f
(
xcheb

j,k

)
if n = 0 or n = k − 1

2

k − 1

k∑
j=1

′′
Tn
(
xcheb

j,k

)
f
(
xcheb

j,k

)
if n = 1, . . . , k − 2.

(19)

We use the notation Dk to denote the k × k spectral differentiation matrix
which maps the vector 

g
(
xcheb

1,k

)
g
(
xcheb

2,k

)
...

g
(
xcheb

k,k

)

 (20)

of values of an expansion of the form

g(x) =

k−1∑
n=0

anTn(x) (21)

at the nodes of the k-point extremal Chebyshev grid to the vector
g′
(
xcheb

1,k

)
g′
(
xcheb

2,k

)
...

g′
(
xcheb

k,k

)

 (22)

of values of the expansion’s derivative at the nodes of the k-point extremal
Chebyshev grid. We denote by I2k,k the 2k × k interpolation matrix which
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takes the vector 
g
(
xcheb

1,k

)
g
(
xcheb

2,k

)
...

g
(
xcheb

k,k

)

 (23)

of values of an expansion of the form (21) at the nodes of the k-point extremal
Chebyshev grid to the vector 

g
(
xcheb

1,2k

)
g
(
xcheb

2,2k

)
...

g
(
xcheb

2k,2k

)

 (24)

of values of the expansion at the nodes of the 2k-point extremal Chebyshev
grid.

It is well known that if f ∈ C∞ ([−1, 1]) is infinitely differentiable, then it
admits a uniformly convergent Chebyshev series

f(x) =

∞∑
n=0

bnTn(x) (25)

such that

|bn| = O
(

1

nm

)
as n→ ∞ (26)

for all m ≥ 1. From (17) it is clear that the coefficients {bn} in (25) are related
to the coefficients {an} in the expansion of Pk [f ] through the formula

an = bn + bn+2(k−1) + bn+4(k−1) + . . . . (27)

Since |Tn(x)| ≤ 1 and |T ′
n(x)| ≤ n2 for all x ∈ [−1, 1], it follows from (27) that

∥Pk [f ]− f∥L∞([−1,1]) ≤ 2

∞∑
n=k

|bn| (28)

and ∥∥Pk [f ]
′ − f ′

∥∥
L∞([−1,1])

≤ 2

∞∑
n=k

n2 |bn| . (29)

Obviously, if f is a polynomial of degree less than k, then

Pk [f ] (x) = f(x) (30)
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and

Pk [f
′] (x) = f ′(x) = Pk [f ]

′
(x). (31)

2.3 Approximation by bandlimited functions

It will often be necessary for us to approximate a function f given on the
interval [−1, 1] via a “well-behaved” bandlimited function fb. For us, well-
behaved means that the L∞ (R) norms of fb, its Fourier transform and the
derivative of its Fourier transform are bounded by small constant multiples of
the L∞ ([−1, 1]) norm of f . Moreover, it is desirable to minimize the bandlimit
of fb subject to these constraints.

Under various regularity assumptions on f , it is possible to prove the existence
of an approximate satisfying these requirements. The following theorem, which
is a slightly modified version of Theorem 1 in [19], is an example of a result of
this type which holds under relatively weak regularity conditions on f .

Theorem 1 Suppose that f : [−1, 1] → C admits an infinitely differentiable exten-
sion to an open neighborhood of [−1, 1]. Then for each positive integer m and each
real number c > 1, there exists a constant K(m, f), depending on m and f but not
on c, and a function fb ∈ S (R) such that

1. f̂b is supported on [−c− 2, c+ 2],

2. ∥fb − f∥L∞([−1,1]) ≤
K(m, f)

cm
,

3. ∥fb(x)∥L∞(R) ≤ 2∥f∥L∞([−1,1])+
K(m, f)

cm
,

4.

∥∥∥f̂b(ξ)∥∥∥
L∞(R)

≤ 4∥f∥L∞([−1,1]) and

5.

∥∥∥f̂b′(ξ)∥∥∥
L∞(R)

≤ 4∥f∥L∞([−1,1]).

Proof We let M = ∥f∥L∞([−1,1]) and choose 0 < δ < 1 such that f is infinitely

differentiable on [−1− δ, 1+ δ] and bounded in magnitude by 2M there. We take T1
to be an infinitely differentiable window function R → R such that |T1(x)| ≤ 1 for
all x ∈ R, T1(x) = 1 for all x ∈ [−1, 1] and T1(x) = 0 for all |x| ≥ 1 + δ. One can
construct this function quite easily using the infinitely differentiable ramp function

H(x) =


0, x < −1,
1
2

(
1 + erf

(
x√

1−x2

))
, x ∈ [−1, 1],

1, x > 1,

(32)

suggested in [19]. Then f1(x) = f(x)T1(x) is an element of the space S (R), and so

is its Fourier transform f̂1. Consequently, there exists a constant k1 (depending on
m and f) such that ∣∣∣f̂1(ξ)∣∣∣ ≤ k1

|ξ|m+1
. (33)
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Since T1 is bounded in magnitude by 1,

|f1(x)| ≤ 2M for all x ∈ R. (34)

It follows from this that∣∣∣f̂1(ξ)∣∣∣ =
∣∣∣∣∣ 12π

∫ 1+δ

−1−δ
f1(x) exp(−iξx) dx

∣∣∣∣∣ ≤ 2

π
(1 + δ)M ≤ 4

π
M (35)

and ∣∣∣f̂1′(ξ)∣∣∣ =
∣∣∣∣∣−i2π

∫ 1+δ

−1−δ
f1(x)x exp(−iξx) dx

∣∣∣∣∣ ≤ 2

π
(1 + δ)2M ≤ 8

π
M (36)

for all ξ ∈ R.

Now we let T2 be an infinitely differentiable window function such that |T2(x)| ≤ 1
and

∣∣T ′
2(x)

∣∣ ≤ 1 for all x ∈ R, T2(x) = 1 for all x ∈ [−c, c] and T2(x) = 0 for all
|x|> c + 2. Such a function can be easily constructed using the ramp function H
defined in (32). We define fb by

f̂b(ξ) = f̂1(ξ)T2(ξ), (37)

so that the first of the properties listed above is clearly satisfied. From (33) and the
definition of T2, it is clear that for all x ∈ R,

|f1(x)− fb(x)| =
∣∣∣∣∫ ∞

−∞
f̂1(ξ) (1− T2(ξ)) exp(iξx) dξ

∣∣∣∣
≤
∫
|ξ|>c

∣∣∣f̂1(ξ)∣∣∣ dξ
≤ 4k1
mcm

.

(38)

This inequality establishes the second of the properties of the function fb listed above
and, by combining it with (34), we obtain the third. It follows from (35), (36) and
the properties of T2 that ∣∣∣f̂b(ξ)∣∣∣ = ∣∣∣f̂1(ξ)T2(ξ)∣∣∣ ≤ 4

π
M (39)

and ∣∣∣f̂b′(ξ)∣∣∣ = ∣∣∣f̂1′(ξ)T2(ξ) + f̂1(ξ)T
′
2(ξ)

∣∣∣ ≤ 4

π
M +

8

π
M =

12

π
M (40)

for all ξ ∈ R. This establishes the last two of the properties of fb listed above. □

More precise results of this type can be given under stronger regularity assump-
tions on f . However, the necessary arguments are rather technical and beyond
the scope of this paper. Accordingly, now that we have established the exis-
tence of a suitable bandlimited approximate under the weak condition that f
admits an infinitely differentiable extension in a neighborhood of [−1, 1], we
prefer to simply introduce the following definition.

Definition 1 Suppose that f : [−1, 1] → C admits an infinitely differentiable exten-
sion to an open interval containing [−1, 1]. Then, for each real number 0 < ϵ < 1, we
denote by cf (ϵ) the smallest positive real number c such that there exists a function
fb ∈ S (R) of bandlimit c with the following properties:
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1. ∥f − fb∥L∞([−1,1]) ≤ ϵ ∥f∥L∞([−1,1]) ,

2. ∥fb∥L∞(R) ≤ 4 ∥f∥L∞([−1,1]) ,

3.

∥∥∥f̂b∥∥∥
L∞(R)

≤ 4 ∥f∥L∞([−1,1]) and

4.

∥∥∥f̂b′∥∥∥
L∞(R)

≤ 4 ∥f∥L∞([−1,1]) .

The following is an immediate consequence of Theorem 1.

Corollary 1 If f : [−1, 1] → C admits an infinitely differentiable extension to a
neighborhood of [−1, 1], then for every positive integer m, there exists a constant
C(m, f) depending only m and f , such that

cf (ϵ) ≤ C(m, f)

(
1

ϵ

) 1
m

, (41)

for all sufficiently small ϵ > 0.

Under the assumption that f : [−1, 1] → C admits an extension which is
bounded and analytic on a horizontal strip containing the real axis, then there
clearly exists a constant C(f) such that

cf (ϵ) ≤ C(f) log

(
1

ϵ

)
(42)

for all sufficiently small ϵ > 0. We conjecture that this also holds when f
admits an extension which is analytic in an open neighborhood of [−1, 1], but
a proof of this is beyond the scope of the present article.

2.4 Legendre expansions of bandlimited functions

The Schwartz-Paley-Wiener theorem asserts that if φ is a tempered distribu-
tion whose Fourier transform φ̂ has compact support, then φ is, in fact, an
entire function satisfying certain growth conditions at ∞. It follows from this
and standard results in approximation theory (which can be found in [20], for
example) that the Legendre expansion of φ decays superexponentially. Here,
for the sake of concreteness, we give a simple bound on the coefficients in the
Legendre expansion of φ which depends on the order n of φ̂ and its bandlimit
c. Throughout this subsection, we use Pk to denote the Legendre polynomial of
degree k and jν to denote the spherical Bessel function of order ν. Definitions
of these functions can be found, for instance, in [21].

Lemma 1 If φ is a tempered distribution of order n which is supported on [a, b],
then there exist complex numbers c0, . . . , cn−1 and a complex Radon measure µ on
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[a, b] such that

⟨φ, f⟩ =
n−1∑
k=0

ckf
(k)(a) +

∫ b

a
f(x) dµ(x), (43)

for all f ∈ Cn ([a, b]).

Proof Because the space of tempered distributions of order n which are supported
on [a, b] can be identified with the dual space of Cn ([a, b]), it suffices to show that
any element of the dual of Cn ([a, b]) is of the form (43). The case n = 0 follows by
a trivial application of the Riesz representation theorem, so we suppose that n ≥ 1.
Because any function f ∈ Cn ([a, b]) can be written as

f(x) =

n−1∑
k=0

f (k)(a)

k!
(x− a)k +

∫ x

a

f (n)(u)

(n− 1)!
(u− a)n−1 du, (44)

the map

f 7→
(
f(a), f ′(a), . . . , f (n−1)(a), f (n)

)
(45)

is an isomorphism from Cn ([a, b]) to Cn × C ([a, b]). The result now follows from
this and the observations that the dual of C ([a, b]) is the space of complex Radon
measures M([a, b]) and Cn is its own dual space. □

Lemma 2 If the Fourier transform of the tempered distribution φ is of order n and
has support on the interval [a, b], then φ coincides with an entire function of the form

φ(x) = pn−1(x) + xn
∫ b

a
eiξx dµ(ξ), (46)

where pn−1 is a polynomial of degree at most n− 1 and µ ∈M ([a, b]).

Proof The tempered distribution φ is given by

φ(x) = ⟨φ̂, νx⟩ , (47)

where νx(ξ) = exp(iξx). The result follows from this and Lemma 1. □

Lemma 3 For all real-valued ξ and nonnegative integers k,∣∣∣∣∣
∫ 1

−1
exp(iξx)Pk(x) dx

∣∣∣∣∣ ≤ 2
∣∣∣ ξ2 ∣∣∣k

Γ(k + 1)
. (48)

Proof The formula ∫ 1

−1
exp(iξx)Pk(x) dx = 2ikjk(ξ), (49)
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can be found in Section 7.8 of [22], among many other sources. Combining it with
the well-known inequality

|jk(z)| ≤
∣∣ z
2

∣∣k
Γ(k + 1)

, (50)

which is a special case of Formula 10.14.4 in [21], yields the conclusion of the lemma.
□

Theorem 2 Suppose that the Fourier transform of φ ∈ S′ (R) is a tempered distri-
bution of order n supported on the interval [−c, c] with c ≥ 1. Then φ is an entire
function and the coefficients in the Legendre expansion

φ(x) =

∞∑
m=0

amPm(x) (51)

of φ satisfy

|am| ≲
(
c
2

)m+n

Γ(m− n+ 1)
, (52)

for all m ≥ n.

Proof By Lemma 2,∫ 1

−1
φ(x)Pm(x) dx =

∫ 1

−1
pn−1(x)Pm(x) dx

+

∫ c

−c

(∫ 1

−1
xn exp(iξx)Pm(x) dx

)
dµ(ξ),

(53)

where pn−1 is a polynomial of degree at most n− 1 and µ ∈M ([−c, c]). For m ≥ n,∫ 1

−1
pn−1(x)Pm(x) dx = 0, (54)

and so∣∣∣∣∣
∫ 1

−1
φ(x)Pm(x) dx

∣∣∣∣∣ ≤ |µ| ([−c, c]) max
ξ∈[−c,c]

∣∣∣∣∣
∫ 1

−1
exp(iξx)xnPm(x) dx

∣∣∣∣∣ . (55)

We now observe that

xnPm(x) =

m+n∑
k=m−n

bkPk(x), (56)

where

bk =

√
k +

1

2

∫ 1

−1
xnPm(x)Pk(x) dx. (57)

By combining (56) and Lemma 3, we see that∣∣∣∣∣
∫ 1

−1
exp(iξx)xnPm(x) dx

∣∣∣∣∣ ≤
m+n∑

k=m−n

2 |bk|
∣∣∣ ξ2 ∣∣∣k

Γ(k + 1)

≤
(4n+ 2)max{|bk|}

(
c
2

)m+n

Γ(m− n+ 1)
,

(58)

for all |ξ|≤ c. Together with (55), this gives us (52). □
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Remark 1. Using the well-known approximation

jν(z) ≈
1

z
√
2e

(
ez

2(ν + 1
2 )

)ν+1

=

(
e

2
√
2e(ν + 1

2 )

)(
ez

2(ν + 1
2 )

)ν

(59)

in lieu of the rather crude bound (50), we see that∣∣∣∣∫ 1

−1

exp(iξx)xnPm(x) dx

∣∣∣∣
=

∣∣∣∣∣
m+n∑

k=m−n

2ikbkjk(ξ)

∣∣∣∣∣
≤ (4n+ 2)max{|bk|}

m+n∑
k=m−n

|jk(ξ)|

≈ (4n+ 2)max{|bk|}
m+n∑

k=m−n

(
e

2
√
2e(k + 1

2 )

)(
ec

2(k + 1
2 )

)k

,

(60)

for all |ξ|≤ c. When m > ec/2 + n− 1
2 ,(

ec

2(k + 1
2 )

)
< 1 (61)

and the preceding sum is bounded by a multiple of

2n

m− n+ 1
2

(
ec

2
(
m− n+ 1

2

))m−n

. (62)

So we expect the coefficients in the Legendre expansion of φ to decay superex-
ponentially as soon as this condition is met.

2.5 Truncated singular value decompositions

If A is a complex-valued m× n matrix with m ≥ n, then any decomposition
of the form

A =
(
u1 u2 · · · um

)


σ1
σ2

. . .

σn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


(
v1 v2 · · · vn

)∗
, (63)

where σ1, . . . , σn ∈ R, {u1, . . . ,um} is an orthonormal basis in Cm and
{v1, . . . ,vn} is an orthonormal basis in Cn, is known as a singular value
decomposition of A . The quantities σ1, . . . , σn are uniquely determined up to
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ordering, and they are known as the singular values of A . It is conventional
to arrange them in descending order, and we will assume that this is the case
with all singular value decompositions that we consider.

A k-truncated singular value decomposition of A is an approximation of the
form

A ≈
(
u1 u2 · · · uk

)

σ1

σ2
. . .

σk

( v1 v2 · · · vk

)∗
, (64)

where (63) is a singular value decomposition of A with σ1 ≥ σ2 ≥ · · · ≥ σn
and 1 ≤ k ≤ n. Typically, some desired precision ϵ > 0 is specified and k
is taken to be the least integer between 1 and n − 1 such that σk+1 < ϵ, if
such an integer exists, or k = n otherwise. In this case, we say that (64) is a
singular value decomposition which has been truncated at precision ϵ. We call
the vector

x =
(
v1 v2 · · · vk

)


1
σ1

1
σ2

. . .
1
σk

( u1 u2 · · · uk

)∗
y (65)

the solution of the linear system A x = y obtained from the truncated singular
value decomposition (64).

The following theorem implies that, when a linear system admits an approx-
imate solution with a modest norm, and it is solved numerically using a
truncated singular value decomposition, the computed solution will have both
a small residual and a modest norm. The proof can be found in [23].

Theorem 3 Suppose that A ∈ Cm×n, where m ≥ n, and let σ1 ≥ σ2 ≥ · · · ≥ σn be
the singular values of A . Let b ∈ Cm, and suppose that x ∈ Cn satisfies

A x = b. (66)

Let ϵ > 0, and suppose further that

x̂k = (A + E )†k(b+ e), (67)

where (A + E )†k is the pseudo-inverse of a k-truncated singular value decomposition
of A + E , so that

σ̂k ≥ ϵ ≥ σ̂k+1, (68)

where σ̂k and σ̂k+1 are the kth and (k + 1)th largest singular values of A + E , and
where E ∈ Cm×n and e ∈ Cm, with ∥E ∥2< ϵ/2. Then

∥x̂k∥2≤
1

σ̂k
(2ϵ∥x∥2+∥e∥2) + ∥x∥2. (69)

and

∥A x̂k − b∥2≤ 5ϵ∥x∥2+
3

2
∥e∥2. (70)
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We will make use of the following simplified version of this theorem.

Corollary 2 Suppose that A ∈ Cm×n, where m ≥ n, and let σ1 ≥ σ2 ≥ · · · ≥ σn
be the singular values of A . Let ϵ > 0 and b ∈ Cn, and suppose that δb ∈ Cn and
x ∈ Cn satisfy

A x = b+ δb, (71)

where δb ≲ ϵ∥A ∥2∥x∥2. Suppose that

x̂k = (A + E )†k(b+ e), (72)

where (A + E )†k is the pseudo-inverse of a k-truncated singular value decomposition
of A + E , so that

σ̂k ≥ ϵ∥A ∥2≥ σ̂k+1, (73)

where σ̂k and σ̂k+1 are the kth and (k + 1)th largest singular values of A + E , and
where E ∈ Cm×n and e ∈ Cm, with ∥E ∥2< ϵ∥A ∥2/2 and ∥e∥2≲ ϵ∥b∥2. Then

∥x̂k∥2≲ ∥x∥2 (74)

and

∥A x̂k − b∥2≲ ϵ∥A ∥2∥x∥2. (75)

3 Analysis of the Levin equation

This section contains our analysis of the Levin equation. The two principal
results are Theorems 4 and 5. Theorem 4 generalizes the classical result of [1]
by showing that, whenever g′ is nonzero over the interval and the ratio of the
maximum absolute value of g′ to the minimum absolute value of g′ is small,
the Levin equation admits a well-behaved solution which can be approximated
by a polynomial expansion at a cost which is independent of the magnitude
of g′. Theorem 5 shows that, on an interval in which g′ is of small magnitude,
the Levin equation admits a well-behaved solution which can be represented
by a polynomial expansion at a cost which decreases with the magnitude of
g′. It applies whether or not g′ has zeros in the interval. We begin with the
following lemma, which applies in the simple case when g′ is equal to a nonzero
constant W .

Lemma 4 Suppose that f : [−1, 1] → C admits an infinitely differentiable extension
to a neighborhood of [−1, 1] and W ̸= 0. Suppose further that 0 < ϵ < 1, and
let W0 = cf (ϵ), where cf (ϵ) is defined in Definition 1. Then there exists an entire
function pb ∈ S′ (R) and a constant C(W0) depending only on W0 such that

1. p̂b is a tempered distribution of order one supported on [−W0,W0],
2. |p′b(x) + iWpb(x)− f(x)| ≤ ϵ∥f∥L∞([−1,1]) for all x ∈ [−1, 1],

3. ∥pb∥L∞([−1,1]) ≤ C(W0)min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) and
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4. ∥p′b∥L∞([−1,1]) ≤ C(W0)min

{
1,

1

|W |

}
∥f∥L∞([−1,1]).

Proof We let fb ∈ S (R) be a function with bandlimit W0 = cf (ϵ) such that
conditions (1)-(4) in Definition 1 hold, and define the function pb via the formula

pb(x) = p.v.

∫ W0

−W0

f̂b(ξ)

i(W + ξ)
exp(iξx) dξ. (76)

That is, pb is the inverse Fourier transform of the product of the tempered
distribution TW defined via

⟨TW , φ⟩ = p.v.

∫ ∞

−∞

φ(ξ)

i (W + ξ)
dξ (77)

and the infinitely differentiable function f̂b. It is clear that p̂b is a tempered
distribution of order one which is supported on [−W0,W0], so the first of the con-
ditions listed above is satisfied; in particular, pb is an entire function by a the
Schwartz-Paley-Wiener theorem.

Since

p′b(x) + iWpb(x) =

∫ W0

−W0

i (W + ξ) f̂b(ξ)

i(W + ξ)
exp(iξx) dξ = fb(x) (78)

and
∥f − fb∥L∞([−1,1])≤ ϵ∥f∥L∞([−1,1]), (79)

the second of the properties of pb listed above holds.

To establish the third of the properties of pb listed above, we first assume that
|W |≤W0 + 1. Then we have

pb(x) = p.v.

∫ W0

−W0

f̂b(ξ)

i(W + ξ)
exp(ixξ) dξ

= p.v.

∫ −W+2W0+1

−W−2W0−1

f̂b(ξ)

i(W + ξ)
exp(ixξ) dξ

=

∫ −W+2W0+1

−W−2W0−1

f̂b(ξ) exp(ixξ)− f̂b(−W ) exp(−ixW )

i(W + ξ)
dξ

(80)

for all x ∈ R, where the last equality follows from the fact that 1/(W + ξ) is odd
about ξ = −W . By the mean value theorem, there exists a function η(ξ) such that

pb(x) =

∫ −W+2W0+1

−W−2W0−1

G′(η(ξ))(W + ξ)

i(W + ξ)
dξ = −i

∫ −W+2W0+1

−W−2W0−1
G′(η(ξ)) dξ (81)

for all x ∈ R, where
G(ξ) = f̂b(ξ) exp(ixξ). (82)

Since
G′(ξ) = f̂b

′
(ξ) exp(ixξ) + ixf̂b(ξ) exp(ixξ), (83)

we have

|pb(x)| ≤ 2(2W0 + 1)

(∥∥∥f̂b′∥∥∥
L∞(R)

+
∥∥∥f̂b∥∥∥

L∞(R)

)
(84)
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for all x ∈ [−1, 1] (note that we are now only considering x in [−1, 1]). Now making
use of properties (3) and (4) in Definition 1 gives us

∥pb∥L∞([−1,1]) ≤ 16(2W0 + 1) ∥f∥L∞([−1,1]) . (85)

An analogous argument which makes use of the fact that

p′b(x) =

∫ −W+2W0+1

−W−2W0−1

H(ξ)−H(−W )

i(W + ξ)
dξ, (86)

where
H(ξ) = iξf̂b(ξ) exp(ixξ), (87)

shows that∥∥p′b∥∥L∞([−1,1])
≤ 8(2W0 + 1) (1 + 2(|W |+2W0 + 1)) ∥f∥L∞([−1,1])

≤ 8 (2W0 + 1) (6W0 + 5) ∥f∥L∞([−1,1])

(88)

when |W |≤W0 + 1.

We now suppose that |W |> W0 + 1. Then

|pb(x)| =

∣∣∣∣∣
∫ W0

−W0

f̂b(ξ) exp(iξx)

i(W + ξ)
dξ

∣∣∣∣∣ ≤ 2W0

|W | − |W0|

∥∥∥f̂b∥∥∥
L∞(R)

(89)

and ∣∣p′b(x)∣∣ =
∣∣∣∣∣
∫ W0

−W0

f̂b(ξ) exp(iξx)iξ

i(W + ξ)
dξ

∣∣∣∣∣ ≤ W 2
0

|W | − |W0|

∥∥∥f̂b∥∥∥
L∞(R)

(90)

hold for all x ∈ R. From the above inequalities, the fact that

1

|W |−W0
≤ W0 + 1

|W | (91)

and property (3) in Definition 1, we see that

∥pb∥L∞(R) ≤
8W0(W0 + 1)

|W | ∥f∥L∞([−1,1]) (92)

and ∥∥p′b∥∥L∞(R) ≤
4W 2

0 (W0 + 1)

|W | ∥f∥L∞([−1,1]) (93)

whenever |W |> W0 +1. The third of the conditions on pb listed in the conclusion of
the lemma follows from the combination of (85) and (92), while the fourth is obtained
by combining (88) and (93). □

In accordance with Remark 1, the sequence {am} of Legendre coefficients of
the approximate solution pb of the Levin equation appearing in Lemma 4
decays superexponentially once m > e/2cf (ϵ) + 1/2. Consequently, pb can be
represented to a fixed relative precision via a polynomial expansion at a cost
which depends on the complexity of f but not the magnitude of W .

We now move on to the case in which g′ is nonconstant, but with no zeros
on the interval [−1, 1]. To that end, we suppose that f : [−1, 1] → C and
g : [−1, 1] → R admit infinitely differentiable extensions to a neighborhood of
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[−1, 1], and that the extension of g′ is nonzero in an open interval containing
[−1, 1]. We also let

G0 = min
−1≤x≤1

|g′(x)| , W =
1

2

∫ 1

−1

g′(x) dx (94)

and define u : [−1, 1] → [−1, 1] via the formula

u(x) = −1 +
1

W

∫ x

−1

g′(y) dy. (95)

Because g′ is nonzero in a neighborhood of [−1, 1], u is invertible and its inverse
extends to an open neighborhood of [−1, 1]. Finally, we define h : [−1, 1] →
[−1, 1] via the formula

h(z) =
f
(
u−1 (z)

)
u′ (u−1 (z))

= f
(
u−1 (z)

) du−1

dz
(z). (96)

Note that u is independent of the magnitude of g′, in the sense that it is
the same for any rescaling of g′ by a nonzero constant. The function h is
independent of the magnitude of g′ in the same sense.

With the preceding notations and assumptions, we have the following:

Theorem 4 Suppose that 0 < ϵ < 1, and let W0 = ch(ϵ), where ch(ϵ) is defined
in Definition 1. Then there exists a constant C(W0), depending only on W0, and an
infinitely differentiable function pb : [−1, 1] → C such that

1. the Fourier transform of pb
(
u−1(z)

)
is a tempered distribution of order 1

supported on the interval [−W0,W0],

2. |p′b(x) + ig′(x)pb(x)− f(x)| ≤ ϵ
|W |
G0

∥f∥L∞([−1,1]) for all x ∈ [−1, 1],

3. ∥pb∥L∞([−1,1]) ≤ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) and

4. ∥p′b∥L∞([−1,1]) ≤ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) .

Proof By introducing the new variable z = u(x), we transform the Levin equation

p′(x) + ig′(x)p(x) = f(x), −1 < x < 1, (97)

into the simplified form

p′(z) + iWp(z) = h(z), −1 < z < 1. (98)

Our assumptions on f and g, and the method we used to construct u ensure that h
admits an infinitely differentiable extension to a neighborhood of [−1, 1]. Applying
Lemma 4 to (98) shows that, for all 0 < ϵ < 1, there exists an entire function p1 such
that

1. p̂1 is a tempered distribution of order 1 supported on the interval [−W0,W0],
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2. |p′1(z) + iWp1(z)− h(z)| ≤ ϵ∥h∥L∞([−1,1]) for all z ∈ [−1, 1],

3. ∥p1∥L∞([−1,1]) ≤ C(W0)min

{
1,

1

|W |

}
∥h∥L∞([−1,1]) and

4. ∥p′1∥L∞([−1,1]) ≤ C(W0)min

{
1,

1

|W |

}
∥h∥L∞([−1,1]).

We now define pb via the formula pb(x) = p1(u(x)). It is clear that the first condition
on pb listed above is satisfied. We observe that, since g′(x) =Wu′(x),

∥h∥L∞([−1,1]) ≤
|W |
G0

∥f∥L∞([−1,1]) . (99)

Combining (99) and properties of p1 listed above yields

∥pb∥L∞([−1,1]) ≤ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]), (100)

∥∥p′b∥∥L∞([−1,1])
≤ C(W0)

|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) (101)

and ∣∣pb(x)− ig′(x)pb(x)− f(x)
∣∣ ≤ ϵ

|W |
G0

∥f∥L∞([−1,1]), (102)

the latter of which holds for all x ∈ [−1, 1]. This suffices to establish the theorem.
□

We emphasize that Theorem 4 does not imply that the approximate solution pb
of the Levin equation has a Fourier transform which is a tempered distribution
with compact support. Instead, we have

pb(x) = ⟨p̂1, ηx⟩ with ηx(ξ) = exp(iu(x)ξ), (103)

where p̂1 is a tempered distribution of order one with compact support
[−W0,W0], where W0 = ch(ϵ) is independent of the magnitude of g′. Since
pb is the composition of a bandlimited function p1, whose bandlimit does not
depend on the magnitude of g′, and the function u, which is analytic on an
open neighborhood of [−1, 1] and which is also independent of the magnitude
of g′, it follows that pb is an analytic function on an open neighborhood of
[−1, 1], whose smoothness is characterized independently of the magnitude of
g′. The coefficients {am} in its Legendre expansion decay faster than m−k for
any positive integer k; moreover, pb can be approximated to a fixed relative
precision via a Legendre expansion at a cost which does not depend on the
magnitude of g′, but which does depend on the complexity of h and u.

It would be of interest to develop better estimates on the rate of decay of the
Legendre coefficients of pb, as we did in the case when g′ is constant, but useful
results of this type seem to be fairly complicated. Indeed, the difficulty in
estimating the complexity of pb a priori is one of the principal motivations for
the adaptive version of the Levin algorithm that we introduce in this article.

We close this section with the following theorem which shows that, if g′ is
of small magnitude, then the Levin equation admits a solution which can be
well-approximated by a bounded, bandlimited function pb.
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Theorem 5 Suppose that f : [−1, 1] → C and g : [−1, 1] → R admit extensions to
infinitely differentiable functions in a neighborhood of [−1, 1], and that

G1 = max
−1≤x≤1

∣∣g′(x)∣∣ < 1

2
. (104)

Let 0 < ϵ < 1 be given, and define the integer n via the formula

n =

⌊
log(ϵ)

log(2G1)

⌋
. (105)

Then there exists an infinitely differentiable function pb ∈ S′ (R) such that

1. p̂b is a tempered distribution of order 1 supported on the interval

[−cf (ϵ)− ncg′(ϵ), cf (ϵ) + ncg′(ϵ)] , (106)

where cf (ϵ) and cg′(ϵ) are defined in Definition 1,

2. |p′b(x) + ig′(x)pb(x)− f(x)| ≤ 2ϵ

(
1 +

G1

1− 2G1

)
∥f∥L∞([−1,1]) for all x ∈

[−1, 1],

3. ∥pb∥L∞([−1,1]) ≤
2

1− 2G1
∥f∥L∞([−1,1]) and

4. ∥p′b∥L∞([−1,1]) ≤ 4

(
1 +

G1

1− 2G1

)
∥f∥L∞([−1,1]) .

Proof We let fb and g′b be bandlimited approximates of f and g′ which satisfy con-
ditions (1)-(4) in Definition 1. We next define A : L∞ ([−1, 1]) → L∞ ([−1, 1]) via
the formula

A [φ] (x) = −i
∫ x

0
g′b(y)φ(y) dy. (107)

Obviously, ∥A∥∞ is bounded by ∥g′b∥L∞([−1,1]), which is less than (1+ϵ)G1 ≤ 2G1 <
1 by property (1) in Definition 1. Now we let G2 = (1 + ϵ)G1,

h(x) =

∫ x

0
fb(y) dy (108)

and

pb(x) =

n∑
k=0

Ak [h] (x), (109)

where Ak denotes the repeated application of the operator A and n is defined by
(105). Since ∥fb∥L∞([−1,1])≤ (1+ ϵ)∥f∥L∞([−1,1]) by property (1) in Definition 1, we
have

∥pb∥L∞([−1,1]) ≤

(
n∑

k=0

∥A∥k∞

)
∥h∥L∞([−1,1])

≤
1 +Gn+1

2

1−G2
∥f∥L∞([−1,1])

≤ 1 + ϵ

1−G2
∥f∥L∞([−1,1]),

(110)
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which implies the third property of pb listed above. Since h′(x) = fb(x) and

d

dx
Ak [h] (x) = −ig′b(x)A

k−1 [h] (x), (111)

we have

p′b(x) = fb(x)− ig′b(x)
n−1∑
k=0

Ak [h] (x)

= fb(x)− ig′b(x)
n∑

k=0

Ak [h] (x) + ig′b(x)A
n [h] (x)

= fb(x)− ig′b(x)pb(x) + ig′b(x)A
n [h] (x)

(112)

for all x ∈ [−1, 1]. From this and (110), we see that∥∥p′b(x)∥∥L∞([−1,1])
≤ ∥fb∥L∞([−1,1]) +

∥∥g′∥∥
L∞([−1,1])

∥pb∥L∞([−1,1])

+Gn+1
2 ∥fb∥L∞([−1,1])

≤
(
(1 + ϵ) +G1

1 + ϵ

1−G2
+ ϵ(1 + ϵ)

)
∥f∥L∞([−1,1])

≤
(
(1 + ϵ)2 +

2G1

1−G2

)
∥f∥L∞([−1,1]) ,

(113)

from which the fourth of the properties of pb listed in the conclusion of the theorem
follows. Similarly, (112) implies that∣∣p′b(x) + ig′b(x)pb(x)− f(x)

∣∣ ≤ ∣∣p′b(x) + ig′b(x)pb(x)− fb(x)
∣∣+ |fb(x)− f(x)|

≤
∣∣ig′b(x)An [h] (x)

∣∣+ |fb(x)− f(x)|

≤ Gn+1
2 ∥f∥L∞([−1,1]) + ϵ ∥f∥L∞([−1,1])

≤ 2ϵ ∥f∥L∞([−1,1])

(114)

for all x ∈ [−1, 1]. Combining (114) with (110), (113) and using the properties of the
approximates fb and gb, we see that∣∣p′b(x) + ig′(x)pb(x)− f(x)

∣∣
≤
∣∣p′b(x) + ig′b(x)pb(x)− f(x)

∣∣+ ∣∣ig′(x)pb(x)− ig′b(x)pb(x)
∣∣

≤2ϵ ∥f∥L∞([−1,1]) + ∥pb∥L∞([−1,1])

∥∥g′ − g′b
∥∥
L∞([−1,1])

≤
(
2 +

(
1 + ϵ

1−G2

)(∥∥g′∥∥
L∞([−1,1])

))
ϵ ∥f∥L∞([−1,1])

(115)

for all x ∈ [−1, 1]. The second of the properties of pb listed above follows from (115).

It remains only to establish the first of the properties of pb listed above. To do so,
we first observe that the Fourier transform of h is

p.v.
f̂b(ξ)

iξ
+

1

2
δ(ξ)

(∫ ∞

0
fb(x) dx−

∫ 0

−∞
fb(x) dx,

)
, (116)

which is a tempered distribution of order one supported on the interval
[−cϵ(f), cϵ(f)]. Next, we suppose that ψ is a C∞ (R) function whose Fourier
transform is a tempered distribution of order 1 supported on [−c, c]. The Fourier
transform of ψ times the function g′b ∈ S (R) is a tempered distribution of
order 0 supported on

[
−c− cg′(ϵ), c+ cg′(ϵ)

]
. Since A [ψ] is obtained by integrat-

ing this convolution, its Fourier transform is a tempered distribution of order
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1 with bandlimit
[
−c− cg′(ϵ), c+ cg′(ϵ)

]
. It now follows by induction that the

Fourier transform of Ak [h] is a tempered distribution of order 1 with bandlimit[
−cf (ϵ)− kcg′(ϵ), cf (ϵ) + kcg′(ϵ)

]
. Combining this with (109) yields the first prop-

erty of pb listed above. □

The bandlimit of the function pb whose existence is established in Theorem 5
decreases with magnitude of g′. Consequently, on any interval on which g′

is sufficiently small, we expect to be able to represent pb to a fixed relative
accuracy with a polynomial expansion whose number of terms is bounded.
Moreover, this is the case whether or not g′ has zeros in the interval.

4 Numerical aspects of the Levin method

In this section, we show that high-accuracy can be obtained when the Levin
equation (2) is discretized via a Chebyshev spectral collocation method and
the resulting linear system is solved with a truncated singular value decompo-
sition, regardless of the magnitude of g′ and whether or not it has zeros. There
is one unusual feature of the spectral collocation method we consider, namely,
we use the k-point extremal Chebyshev grid to represent the unknown solution
p of the system, but we require that the Levin equation hold on the nodes of
the 2k-point extremal Chebyshev grid. We take this approach because, while
we approximate both g′ and p by polynomials of degree k, the Levin equation
involves the product of g′ and p, which is approximated by a polynomial of
degree 2k. We note, however, that while our rigorous bounds depend on impos-
ing conditions at 2k points, in practice there is little harm in forming a square
system (i.e., in imposing conditions only at k points). Indeed, we explain in
the beginning of the next section why the imposition of k conditions almost
always suffices.

In this section, we use the symbol x̂ to mean the computed approximation to
x, rather than the Fourier transform of x.

Throughout this section, we will assume that f : [−1, 1] → C and g : [−1, 1] →
R admit continuously differentiable extensions to a neighborhood of [−1, 1],
and that 0 < ϵ < 1. Moreover, we let

G0 = min
−1≤x≤1

|g′(x)| , G1 = max
−1≤x≤1

|g′(x)| and W =
1

2

∫ 1

−1

g′(x) dx. (117)

We consider separately the case when G0 > 0 and the case when G1 < 1/4,

and provide error bounds on the absolute error |Î− I| of the Levin method for
evaluating an integral I of the form (1), using Chebyshev collocation points
and the truncated singular value decomposition, applied to the Levin equation
over a single interval [−1, 1]. The main results of this section are given by
inequality (153) for the case G0 > 0, and by inequality (164) for the case
G1 < 1/4.
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4.1 The case when G0 > 0

We first consider the case in which G0 > 0. Letting W0 = ch(ϵ), where ch(ϵ)
is defined in Definition 1 and h is defined via the formula (96), we invoke
Theorem 4 to see that there exist a function pb which is analytic on a neigh-
borhood on [−1, 1] and whose smoothness is characterized independently of
the magnitude g′, and a constant C(W0) depending only on W0 such that

|p′b(x) + ig′(x)pb(x)− f(x)| ≤ ϵ
|W |
G0

∥f∥L∞([−1,1]) for all x ∈ [−1, 1], (118)

∥pb∥L∞([−1,1])≤ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) (119)

and

∥p′b∥L∞([−1,1])≤ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]). (120)

Recalling that h is the same for any rescaling of g′ by a nonzero constant, we
note that W0 is independent of the magnitude of g′. Moreover, it is clear from
the discussion following Theorem 4 that

pb(x) =

∞∑
n=0

anTn(x), (121)

where |an| is bounded by a rapidly decaying function of n which is independent
of the magnitude of g′.

We claim that there is an integer k such that∥∥Pk [pb]
′
+ iPk [g

′]Pk [pb]− (p′b + ig′pb)
∥∥
L∞([−1,1])

≤ ϵ∥p′b∥L∞([−1,1])+4ϵG1∥pb∥L∞([−1,1])

≤ ϵ (1 + 4G1)C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1])

(122)

holds regardless of the magnitude of g′; that is, k can be chosen independent
of the magnitude of g′. It will be important in what follows to note that while
we are approximating pb and g′ with polynomials of degree k, the function
Pk [pb]

′
+iPk [g

′]Pk [pb] is a polynomial of degree 2k. To see that (122) holds, we
first observe that (121) together with Formulas (28) and (29) in Subsection 2.2
imply that we can choose k independently of the magnitude of g′ such that

∥Pk [pb]− pb∥L∞([−1,1]) ≤ ϵ ∥pb∥L∞([−1,1]) (123)

and ∥∥Pk [pb]
′ − p′b

∥∥
L∞([−1,1])

≤ ϵ ∥p′b∥L∞([−1,1]) . (124)
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Clearly, we can also choose k independently of the magnitude of g′ to ensure
that

∥Pk [g
′]− g′∥L∞([−1,1]) ≤ ϵ ∥g′∥L∞([−1,1]) , (125)

since g is assumed to be slowly varying, and

∥P2k [f ]− f∥L∞([−1,1]) ≤ ϵ ∥f∥L∞([−1,1]) . (126)

Now (123) and (125) together with the assumption that 0 < ϵ < 1 imply

∥Pk[pb]∥L∞([−1,1]) ≤ 2 ∥pb∥L∞([−1,1]) (127)

and

∥Pk[g
′]∥L∞([−1,1]) ≤ 2 ∥g′∥L∞([−1,1]) . (128)

It follows readily that

∥Pk [g
′]Pk [pb]− g′pb∥L∞([−1,1])

≤∥Pk [pb]∥L∞([−1,1]) ∥Pk [g
′]− g′∥L∞([−1,1])

+ ∥Pk [g
′]∥L∞([−1,1]) ∥Pk [pb]− pb∥L∞([−1,1])

≤ 4ϵ∥g′∥L∞([−1,1])∥pb∥L∞([−1,1]).

(129)

Now (124) and (129) imply the first inequality in (122), and the second follows
from (119) and (120).

Combining (118) with (122) and (126) shows that∣∣Pk [pb]
′
(x) + Pk [g

′] (x)Pk [pb] (x)− P2k [f ] (x)
∣∣

≤ϵ
(
1 +

(
1 + (1 + 4G1)C(W0)min

{
1,

1

|W |

})
|W |
G0

)
∥f∥L∞([−1,1])

≤ϵ
(
2 + (1 + 4G1)C(W0)min

{
1,

1

|W |

})
|W |
G0

∥f∥L∞([−1,1]),

(130)

for all x ∈ [−1, 1], since G0 ≤ |W |. If we now let

pb =


pb

(
xcheb

1,k

)
pb

(
xcheb

2,k

)
...

pb

(
xcheb

k,k

)

 , f =


f
(
xcheb

1,2k

)
f
(
xcheb

2,2k

)
...

f
(
xcheb

2k,2k

)

 (131)
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and define the 2k × 2k diagonal matrix G2k via

G2k =


g′
(
xcheb

1,2k

)
g′
(
xcheb

2,2k

)
. . .

g′
(
xcheb

2k,2k

)

 , (132)

then (130) implies that

(I2k,kDk + iG2kI2k,k)pb = f + δf , (133)

with

∥pb∥2 ≲ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) (134)

and

∥δf∥2 ≲ ϵ

(
2 + (1 + 4G1)C(W0)min

{
1,

1

|W |

})
|W |
G0

∥f∥L∞([−1,1]), (135)

where the matrices Dk and I2k,k are defined in Section 2.2; Dk is the k × k
spectral differentiation matrix and I2k,k is is the matrix which interpolates
polynomials of degree k from the k-point Chebyshev grid to the 2k-point
Chebyshev grid. Recall from Subsection 2.1 that we use notation x ≲ y to
indicate that there is some constant C not depending on either x or y, such
that x ≤ Cy. We introduce the notation

Ak = I2k,kDk + iG2kI2k,k (136)

in order to simplify the following discussion. Notice now that

max{G1, 1}min

{
1,

1

|W |

}
≥ 1, (137)

since |W |≤ G1. From (134), (135), (137), and the fact that

∥Ak∥2 ≲ max{G1, 1}, (138)

we see that

∥δf∥2 ≲ ϵ ∥Ak∥2 ∥pb∥2 , (139)

regardless of the magnitude of g′. By Corollary 2, when we solve the linear
system

Akp = f (140)

via a singular value decomposition which has been truncated at precision
ϵ ∥Ak∥2, we obtain a solution p̂ such that

∥p̂∥2 ≲ ∥pb∥2 ≲ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) (141)
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and

∥Akp̂− f∥2 ≲ ϵ ∥Ak∥2 ∥pb∥2

≲ ϵC(W0)
|W |
G0

max{G1, 1}min

{
1,

1

|W |

}
∥f∥L∞([−1,1]).

(142)

We now let p̂ be the k-term Chebyshev expansion whose values at the nodes
of the k-point extremal Chebyshev grid agree with the values of the vector p̂,
and we let δ̂f be the 2k-term Chebyshev expansion whose values at the nodes

of the 2k-point extremal Chebyshev grid equal the entries of the vector δ̂f

given by the formula δ̂f = Akp̂−f . From (141) and (142) and the fact that the
Chebyshev polynomials are bounded in L∞ ([−1, 1]) norm by 1, we have that

∥p̂∥L∞([−1,1]) ≲ C(W0)
|W |
G0

min

{
1,

1

|W |

}
∥f∥L∞([−1,1]) (143)

and

∥δ̂f∥L∞([−1,1]) ≲ ϵC(W0)
|W |
G0

max{G1, 1}min

{
1,

1

|W |

}
∥f∥L∞([−1,1]). (144)

To see that p̂ satisfies the Levin equation to high accuracy, we first observe

that, by the definiton of δ̂f ,

p̂′
(
xcheb

j,2k

)
+ ig′

(
xcheb

j,2k

)
p̂
(
xcheb

j,2k

)
= f

(
xcheb

j,2k

)
+ δ̂f

(
xcheb

j,2k

)
(145)

for all j = 1, . . . , 2k. That is,

P2k [p̂
′] (x) + iP2k [g

′p̂] (x) = P2k [f ] (x) + P2k[δ̂f ](x). (146)

Since p̂ and δ̂f are polynomials of degrees k and 2k, respectively, (146) implies

p̂′(x) + iP2k [g
′p̂] (x) = P2k [f ] (x) + δ̂f(x). (147)

Using (125), (143) and the fact that Pk [g
′] (x)p̂(x) is a polynomial of degree

2k, we see that

|P2k [g
′p̂] (x)− g′(x)p̂(x)| ≤ |P2k [g

′p̂] (x)− Pk [g
′] (x)p̂(x)|

+ |Pk [g
′] (x)p̂(x)− g′(x)p̂(x)|

≤ Λ2k ∥p̂∥L∞([−1,1]) |g
′(x)− Pk [g

′] (x)|

+ ∥p̂∥L∞([−1,1]) |Pk [g
′] (x)− g′(x)|

≤ ϵ (1 + Λ2k) ∥g′∥L∞([−1,1]) ∥p̂∥L∞([−1,1])

≲ ϵC(W0)|W |G1

G0
min

{
1,

1

|W |

}
∥f∥L∞([−1,1]),

(148)
for all x ∈ [−1, 1], where Λ2k denotes the Lebesgue constant of the 2k-point
extremal Chebyshev grid. From (126), (144), (147) and (148), we finally arrive
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at the inequality

|p̂′(x) + ig′(x)p̂(x)− f(x)|

≤|δ̂f(x)|+ |P2k[f ](x)− f(x)|+ |P2k [g
′p̂] (x)− g′(x)p̂(x)|

≲ ϵ

(
1 + (G1 +max{G1, 1})C(W0)

|W |
G0

min

{
1,

1

|W |

})
∥f∥L∞([−1,1])

≲ ϵC(W0)
|W |
G0

max{G1, 1}min

{
1,

1

|W |

}
∥f∥L∞([−1,1]),

(149)

which holds for all x ∈ [−1, 1].

To complete our analysis for the case in which G0 > 0, we let

I =

∫ 1

−1

f(t) exp(ig(t)) dt (150)

be the true value of the oscillatory integral we hope to compute via the Levin
method, and take Î to be the estimate

Î = p̂(1) exp(ig(1))− p̂(−1) exp(ig(−1)) (151)

of I computed using the obtained solution of the Levin equation. Now

Î − I =

∫ 1

−1

d

dt
(p̂(t) exp(ig(t))) dt−

∫ 1

−1

f(t) exp(ig(t)) dt

=

∫ 1

−1

(p̂′(t) + ig′(t)p̂(t)− f(t)) exp(ig(t)) dt,

(152)

and it follows from this and (149) that

|Î − I| ≲ ϵC(W0)
|W |
G0

max{G1, 1}min

{
1,

1

|W |

}
∥f∥L∞([−1,1]). (153)

The quantity

|W |min

{
1,

1

|W |

}
(154)

is clearly bounded independently of the magnitude of g′. Moreover, G1/G0

is small when g′ does not vary in magnitude too much over the interval (a
reasonable assumption when analyzing an adaptive scheme). So (153) shows
that the absolute error in the computed integral is bounded independently of
the magnitude of g′, assuming g′ does not vary too much over the interval.

4.2 The case when G1 < 1/4

We now consider the case in which G1 < 1/4. By invoking Theorem 5, we can
find a bandlimited function pb such that

|p′b(x) + ig′(x)pb(x)− f(x)| ≤ 2ϵ

(
1 +

G1

1− 2G1

)
∥f∥L∞([−1,1]) (155)
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for all x ∈ [−1, 1], where

∥pb∥L∞([−1,1])≤
2

1− 2G1
∥f∥L∞([−1,1]) (156)

and

∥p′b∥L∞([−1,1])≤ 4

(
1 +

G1

1− 2G1

)
∥f∥L∞([−1,1]). (157)

Since our assumption on the maximum size of G1 implies a bound on the
maximum bandlimit of pb, the Chebyshev coefficients of pb are bounded by a
rapidly decaying function which is independent of G1. Moreover, we can once
again choose k independently of G1 such that (123) through (129) hold. Then,
proceeding as we did before, we see that∥∥Pk [pb]

′
+ iPk [g

′]Pk [pb]− (p′b + ig′pb)
∥∥
L∞([−1,1])

≲ϵ

(
1 +

G1

1− 2G1

)
∥f∥L∞([−1,1])

(158)

for all x ∈ [−1, 1]. If we define pb, f , δf and Ak as before, then we see that

∥δf∥2 ≲ ϵ

(
1 +

G1

1− 2G1

)
∥f∥L∞([−1,1]) (159)

while

∥Ak∥2 ∥pb∥2 ≲
1

1− 2G1
max{G1, 1}∥f∥L∞([−1,1]), (160)

so there is no difficulty in applying Corollary 2 to see that solving (140) via a
truncated singular value decomposition yields a vector p̂ such that

∥p̂∥2 ≲
1

1− 2G1
∥f∥L∞([−1,1]) (161)

and

∥Akp̂− f∥2 ≲ ϵ ∥Ak∥2 ∥pb∥2

≲ ϵmax{G1, 1}
1

1− 2G1
∥f∥L∞([−1,1]).

(162)

Defining p̂ and δ̂f as before, we obtain the bound

|p̂′(x) + ig′(x)p̂(x)− f(x)|

≲ ϵ

(
1 + max{G1, 1}

1

1− 2G1
+

G1

1− 2G1

)
∥f∥L∞([−1,1])

≲ ϵ

(
1

1− 2G1

)
∥f∥L∞([−1,1]),

(163)
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which holds for all x ∈ [−1, 1]. It follows from this that the absolute error in

the computed value Î approximating the integral I defined by (151) satisfies

|Î − I|≲ ϵ

(
1

1− 2G1

)
∥f∥L∞([−1,1]). (164)

This bound grows as G1 approaches 1/2, but since we are considering an
interval on which G1 < 1/4, the constant in (164) is small.

5 The Adaptive Levin Method

In this section, we describe the adaptive Levin method for the numerical
calculation of the integral ∫ b

a

f(x) exp(ig(x)) dx. (165)

Trivial modifications allow for the evaluation of∫ b

a

f(x) cos(g(x)) dx or

∫ b

a

f(x) sin(g(x)) dx (166)

instead.

Although the rigorous analysis presented in the preceding section concerns a
spectral collocation method in which the solution of the equation is repre-
sented via k discretization nodes while the equation is required to hold at 2k
discretization nodes, the algorithm we describe here only enforces the Levin
equation at k discretization nodes. The properties of the algorithm are barely
affected by this change, and we now explain why this is the case.

When the Levin method is used adaptively, subintervals are typically divided
until f and g′ can be represented by polynomials of degree much lower than
k. This is simply because adaptive procedures are typically suboptimal and
usually lead to the over-discretization of their inputs. If g′ is large and such
over-discretization has taken place, the obtained solution p̂ will also be a poly-
nomial of degree somewhat lower than k. This is because the discretized Levin
equation does not have a nontrivial nullspace when g′ is large, and so p̂ will
closely agree with the nonoscillatory solution pb, which can be represented by
a polynomial of low degree. So in the case when g′ is large, the product g′p̂
can often be represented accurately via a polynomial of degree k.

On the other hand, when g′ is small enough, the discretized nullspace is non-
trivial, but its elements can be represented by polynomials of low degree.
Consequently, in this case, the product g′p̂ can also often be represented by a
polynomial of degree k.

It is only when g′ is of moderate size, but not “large” or “small,” that we
expect g′p̂ to be of degree larger than k. Accordingly, when an adaptive Levin
method which only enforces the Levin equation at k discretization points is
used, only those intervals on which g′ falls into a relatively narrow range of
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moderate values will require additional subdivision. Thus, we do not expect
many additional subdivisions to occur.

Before detailing the algorithm proper, we describe a subroutine which esti-
mates the value of ∫ b0

a0

f(x) exp(ig(x)) dx, (167)

where [a0, b0] is a subinterval of [a, b]. It takes as input the interval [a0, b0],
an integer k which controls the number of Chebyshev nodes used to discretize
the Levin equation, an absolute tolerance parameter ϵ0 > 0, and an external
subroutine for evaluating the functions f and g. The subroutine proceeds as
follows:

1. Use the external subroutine supplied by the user to evaluate the functions
f and g at the extremal Chebyshev nodes translated from [−1, 1] to the
interval [a0, b0], which we also denote by xcheb

1,k , x
cheb

2,k , . . . , x
cheb

k,k .
2. Calculate approximate values

˜
g′
(
xcheb

1,k

)
, . . . ,

˜
g′
(
xcheb

k,k

)
(168)

of the derivatives of the function g at the extremal Chebyshev nodes by
applying the spectral differentiation matrix Dk to the vector of values of g;
that is, via the formula

˜
g′
(
xcheb

1,k

)
˜

g′
(
xcheb

2,k

)
...

˜
g′
(
xcheb

k,k

)


= Dk



g
(
xcheb

1,k

)
g
(
xcheb

2,k

)
...

g
(
xcheb

k,k

)


. (169)

3. Form the matrix

A = Dk + i



˜
g′
(
xcheb

1,k

)
˜

g′
(
xcheb

2,k

)
. . .

˜
g′
(
xcheb

k,k

)


. (170)



Springer Nature 2021 LATEX template

32 On the adaptive Levin method

4. Construct a singular value decomposition

A =
(
u1 u2 · · · uk

)

σ1

σ2
. . .

σk

( v1 v2 · · · vk

)∗
(171)

of the matrix A .
5. Find the greatest integer 1 ≤ l ≤ k such that σl ≥ ∥A ∥2ϵ0. If no such

integer exists, return the estimate 0 for (167).
6. Let

˜
p
(
xcheb

1,k

)
˜

p
(
xcheb

2,k

)
...

˜
p
(
xcheb

k,k

)


=
(
v1 · · · vl

)


1
σ1

1
σ2

. . .
1
σl

( u1 · · · ul

)∗


f
(
xcheb

1,k

)
f
(
xcheb

2,k

)
...

f
(
xcheb

k,k

)


.

The entries of this vector approximate the values of a function p such that

d

dx
(p(x) exp(ig(x))) = f(x) exp(ig(x)) (172)

at the extremal Chebyshev nodes on [a0, b0].
7. Return the estimate

˜
p
(
xcheb

k,k

)
exp

(
ig
(
xcheb

k,k

))
−

˜
p
(
xcheb

1,k

)
exp

(
ig
(
xcheb

1,k

))
(173)

for the value of (167).

The algorithm proper takes as input an absolute tolerance parameter ϵ > ϵ0 >
0, the endpoints a < b of the integration domain, an integer k specifying the
number of Chebyshev nodes used to discretize the Levin equation on each
subinterval considered, and an external subroutine which returns the values
of the functions f and g at a specified collection of points. It maintains an
estimated value val for (165) and a list of intervals. Initially, the list of intervals
contains only [a, b] and the value of the estimate is set to 0. As long as the list
of intervals is nonempty the following steps are repeated:

1. Remove an entry [a0, b0] from the list of intervals.
2. Calculate an estimate val 0 of∫ b0

a0

f(x) exp(ig(x)) dx (174)

using the subprocedure described above.
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3. Calculate estimates val L and valR of∫ c0

a0

f(x) exp(ig(x)) dx and

∫ b0

c0

f(x) exp(ig(x)) dx, (175)

where c0 = (a0 + b0)/2, using the subprocedure described above.
4. If |val 0 − val L − valR| < ϵ, then update the estimate val by letting val =

val + val 0. Otherwise, add the intervals [a0, c0] and [c0, b0] to the list of
intervals.

In the end, the procedure returns the estimate val for (165). Because the
condition number of the oscillatory integral (165) increases with the magnitude
of g′, some loss of accuracy is expected when calculating its value numerically.
In the case of the adaptive Levin method, the principal loss of accuracy occurs
when exponentials of large magnitude are evaluated in (173). Of course, the
magnitudes of many integrals of the form (165) decrease with the magnitude
g′, with the consequence that the absolute error in the calculated value of (165)
often remains constant or even decays as the magnitude of g′ increases.

Remark 2. The truncated singular value decomposition is quite expensive. In
our implementation of the adaptive Levin method, we used a rank-revealing QR
decomposition in lieu of the truncated singular value decomposition to solve the
linear system which results from discretizing the ordinary differential equation.
This was found to be about 5 times faster and leads to no apparent loss in
accuracy.

Remark 3. While it may be more accurate to let val = val+val L+val R rather
than val = val + val 0 in Step 4 of the algorithm, we choose the latter for the
sake of simplicity.

6 Phase Functions for Ordinary Differential
Equations

Many integrals of interest involve special functions which satisfy second order
linear ordinary differential equations. To give one simple example, the Hankel
transform Hν [f ] (k) of the function f(x) is defined via the formula

Hν [f ] (k) =

∫ ∞

0

Jν(kx)
√
kxf(x) dx, (176)

where Jν(z) denotes the Bessel function of the first kind of order ν. The
function Jν(z) is, of course, a solution of Bessel’s differential equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0. (177)
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We say that α is a phase function for

y′′(t) + p(t)y′(t) + q(t)y(t) = 0, a < t < b, (178)

provided α′ is positive on (a, b) and the pair

u(t) =

√
ω(t)

α′(t)
cos(α(t)) and v(t) =

√
ω(t)

α′(t)
sin(α(t)), (179)

where ω(t) = exp
(
−
∫
p(t) dt

)
, constitute a basis in the space of solutions of

(178). We note that it is a consequence of Abel’s identity that the Wronskian of
any pair of independent solutions of (178) is ω(t). It has long been known that
the solutions of second order linear ordinary differential equations with slowly
varying coefficients can be represented by slowly varying phase functions, even
in cases in which the solutions themselves are highly oscillatory or behave like
linear combinations of rapidly increasing and decreasing exponentials. This
observation is the basis of the WKB method (see, for instance, Chapter 7 of
[9]) and many other related asymptotic techniques (for example, [24], [13], [11]
and [12]).

It follows that many integrals involving classical functions — such as (176) —
can be put into one of the forms∫

f(x) exp(ig(x)) dx,

∫
f(x) cos(g(x)) dx or

∫
f(x) sin(g(x)) dx (180)

with f and g slowly varying. Integrals of this type are, of course, highly
amenable to calculation via the adaptive Levin method, provided the relevant
phase function g(x) can be evaluated efficiently.

In [16], a numerical algorithm for constructing slowly varying phase functions
for second order linear ordinary differential equations whose solutions are oscil-
latory is introduced. Under mild conditions on the coefficients, it runs in time
independent of the frequency of oscillations of the solutions and achieves accu-
racy on par with the condition number of the problem. A companion paper
[14] provides a bound on the complexity of the phase function calculated by
the algorithm of [16].

In [17], the algorithm of [16] is extended to the case of second order lin-
ear ordinary differential equations with turning points — that is, it applies
to equations whose solutions oscillate in some regions and behave like linear
combinations of increasing and decreasing exponentials in others. In many
cases of interest, it runs in time independent of the magnitude of the coeffi-
cients and obtains accuracy in line with the condition number of the equation.
Phase functions which represent many classical special functions — including
the Bessel functions, associated Legendre functions, spheroidal wave functions,
Hermite polynomials, and the Jacobi polynomials — can be efficiently calcu-
lated using the algorithm of [17], which the numerical experiments discussed
in Subsections 7.4 and 7.6 make use of.
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Fig. 1: The results of the first two experiments of Section 7.1. The first row of plots
pertains to the integral I1 and the second to I2. Each plot on the left gives the error
in the value of the integral computed via the adaptive Levin method as a function of
λ, while each plot on the right gives the running time in milliseconds as a function
of λ.

7 Numerical experiments

In this section, we present the results of numerical experiments which were
conducted to illustrate the properties of the algorithm of this article. The code
for these experiments was written in Fortran and compiled with version 12.10
of the GNU Fortran compiler. They were performed on a desktop computer
equipped with an AMD Ryzen 3900X processor and 32GB of memory. No
attempt was made to parallelize our code. We used a 12-point Chebyshev
spectral method in our implementation of the adaptive Levin scheme (i.e., the
parameter k was taken to be 12). As discussed in Section 5, the condition
number of evaluation of most integrals of the form∫ b

a

f(x) exp(ig(x)) dx (181)

increases with the magnitude of g′. This is often offset by a commensurate
decrease in the magnitude of the integral with the consequence that, in most
cases, it is reasonable to expect absolute errors in the calculated values of (181)
to be largely independent of the magnitude of g′. Unless mentioned otherwise,
we set the absolute tolerance parameter to be ϵ = 10−12, and set ϵ0 to be equal
to machine precision.

In order to estimate the error in the results produced by the adaptive Levin
method, we compared the results of the adaptive Levin method with the results
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produced by adaptive Gaussian quadrature for evaluating integrals of the from∫ b

a

f(x) dx, −∞ < a < b <∞. (182)

We use this method to estimate the error in every case, except when explicit
formulas for the integrals are available. Our implementation of the adaptive
Gaussian quadrature algorithm is written is Fortran and is quite standard. It
maintains a list of intervals, which is initialized with the single interval [a, b],
and a running tally of the value of the integral, which is initialized to zero. As
long as the list of intervals is nonempty, the algorithm removes one interval
[a0, b0] from the list, compares the value of∫ b0

a0

f(x) dx (183)

as computed by a 30-point Gauss-Legendre quadrature rule to the value of the
sum ∫ (a0+b0)/2

a0

f(x) dx+

∫ b0

(a0+b0)/2

f(x) dx, (184)

where each integral is separately estimated with a 30-point Gauss-Legendre
rule. If the difference is larger than ϵ, where ϵ is a tolerance parameter supplied
by the user, then the intervals [a0, (a0 + b0)/2] and [(a0 + b0)/2, b0] are placed
in the list of intervals. Otherwise, the value of (183) is added to the running
tally of the value of the integral (182). In all of the experiments described
here, the tolerance parameter for the adaptive Gaussian quadrature code was
taken to be ϵ = 10−15. We found it necessary to set the tolerance parameter
for adaptive Gaussian quadrature to be somewhat smaller than that for the
adaptive Levin method in order to obtain accurate results from the former. We
used a 30-point Gauss-Legendre rule because we found it to be more efficient
than rules of other orders in most cases.

In Subsection 7.1, we consider oscillatory integrals for which analytical formu-
las are available, and present plots of runtimes and errors of the adaptive Levin
method over a wide range of frequencies. We then present, in Subsection 7.2,
experiments for some oscillatory integrals for which such analytical formulas
are not readily available. We assess the accuracy of the adaptive Levin method
by comparing against results computed by adaptive Gaussian quadrature, and
provide a detailed comparison of performance between the two methods, over
a wide range of frequencies. In Subsection 7.3, we demonstrate the perfor-
mance of the adaptive Levin method for an integral with a stationary point of
order m, and provide a theoretical analysis explaining the expected behavior.

The experiments of Subsections 7.4–7.7 concern integrals involving special
functions, namely, the Bessel functions, the associated Legendre functions and
the Hermite polynomials. In order to apply the adaptive Levin method to inte-
grals involving these functions, we constructed phase function representations
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of them via the method of [17]. That algorithm applies to second order linear
ordinary differential equations of the form

y′′(x) + q(x)y(x) = 0, a < x < b, (185)

where the coefficient q is real-valued and slowly varying. We note that essen-
tially any second order differential equation, including the differential equation
defining the associated Legendre functions and Bessel’s differential equation,
can be put into the form (185) via a simple transformation. The method of
[17] constructs a piecewise Chebyshev expansion representing a slowly-varying
phase function ψ such that

exp (iψ(x))√
ψ′(x)

and
exp (−iψ(x))√

ψ′(x)
(186)

constitute a basis in the space of solutions of (185). The derivative of the phase
function is uniquely determined, but the phase function itself is only defined
up to a constant. We typically use this degree of freedom to ensure that either

sin (ψ(x))√
ψ′(x)

or
cos (ψ(x))√

ψ′(x)
(187)

represent the special function we wish to integrate.

In Subsection 7.4, in which we evaluate integrals involving Bessel functions, we
report separately the times required for the construction of the phase function
and the evaluation of the integral by the adaptive Levin method. We include
a direct comparison with adaptive Gaussian integration in Subsection 7.5, in
which we also evaluate integrals involving Bessel functions. We use the adaptive
Levin method to evaluate the modal Green’s functions in Subsection 7.8, which
are special functions represented by an integral in which the integrand has two
oscillatory components. Lastly, we apply the method to an integral with many
stationary points in Subsection 7.9.

7.1 Certain integrals involving elementary functions for
which explicit formulas are available

In the experiments described in this subsection, we considered the integrals

I1(λ) =

∫ 1

−1

cos (λ arctan(x))
1

1 + x2
dx =

2

λ
sin

(
πλ

4

)
,

I2(λ) =

∫ ∞

0

exp
(
iλx2

)
√
x

dx = exp

(
πi

8

)
2Γ
(
5
4

)
λ

1
4

,

I3(λ) =

∫ 1

0

exp

(
iλ√
x

)
1

x
dx = 2Γ(0,−iλ) and

I4(λ) =

∫ 10

0

exp(iλ exp(x)) exp(x) dx =
i

λ
(exp(iλ)− exp (i exp (10)λ)) .

All of the above formulas can be found in [25].
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Fig. 2: The results of the last two experiments of Section 7.1. The first row of plots
pertains to the integral I3 and the second to I4. Each plot on the left gives the error
in the value of the integral computed via the adaptive Levin method as a function of
λ, while each plot on the right gives the running time in milliseconds as a function
of λ.

We proceeded by first sampling l = 200 equispaced points x1, . . . , xl in the
interval [1, 7]. Then, we used the adaptive Levin method to evaluate the inte-
grals appearing above for each λ = 10x1 , 10x2 , . . . , 10xl . Figures 1 and 2 give
the time required to evaluate these integrals and the absolute errors in the
obtained values.

7.2 Certain other integrals involving elementary
functions

In the experiments of this subsection, we evaluated the integrals

I5(λ) =

∫ 1

0

exp
(
iλx2

)
exp (−x)x dx,

I6(λ) =

∫ 1

−1

exp
(
iλx2

) (
1 + x2

)
dx,

I7(λ) =

∫ 4

−4

exp
(
iλx2

)
dx and

I8(λ) =

∫ 1

−1

exp
(
iλx4

) 1

0.01 + x4
dx.

(188)

We considered various ranges of values of λ. We randomly sampled 200 values
of λ in each range and then, for each such value of λ, we calculated I5, I6, I7
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and I8 using both the adaptive Levin algorithm and our adaptive Gaussian
quadrature code. The time taken by each method was measured, and the
absolute differences between the values of the integrals calculated with each
method was recorded. Table 1 gives the results. Each row gives the results for
one integral and range of values of λ.

Integral Range of λ
Avg Time Avg Time

Ratio
Max Observed

Adap Levin Adap Gauss Difference

I5 100 − 101 4.83× 10−05 2.23× 10−06 0.05 9.94× 10−13

101 − 102 9.16× 10−05 5.93× 10−06 0.06 1.32× 10−12

102 − 103 1.23× 10−04 4.71× 10−05 0.38 1.01× 10−12

103 − 104 1.58× 10−04 4.15× 10−04 2.64 7.53× 10−13

104 − 105 2.02× 10−04 4.26× 10−03 21.12 9.99× 10−13

105 − 106 2.29× 10−04 3.99× 10−02 173.87 1.00× 10−12

106 − 107 2.51× 10−04 3.71× 10−01 1476.94 4.00× 10−13

I6 100 − 101 1.38× 10−04 2.29× 10−06 0.02 1.94× 10−12

101 − 102 2.88× 10−04 1.38× 10−05 0.05 1.97× 10−12

102 − 103 4.17× 10−04 1.07× 10−04 0.26 3.58× 10−12

103 − 104 4.74× 10−04 9.00× 10−04 1.90 3.32× 10−12

104 − 105 5.25× 10−04 8.84× 10−03 16.85 2.20× 10−12

105 − 106 5.77× 10−04 8.05× 10−02 139.52 3.53× 10−12

106 − 107 6.44× 10−04 8.01× 10−01 1243.52 2.57× 10−12

I7 100 − 101 3.61× 10−04 3.03× 10−05 0.08 2.57× 10−12

101 − 102 4.84× 10−04 2.44× 10−04 0.51 2.97× 10−12

102 − 103 5.32× 10−04 2.31× 10−03 4.34 3.67× 10−12

103 − 104 5.86× 10−04 2.24× 10−02 38.15 3.41× 10−12

104 − 105 6.35× 10−04 2.21× 10−01 347.36 2.52× 10−12

105 − 106 6.93× 10−04 2.31× 10−00 3337.39 3.29× 10−12

106 − 107 7.61× 10−04 2.66× 10−01 34967.12 5.68× 10−12

I8 100 − 101 8.66× 10−04 4.26× 10−05 0.05 3.48× 10−12

101 − 102 7.32× 10−04 1.70× 10−04 0.23 6.57× 10−12

102 − 103 7.58× 10−04 1.43× 10−03 1.88 4.17× 10−12

103 − 104 7.49× 10−04 1.36× 10−02 18.09 7.30× 10−12

104 − 105 7.41× 10−04 1.31× 10−01 177.18 6.40× 10−12

105 − 106 7.57× 10−04 1.19× 10−00 1570.01 3.62× 10−12

106 − 107 8.23× 10−04 1.37× 10−01 16697.05 3.76× 10−12

Table 1: The results of the experiments of Section 7.2 in which the performance
of the adaptive Levin method was compared with the performance of an adaptive
Gaussian quadrature scheme. Each row corresponds to one of the integrals I5(λ),
I6(λ), I7(λ) or I8(λ) and to one range of values of λ. The average time taken by
the adaptive Levin method and by an adaptive Gaussian quadrature scheme, the
ratio of the average time taken by the adaptive Gaussian quadrature algorithm to
the average time taken by the adaptive Levin method, and the maximum observed
difference in the values of the integrals computed using each method are reported.
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7.3 Behavior in the presence of a stationary point

In the experiments of this subsection, we considered the integral

I9(λ,m) =

∫ 1

−1

exp (iλxm)
cos(x)

1 + x2
dx (189)

in order to understand the behavior of the adaptive Levin method in the
presence of a stationary point.

In the first experiment, we sampled l = 200 equispaced points x1, . . . , xl in
the interval [1, 7] and, for each λ = 10x1 , 10x2 , . . . , 10xl and m = 2, 3, 4, 5, we
evaluated I9(λ,m) twice using the adaptive Levin method. The first time the
scheme was executed, the tolerance parameter taken to be ϵ = 10−12. The
second time, we set ϵ = 10−7. The results are shown in the first two rows of
Figure 3. The first column gives the results for ϵ = 10−7 and the second for
ϵ = 10−12. The plots in the first row show the number of subintervals in the
adaptively determined subdivision of [−1, 1] used to compute the integral as
a function of λ for m = 2, 3, 4, 5, while those in the second give the absolute
error in the computed value of the integral as a function of λ for m = 2, 3, 4, 5.

In a second experiment, for each m = 2, 3, 4, . . . , 40 and λ = 102, 103, 104, 105

we evaluated I9(λ,m) twice using the adaptive Levin method. In the first run,
the tolerance parameter was taken to be ϵ = 10−12 and, in the second, it was
ϵ = 10−7. The results appear in the third row of Figure 3. Each plot there
gives the number of subintervals in the adaptive subdivision of [−1, 1] formed
by our algorithm as a function of m for each of the values of λ considered. The
plot on the left corresponds to ϵ = 10−7 and the plot on the right to ϵ = 10−12.

We see that, when ϵ = 10−12, the number of subintervals in the adaptive
subdivision of [−1, 1] formed by the adaptive Levin method varies only slightly
with λ and is largely independent ofm. However, when ϵ = 10−7, the number of
subintervals grows roughly logarithmically with λ and decreases asm increases,
for small values of m. It is essentially independent of m for moderate to large
values of m.

This behavior can be understood in light of the analysis presented in Section 3.
Theorem 5 implies that the Levin method will yield an accurate result on
subintervals of the form [−δ, δ] provided g′ is sufficiently small there. Theorem 4
indicates that the Levin method will yield an accurate result on any subinterval
of [−1, 1] which is bounded away from 0 provided the ratio of the maximum
to minimum absolute value of g′ is small and

h(z) = f
(
u−1(z)

) du−1

dz
(z) =

f
(
sign(z) |z|

1
m

)
m|z|1− 1

m

(190)

can be represented via a well-behaved function with a small bandlimit there.
That h can be represented by a function with small bandlimit is more-or-less
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equivalent to the requirement that h be represented via a Chebyshev expan-
sion of small fixed order. We expect the adaptive Levin method to subdivide
[−1, 1] until one or both of Theorems 4 and 5 apply to each of the resulting
subintervals.

Since g′(x) = λmxm−1, in order for |g′(x)| to be bounded by a constant C on
[−δ, δ], we must have

δ <

(
C

mλ

) 1
m−1

. (191)
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Fig. 3: The results of the experiments of Section 7.3. The plots in the first row give
the number of subintervals in the adaptive discretization of [−1, 1] formed in the
course of evaluating I9(λ,m) as a function of λ for m = 2, 3, 4, 5; those in the second
give the absolute error in the calculated error in the value of I9(λ,m) as a function
of λ for m = 2, 3, 4, 5; and the plots in the third row show the number of subintervals
in the adaptive discretization of [−1, 1] as a function of m for λ = 102, 103, 104, 105.
The plots in the column on the left concern experiments executed with the precision
parameter ϵ taken to be 10−7, while those on the right correspond to ϵ = 10−12.
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So we expect the adaptive Levin method to divide [−1, 1] into at least

log(1/δ) ∼ log(mλ)

m− 1
(192)

subintervals. The algorithm will further divide the subintervals contained in
[−1,−δ] and [δ, 1] until, on each of the resulting subintervals, the ratio of the
maximum to minimum value of g′ is small and h is well-represented via a
Chebyshev expansion of small fixed order. The number of subintervals required
for these conditions to be met depends only weakly on m and λ. The depen-
dence on λ arises because the greater the distance δ between these subintervals
and 0, the fewer subdivisions required, and the distance δ depends on λ.

When ϵ = 10−12, the cost of our algorithm is dominated by the need to repre-
sent h(z). This depends only weakly on m and λ, and this behavior is reflected
in the results shown in Figure 3. They indicate that the cost of the adap-
tive Levin method grows only very slowly with λ in this case, and that it is
essentially independent of m.

When ϵ = 10−7, the difficulty of representing h(x) is lower, and the running
time of our algorithm is dominated by the number of subdivisions needed to
ensure δ is sufficiently small, at least when m is small. This is on the order
of log(mλ)/(m − 1), and we see this behavior in the plot appearing on the
left-hand side of the first row of Figure 3. As m increases, though, the cost of
representing h(z) begins to dominate the running time of the algorithm and it
ceases to depend strongly on λ. This is reflected in the plot appearing on the
lower-left corner of Figure 3.

The behavior of the adaptive Levin method in the presence of stationary points
is somewhat complicated, but from this analysis and the experiments described
above, it is safe to conclude that at worst the algorithm grows logarithmically
with the frequency of g′.

7.4 Certain integrals involving the Bessel functions

In the experiments described in this subsection, we used the adaptive Levin
method to evaluate the integrals

I10(ν) =

∫ ∞

0

Jν(x)√
x

dx =
Γ
(
ν
2 + 1

4

)
√
2Γ
(
ν
2 + 3

4

) ,
I11(λ) =

∫ ∞

0

Y 1
2
(λx) exp(−x) dx = −

√√
λ2 + 1 + 1√
λ3 + λ

,

I12(λ) =

∫ π
2

0

J2λ (2λ cos(x))) dx =
π

2
J2
λ (λ) and

I13(λ) =

∫ ∞

0

J0(λx)J 1
2
(λx) exp(−x)

√
x dx =

√
−1 +

√
1 + 4λ2

πλ+ 4πλ3
.

(193)

Each of the above formulas can be found either in [25] or [26].
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In the first experiment, we sampled l = 200 equispaced points x1, x2, . . . , xl in
the interval [1, 7]. Then, for each ν = 10x1 , . . . , 10xl , we constructed a phase
function for the normal form

y′′(x) +

(
1 +

1
4 − ν2

x2

)
y(x) = 0 (194)

of Bessel’s differential equation using the algorithm of [17]. This gave us the
following representations of the Bessel function of the first and second kinds
of order ν:

Jν(x) =

√
2

πx

sin (ψbes
ν (x))√

d
dxψ

bes
ν (x)

and Yν(x) =

√
2

πx

cos (ψbes
ν (x))√

d
dxψ

bes
ν (x)

. (195)

The first of these representations was used, together with the adaptive Levin
method, to evaluate I10(ν). More explicitly, we took the input functions for
the adaptive Levin method to be

g(x) = ψbes

ν (x) and and f(x) =
1

x

√
2

π d
dxψ

bes
ν (x)

. (196)
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Fig. 4: The results of the first two experiments of Section 7.4. In the first row, the
plot on the left gives the absolute error in the calculation of the integral I10(ν) as
a function ν and the plot on the right shows the time take by the adaptive Levin
method and the time taken to construct the phase function as functions of ν. The plot
at bottom left gives the absolute error in the obtained value of I11(λ) as a function
of λ, and the bottom-right plot gives the time required to compute I11(λ), including
the time required to construct any necessary phase functions, as a function of λ.
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Fig. 5: The results of the last two experiments of Section 7.4. The first row pertains
to I12(λ) while the second concerns I13(λ). In each row, the plot on the left gives
the absolute error in the calculation of the integral as a function of λ and the plot
on the right shows the total time required to compute the integral via the adaptive
Levin method and to construct any necessary phase functions as a function of λ.

The results are given in the first row of Figure 4. Note that for this experiment,
we report the time taken by the adaptive Levin method and the time required
to construct the phase function separately.

We began our second experiment by sampling l = 200 equispaced points
x1, . . . , xl in the interval [1, 7]. Then, for each λ = 10x1 , 10x2 , . . . , 10xl , we con-
structed the phase function ψbes

1/2 and executed the adaptive Levin method with
the input functions taken to be

g(x) = ψbes

1/2(λx) and f(x) =

√
2

π
exp(−x)

√
1

λx d
dxψ

bes

1/2(λx)
(197)

in order to evaluate I11(λ). The results are shown in the second row of Figure 4.
The reported times include the cost of constructing the phase function as well
as the time required by the adaptive Levin method.

We began our third experiment regarding Bessel functions by sampling
l = 200 equispaced points x1, . . . , xl in the interval [1, 7]. Then, for each
λ = 10x1 , 10x2 , . . . , 10xl , we constructed a phase function ψbes

2λ representing the
Bessel functions of order 2λ and used the adaptive Levin method to evaluate
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I12(λ); the input functions were taken to be

g(x) = ψbes

2λ (2λ cos(x)) and f(x) =

√
2

π

√
1

2λ cos(x) d
dxψ

bes

2λ (2λ cos(x))
.

The results are shown in the first row of Figure 5. Once again, the reported
times include the cost of constructing the necessary phase functions as well as
the time required by the adaptive Levin method.

In our fourth experiment concerning Bessel functions, we first sampled l =
200 equispaced points x1, . . . , xl in the interval [1, 7]. Then, for each λ =
10x1 , 10x2 , . . . , 10xl , we constructed the phase functions ψbes

0 and ψbes

1/2, one
representing the Bessel functions of order 0 and the other the Bessel functions
of order 1/2. Since

I13(λ) =
2

π

∫ ∞

0

sin (ψbes
0 (λx))√

λx d
dxψ

bes
0 (λx)

sin
(
ψbes

1/2 (λx)
)

√
λx d

dxψ
bes

1/2 (λx)
exp(−x)

√
x dx (198)

and

sin(x) sin(y) =
cos(x− y)− cos(x+ y)

2
, (199)

we were able to compute I13 via the formula

I13(λ) =
2

λπ

I13a(λ)− I13b(λ)

2
, (200)

where

I13a(λ) =

∫ ∞

0

cos
(
ψbes

1/2(x)− ψbes
0 (x)

)
√
x d

dxψ
bes
0 (x) d

dxψ
bes

1/2(x)
exp(−x) dx (201)

and

I13b(λ) =

∫ ∞

0

cos
(
ψbes
0 (x) + ψbes

1/2(x)
)

√
x d

dxψ
bes
0 (x) d

dxψ
bes

1/2(x)
exp(−x) dx. (202)

The integrals I13a and I13b were, of course, evaluated using the adaptive Levin
method. The results are shown in the second row of Figure 5. The reported
times include the cost of constructing the two necessary phase functions as
well as the time required by the adaptive Levin method.

7.5 Comparison with adaptive Gaussian quadrature

In the experiment described in this subsection, we compared the performance
of the adaptive Levin method to that of adaptive Gaussian quadrature by
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evaluating the following integrals involving Bessel functions:

I14(λ) =

∫ 10

0

J0(λx)
√
λx dx,

I15(λ) =

∫ π

0

J1(λx
4) log(x) dx and

I16(λ) =

∫ 100

0

J1 (λx)Y1 (λx)λ dx.

(203)

We sampled l = 200 equispaced points x1, x2, . . . , xl in the interval [0, 6]. Then,
for each λ = 10x1 , . . . , 10xl , we used the adaptive Levin method combined
with the algorithm of [17] to evaluate the integrals I14, I15 and I16. More
explicitly, for each integral and each value of λ, we first used the method of
[17] to construct a phase function representing the Bessel function or functions
appearing in the integrals, and then applied the adaptive Levin method to
the integral. The same integral was then evaluated using adaptive Gaussian
quadrature. The results of this experiment are given in Figure 6. The first row
of plots pertains to the integral I14, the second row concerns I15 and the third
concerns I16. For each integral, we report the time required by each method
and the absolute difference in the values obtained by each method. When
reporting the time required by the adaptive Levin method, we include the cost
to construct the phase function.

7.6 Certain integrals involving the associated Legendre
functions

In the experiments described in this subsection, we used the adaptive Levin
method to evaluate the integrals

I17(ν, µ) =

∫ 1

0

P̃µ
ν (x)(1− x2)

µ
2 dx

=

√(
ν +

1

2

)
Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

(−1)µ2−µ−1
√
π

Γ
(
1 + µ

2 − ν
2

)
Γ
(
3
2 + µ

2 + ν
2

) ,
I18(λ) =

∫ 1

0

P̃
1
2

λ (x)Q̃
1
2

λ (x) dx and

I19(λ) =

∫ π
2

0

P̃ 1
λ(cos(x)) dx.

Here, we use P̃µ
ν and Q̃µ

ν to denote normalized versions of the Ferrers functions
of the first and second kinds of degree ν and order µ. For ν ≥ µ, the usual Fer-
rers function Pµ

ν is the unique solution of the associated Legendre differential
equation

(1− x2)y′′(x)− 2xy′(x) +

(
ν(ν + 1)− µ2

1− x2

)
y(x) = 0 (204)
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Fig. 6: The results of the experiment of Section 7.5. In the first row, the plot on
the left gives the difference between the values of I14(λ) obtained using the adaptive
Levin method and adaptive Gaussian quadrature as a function λ, while the plot on
the right shows the time take by each method as a function of ν. The plots on the
second and third rows give the same information, but pertain to I15(λ) and I16(λ),
respectively.

which is regular at the singular point x = 1 and such that Pµ
ν (1) = 1.

Because, for most values of the parameters ν and µ, Pµ
ν is exponentially decay-

ing on some part of the interval [0, 1], it can take on extremely large values.
Accordingly, we prefer to work with the normalized Ferrers function

P̃µ
ν (x) =

√(
ν +

1

2

)
Γ (ν + µ+ 1)

Γ (ν − µ+ 1)
Pµ
ν (x) (205)

whose L2(−1, 1) norm is 1 when n ≥ m are integers. The Ferrers function Qµ
ν

of the second kind is (essentially) π/2 times the Hilbert transform of Pµ
ν and
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Fig. 7: The results of the first experiment of Section 7.6. The plots give the error
in the calculated value of I17(m+ ν,m) and the time required to calculate it via the
adaptive Levin method (including the time spent constructing the phase function)
as functions of ν for m = 10, 102, 103, 104.

we define its normalized version via

Q̃µ
ν (x) =

2

π

√(
ν +

1

2

)
Γ (ν + µ+ 1)

Γ (ν − µ+ 1)
Qµ

ν (x). (206)

We refer the reader to Section 5.15 of [27] for a thorough discussion of the
Ferrers functions.

Because (204) has singular points at ±1, it is convenient to introduce the
change of variables

z(w) = y(tanh(w)), (207)

which yields the new differential equation

z′′(w) +
(
ν(ν + 1) sech2(w)− µ2

)
z(w) = 0. (208)

Applying the algorithm of [17] to (208) gives us the representations

sin
(
ψalf
ν,µ(w)

)√
d
dwψ

alf
ν,µ(w)

=

√
π

2ν + 1
cos(π(µ+ 1))P̃µ

ν (tanh(w))

−
√

π

2ν + 1
sin(π(µ+ 1))Q̃µ

ν (tanh(w))

(209)

and

cos
(
ψalf
ν,µ(w)

)√
d
dwψ

alf
ν,µ(w)

=

√
π

2ν + 1
cos(π(µ+ 1))P̃µ

ν (tanh(w))

+

√
π

2ν + 1
sin(π(µ+ 1))Q̃µ

ν (tanh(w)) .

(210)

In our first experiment, we sampled l = 200 equispaced points x1, . . . , xl in the
interval [1, 7]. Then, for each ν = 10x1 , . . . , 10xl and each m = 10, 102, 103, 104,
we constructed the phase function ψalf

m+ν,m and applied the adaptive Levin
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Fig. 8: The results of the last two experiments of Section 7.6. The first row pertains
to I18(λ) while the second concerns I19(λ). In each row, the plot on the left gives
the absolute error in the calculation of the integral as a function of λ and the plot
on the right shows the total time required to compute the integral via the adaptive
Levin method and to construct any necessary phase functions as a function of λ.

method to the integral

(−1)m+1

√
2ν + 2m+ 1

π

∫ ∞

0

sin
(
ψalf
m+ν,m(w)

)√
d
dwψ

alf
m+ν,m(w)

sech(w)2+m dw (211)

in order to evaluate I17(m + ν,m). We note that the associated Legendre
functions are generally only defined when the degree is greater than or equal
to the order, hence our decision to write the degree in the form m + ν with
m the order of the associated Legendre function being integrated. Moreover,
by choosing integer values of m we ensured that only the term involving the
function of the first kind was nonzero in (209). The results are given in Figure 7.
The timings reported there include both the cost to apply the adaptive Levin
method and the time required to construct the phase function.

In our second experiment concerning the associated Legendre functions, we
sampled l = 200 equispaced points x1, . . . , xl in the interval [1, 7]. Then, for
each λ = 10x1 , . . . , 10xl , we constructed the phase function ψalf

λ, 12
and applied

the adaptive Levin method to the integral

2λ+ 1

2π

∫ ∞

0

sin
(
2ψalf

λ, 12
(w)
)

d
dwψ

alf

λ, 12
(w)

sech(w)2 dw, (212)
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which is equal to I18(λ) by virtue of the fact that sin(2x) = 2 sin(x) cos(x).
We took the input functions for the adaptive Levin method to be

g(x) = 2ψalf

λ, 12
(x) (213)

and

f(x) =
2λ+ 1

2π

1

ψalf

λ, 12
(arctanh (cos(x)))

. (214)

The results are given in the first row of Figure 8. The timings reported there
include both the cost to apply the adaptive Levin method and the time required
to construct the required phase function.

In our third and final experiment regarding the associated Legendre functions,
we sampled l = 200 equispaced points x1, . . . , xl in the interval [1, 7]. Then,
for each λ = 10x1 , . . . , 10xl , we constructed the phase function ψalf

λ,1 via the
algorithm of [17] and evaluated the integral I19(λ) via the adaptive Levin
method. The input functions were taken to be

g(x) = ψalf

λ,1 (arctanh (cos(x))) (215)

and

f(x) =

√
2λ+ 1

2π

1√
ψalf

λ,1 (arctanh (cos(x)))
. (216)

The results are shown in the second row of Figure 8. The timings reported
there include both the cost to apply the adaptive Levin method and the time
required to construct the required phase function.

The runtime of evaluating the integral I19(λ) in this final experiment increases
very mildly with λ, from around 1.0 ms for λ = 101 to around 1.7 ms for
λ = 107. This is explained by the fact that the function P̃ 1

λ(cos(x)) appearing
in the integrand of I19(λ) has a turning point, at which it resembles an error
function of width 1/λ. In order to resolve this feature, the adaptive Levin
method must create on the order of log(1/λ) subintervals.

7.7 Certain integrals involving the Hermite polynomials

In the experiments of this subsection, we used the adaptive Levin method to
evaluate the integrals

I20(n) =

∫ ∞

0

H̃n(x) exp

(
−x2

2

)
dx,

I21(n) =

∫ ∞

0

H̃n(x)(x) cos (nx) exp(−x) dx and

I22(n) =

∫ ∞

0

H̃n(exp(x)) dx,
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where H̃n denotes a normalized version of the Hermite polynomial of degree
n. The Hermite polynomial Hn is the unique solution of

y′′(x)− 2xy′(x) + 2ny(x) = 0 (217)

which decays to 0 as x→ ±∞ and such that

Hn(0) =
2n

√
π

Γ
(
1−n
2

) . (218)

We define H̃n via

H̃n(x) =

√
Γ(n+ 1)

2n
√
π

exp

(
−x

2

2

)
Hn(x); (219)

it is a solution of

y′′(x) +
(
1 + 2n− x2

)
y(x) = 0 (220)

whose L2(−∞,∞) norm is 1. Applying the algorithm of [17] to (220) gives us
the representation

H̃n (x) = Cherm

n

sin (ψherm
n (x))√

d
dxψ

herm
n (x)

(221)

of the normalized Hermite polynomial of degree n. The authors are not aware
of a convenient formula for the constant Cherm

n ; we determined it numerically
after the phase function was constructed.

In our first experiment, we sampled l = 200 equispaced points x1, . . . , xl in the
interval [1, 7]. Then, for each n = ⌊10x1⌋ , . . . , ⌊10xl⌋, we constructed the phase
function ψherm

n and used it to evaluate I20(n). The results are given in the first
row of Figure 9. The timings reported there include both the cost to apply the
adaptive Levin method and the time required to construct the phase function.

In a second experiment concerning Hermite polynomials, we sampled l =
200 equispaced points x1, . . . , xl in the interval [1, 7]. Then, for each n =
⌊10x1⌋ , . . . , ⌊10xl⌋, we constructed the phase function ψherm

n and used it to
evaluate the integrals

I21a(n) =

∫ ∞

0

sin (ψherm
n (x)− nx)√
d
dxψ

herm
n (x)

exp(−x) dx (222)

and

I21b(n) =

∫ ∞

0

sin (ψherm
n (x) + nx)√
d
dxψ

herm
n (x)

exp(−x) dx (223)

The value of I21(n) is then given by

I21(n) = Cherm

n

I21a (n) + I21b (n)

2
(224)
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since

sin(x) cos(y) =
sin(x− y) + sin(x+ y)

2
. (225)

The results of this experiment are given in the second row of Figure 9. Again,
the reported timings include both the cost to apply the adaptive Levin method
and the time required to construct the phase function.

We began our third and final experiment regarding the Hermite polynomials
by sampling l = 200 equispaced points x1, . . . , xl in the interval [1, 7]. Then,
for each n = ⌊10x1⌋ , . . . , ⌊10xl⌋, we constructed the phase function ψherm

n and
used it to evaluate I22(n). We took the input functions for the adaptive Levin
method to be

g(x) = ψherm

n (exp(x)) and f(x) = Cherm

n

1√
d
dxψ

herm
n (exp(x))

. (226)

The results are shown in the third row of Figure 9. The timings reported
there include both the cost to apply the adaptive Levin method and the time
required to construct the phase function.

In the experiments of this subsection, the runtime can be seen to initially
increase with λ, and then drop rapidly once λ exceeds some threshold. We
have incorporated the cost of computing the phase function and evaluating
the integral via the adaptive Levin method into the times which are reported,
and this behavior is due to the cost of the constructing the phase functions.
Indeed, this pattern is quite typical with phase function calculations. In the
low-frequency regime, when λ is small, it can be the case that all phase func-
tions for (217) oscillate, but they do so at low frequencies because λ is small.
Once λ becomes sufficiently large, the existence of a nonoscillatory phase func-
tion which can be computed in time independent of λ is guaranteed by the
analysis presented in [14]. Because of this, in the low-frequency regime, the run-
ning time of numerical algorithms based on phase functions tend to grow with
frequency. However, once a certain frequency threshold is reached, the com-
plexity of the phase functions becomes essentially independent of frequency,
or even slowly decreasing with frequency.

7.8 Evaluation of Modal Green’s functions

In this set of experiments, we used the adaptive Levin method to evaluate the
azimuthal Fourier components of the Green’s function

G(x, x′) =
exp(ik|x− x′|)

4π|x− x′|
(227)

for the Helmholtz equation in three dimensions. These functions, which are
known as the modal Green’s functions for the Helmholtz equation, are given by

1

2π

∫ π

−π

exp(ik|x− x′|)
4π|x− x′|

exp(−imθ) dθ. (228)
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Fig. 9: The results of the experiments of Section 7.7. The first row pertains to
I20(λ), the second concerns I21(λ) and the third pertains to I22(λ). In each row, the
plot on the left gives the absolute error in the calculation of the integral as a function
of λ and the plot on the right shows the total time required to compute the integral
via the adaptive Levin method and to construct any necessary phase functions as a
function of λ.

By introducing cylindrical coordinates x = (r, θ, z), x′ = (r′, θ′, z′) and letting
ϕ = θ − θ′, we can rewrite (228) as

I23(κ,m, α) =
1

4π2

∫ π

−π

exp
(
−iκ

√
1− α cos(ϕ)

)
√

1− α cos(ϕ)
cos(mϕ) dϕ, (229)

where

κ = kR0, α =
2rr′

R0
, and R2

0 = r2 + (r′)2 + (z − z′)2. (230)

In the first experiment, we sampled l = 200 equispaced points x1, . . . , xl in the
interval [1, 7]. Then, for each m = 10x1 , . . . , 10xl , κ = 102, 103, 104, 105 and
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Fig. 10: The results of the first experiment of Section 7.8. The plot on the left-hand
side of the first row gives the absolute error in the calculated value of I23(κ,m, α) as
a function of m for four values of κ in the case α = 0.5. The plot on the right-hand
side of the first row gives the time required to calculate I23(κ,m, α) via the adaptive
Levin method as a function of m for four values of κ in the case α = 0.5. The plots
in the second row give analogous data in the event α = 0.99.

α = 0.5, 0.99, we evaluated I23(κ,m, α) using the adaptive Levin method and
via adaptive Gaussian quadrature. Figure 10 gives the results.

In a second experiment, we sampled l = 200 equispaced points x1, . . . , xl in
the interval [1, 7]. Then, for each κ = 10x1 , . . . , 10xl , m = 102, 103, 104, 105 and
α = 0.5, 0.99, we evaluated I23(κ,m, α) using the adaptive Levin method and
via adaptive Gaussian quadrature. In this experiment, the tolerance parame-
ters for both the adaptive Levin method and our adaptive Gaussian quadrature
code were set to ϵ0

√
κ, where ϵ0 is machine zero for IEEE double precision

arithmetic (about 2.22×10−16). The value of I23(κ,m, α) decreases, but not at
a sufficient rate to completely compensate for the growth in its condition num-
ber, particularly when α is close to 1. Hence, the need to allow the tolerance
parameter to increase with κ. Figure 11 gives the results.

A state-of-the-art method for evaluating the modal Green’s functions is dis-
cussed in [28]. Amortizing over m, it is around 10 times more efficient than the
adaptive Levin method in all cases. Notably, the performance of their algorithm
does not change as α approaches 1, whereas the cost of the adaptive Levin
method can increase significantly. Nonetheless, the adaptive Levin method is
surprisingly competitive given that it is a general-purpose approach to eval-
uating oscillatory integrals and the algorithm of [28] is highly-specialized.
Moreover, the adaptive Levin method can evaluate a single modal Green’s
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Fig. 11: The results of the second experiment of Section 7.8. The plot on the
left-hand side of the first row gives the absolute error in the calculated value of
I23(κ,m, α) as a function of κ for four values of m in the case α = 0.5. The plot on
the right-hand side of the first row gives the time required to calculate I23(κ,m, α)
via the adaptive Levin method as a function of κ for four values of m in the case
α = 0.5. The plots in the second row give analogous data in the event α = 0.99.

function in time independent of m and κ, while the algorithm of [28], when
combined with certain recurrence relations, can only evaluatemmodal Green’s
functions in O(m) time, resulting in a constant amortized cost.

It is interesting to observe from the second column of Figure 11 that the
runtime of the adaptive Levin method is initially constant with respect to κ
up until κ ≈ m, at which point the runtime begins to mildly increase with
respect to κ. This is explained by the fact that the integrands of the modal
Green’s functions contain two oscillatory terms, one oscillating with frequency
m and the other with frequency κ. When κ < m, there is little aliasing and few
stationary points. Once κ ≥ m, the aliasing between the two oscillatory terms
begins to grow, and the number of stationary points quickly increases. The
result is a mild growth in the cost of the adaptive Levin method, in agreement
with the experiments of Subsection 7.9. An example showing some of these
stationary points in the case κ > m can be found in the phase-amplitude plot
in Figure 13 of [28].
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Fig. 12: The results of the experiment of Section 7.9. The plots in the first row
give the time taken by the adaptive Levin method as a function of λ for the various
values of m considered. Those in the second row give the number of intervals in the
adaptively determined subdivision of [−1, 1] used to compute the integral I24 as a
function of λ for the values of m considered. The third row of plots give the error in
the calculated value of I24(λ,m) as a function of λ form = 15, 20, 25, 30, 35, 40, 45, 50.

7.9 An integral with many stationary points

In this final experiment, we considered the integral

I24(λ,m) =

∫ 1

−1

exp
(
iλ cos2

(π
2
mx
)) 1

1 + x2
dx, (231)

which has m stationary points. We sampled l = 200 equispaced points
x1, . . . , xl in the interval [1, 7] and, for each λ = 10x1 , 10x2 , . . . , 10xl and
m = 15, 20, 25, 30, 35, 40, 45, 50, we evaluated I24(λ,m) using the adaptive
Levin method.

Figure 12 presents the results. We see that, when applied to I24, the running
time of the adaptive Levin method grows sublogarithmically with λ for all of
the values of m considered. The cost also increases quite mildly as a function
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of the number of stationary points. It is notable that the method is able to
evaluate I24

(
107, 20

)
≈ 4.72 · 10−4 — a highly oscillatory integral with 50

stationary points — to 11 digit absolute precision accuracy and 7 digit relative
precision accuracy, in approximately 50 milliseconds.

8 Conclusions

We have shown that the Levin method does not suffer from numerical break-
down when the magnitude of g′ is small or when g′ has zeros, which explains
the effectiveness of adaptive Levin methods. We have also presented numerical
experiments indicating that the adaptive Levin method of this paper can accu-
rately and rapidly evaluate a large class of oscillatory integrals, including many
with singularities and stationary points. We have further demonstrated that
combining the adaptive Levin method with the algorithm of [16, 15] allows for
the efficient evaluation of many integrals involving oscillatory solutions of dif-
ferential equations. This class includes integrals involving most of the classical
special functions, as well as combinations of such functions and compositions
of such functions with slowly-varying functions.

As the experiments of Section 7.8 indicate, specialized techniques designed
for particular narrow classes of oscillatory integrals are often faster than the
adaptive Levin scheme of this paper. However, the numerical experiments
described in Section 7 show that the adaptive Levin method provides an effi-
cient general-purpose mechanism for evaluating a huge class of oscillatory
integrals. It appears to have roughly the same behavior when applied to oscil-
latory integrals as adaptive Gaussian quadrature does when used to evaluate
integrals with smoothly varying integrands.

We note that there are obvious implications of the adaptive Levin method for
the rapid application of special function transforms and the solution of second
order linear inhomogeneous differential equations that should be thoroughly
investigated.
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