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Abstract

We describe an algorithm for the numerical solution of second order linear ordinary differential equations
in the high-frequency regime. It is based on the recent observation that solutions of equations of this
type can be accurately represented using nonoscillatory phase functions. Unlike standard solvers for
ordinary differential equations, the running time of our algorithm is independent of the frequency of
oscillation of the solutions. We illustrate this and other properties of the method with several numerical
experiments.
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1. Introduction

Second order linear differential equations of the form
y'(t) + N2q(t)y(t) =0 forall a<t<b (1)

are ubiquitous in analysis and mathematical physics. As a consequence, much attention has been
devoted to the development of numerical algorithms for their solution and, in most regimes, fast and
accurate methods are available.

However, when ¢ is positive and A is real-valued and large, the solutions of (1) are highly oscillatory
(this is a consequence of the Sturm comparison theorem) and standard solvers for ordinary differential
equations (for instance, Runge-Kutta schemes and spectral methods) suffer. Specifically, their running
times grow linearly with the parameter A, which makes them prohibitively expensive when \ is large.

Because of the poor performance of standard solvers, asymptotic methods are often used in this regime.
In some instances, they allow for the accurate evaluation of solutions of equation of the form (1)
using a number of operations which is independent of the parameter A. For example, [3] presents an
O(1) algorithm for calculating Legendre polynomials of arbitrary order using a combination of direct
evaluation and asymptotic formulas; it achieves near machine precision accuracy and serves as the
basis for a fast algorithm (also presented in [3]) for the construction of Gauss-Legendre quadratures
of extremely large orders. In a similar vein, [14] describes a fast algorithm for the computation of
Gauss-Legendre and Gauss-Jacobi quadratures which makes use of asymptotic formulas in order to
evaluate Jacobi polynomials in O(1) operations.
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The formulas used in [3] and [14] are particular to the cases they consider, and while the same approach
can be applied to other classes of special functions satisfying equations of the form (1), in each case
a new, specialized approach must be devised. Indeed, despite the extensive existing literature on the
asymptotic approximation of Legendre polynomials, the algorithm of [3] required the development of a
novel asymptotic expansion with suitable numerical properties.

Here, we describe an algorithm for the numerical solution of second order linear ordinary differential
equations of the form (1) whose running time is independent of the parameter \. It applies to a large
class of second order ordinary differential equations — which includes those defining Bessel functions,
Legendre functions of integer and noninteger orders, prolate spheroidal wave functions, the classical
orthogonal polynomials, etc.

Our approach proceeds by constructing a nonoscillatory phase function which represents solutions of
(1). We say that « is a phase function for (1) if the functions u,v defined by the formulas

cos(a(t
u(t) = ‘a((t),(}j 2

and

_ sin(a(t))
()] ¥

comprise a basis in the space of solutions of (1). Phase functions play a key role in the theories of
special functions and global transformations of ordinary differential equations [4, 20, 21, 1], and are the
basis of many numerical algorithms (see [24, 11, 16] for representative examples).

It was observed by E.E. Kummer in [19] that « is a phase function for (1) if and only if it satisfies the
third order nonlinear differential equation
4\ (1)

(a/(t))2 = \2%q(t) — 2 ) "1 (4)

on the interval [a,b]. The presence of quotients in (4) is often inconvenient, and we prefer the more
tractable equation

la"(t) , 3 <a”(t)>2

P(8) — 3 (1)) + 432 (exp(r(1) — (1)) = 0 )
obtained from (4) by letting

&/(t) = Aexp (“?) . (6)

Of course, if r is a solution of (5) then a solution « of (4) such that a(a) = 0 is given by the formula

aft) = )\Ltexp (7“(2“)) du. (7)

We will refer to (4) as Kummer’s equation and (5) as the logarithm form of Kummer’s equation. The
form of these equations and the appearance of A in them suggests that their solutions will be oscillatory
— and most of them are. However, there are several well-known examples of second order ordinary
differential equations which admit nonoscillatory phase functions. For example, the function

a(t) = Narccos(t) (8)

is a phase function for Chebyshev’s equation
' (0) 2+ 12 4+ 4X2(1 — %)

4(1 —t2)?

>y(t)=0 forall —1<t<1. (9)



Bessel’s equation
N2 —1/4
y”(t) + (1 _ T

also admits a nonoscillatory phase function, although it cannot be expressed via elementary functions;
see, for instance, [16].

)y(t)—O forall 0 <t < o0 (10)

Exact solutions of (4) which are nonoscillatory need not exist in every case. However, [15] and [5]
make the observation that when the coefficient ¢ appearing in (1) is nonoscillatory, there exists a
nonoscillatory function « such that (2), (3) approximate solutions of (1) with accuracy on the order
of (uX\)~texp(—pu)), where p is a constant which depends on the coefficient ¢ but not on A. More
specifically, there exists a nonoscillatory function r which satisfies the equation

(1) — % () + 432 (exp(r(1)) — (1)) = a(t)r: (1)
where v is a smooth function such that
I, = 0 (; eXP(M)) | (12)

The function « obtained from r via formula (7) is a solution of the nonlinear differential equation
t) 1a”(t) 3 (a"(t)\?
/ t 2 — )\2 V( 1 t) — — — : 13

this implies that « is a phase function for the equation

Y (t) + N2 <1 - Zg\?) q(t)y(t) =0 forall a<t<b. (14)

It follows from (14) and (12) that when « is inserted into formulas (2) and (3), the resulting functions
approximate solutions of (1) with O ((u) ™! exp(—pA)) accuracy (see Theorem 12 in [5]). The functions
r and « are nonoscillatory in the sense that they can be accurately represented using various series
expansions (e.g., expansions in Chebyshev polynomials) whose number of terms does not depend on
A. In other words, O(1) terms are required to represent the solutions of (1) with O ((uA) ™! exp(—puA))
accuracy. This is an improvement over superasymptotic and hyperasymptotic expansions (see, for in-
stance, [9, 8]), which represent solutions of (1) with accuracy on the order of exp(—p)) using expansions
with O(A) terms. Theorem 12 of [5], reproduced as Theorem 3 in Section 3.2 of this article, gives a
precise statement regarding the existence of nonoscillatory phase functions.

The existence of the nonoscillatory solution r of (11) is established in [5] by assuming that the coefficient
q extends to the real line and considering an integral equation related to (11) there (see Sections 3.1
and 3.2 for details). The function ¢ is extended so that the Fourier transform can be used to quantify
the notion of “nonoscillatory” function. This method could serve as the basis of a numerical method
for the computation of nonoscillatory phase functions. However, in addition to requiring the extension
of ¢, such an approach also requires knowledge of the first two derivatives of q.

In this article, we describe a method for constructing a solution of the logarithm form of Kummer’s
equation whose difference from the nonoscillatory solution of (11) is on the order of exp (—%,uA). It
does not require that ¢ be extended beyond the interval [a, b], nor does it take as input the values of
the derivatives of q.

Our approach is based on two observations. First, that if

qlt) = 1+ €(t) (15)

for all ¢ in an interval of the form [a,a+ 7], where 7 > 0 and € is a smooth function of sufficiently small



magnitude, then the difference between the solution of the initial value problem
1
() - 5 (' (£))* + 472 (exp(r(t)) — q(t)) = 0 forall a<t<b
r(a) =1"(a) =0

and the nonoscillatory solution of (11) is on the order of exp (—%,u)\) on the interval [a,b]. Second,
that when the coefficient ¢ is perturbed by a smooth function ¢ which is of sufficiently small mag-
nitude on the interval [a,b], the changes induced in the restrictions of the nonoscillatory solution of
(11) and its derivative to the interval [a, b] are also on the order of exp (—%uA). These observations
follow by combining Theorem 4 of Section 3.3 with standard results on the continuity of solutions of
ordinary differential equations with respect to perturbation of initial values and coefficients. The role
of Theorem 4 is to bound the magnitude of the nonoscillatory solution r of (11) at the point a under
the assumption that ¢ is nearly equal to a constant there. Such an estimate is required because of the
manner in which the nonoscillatory solution r of (11) is defined.

(16)

We exploit these observations as follows. First, we construct a windowed version ¢ of the function ¢
such that

q(t) = (17)

1+e€(t) forall a<t<t+r
q(t) forall b—7<t<b,

where 7 is (once again) a small positive real number and €(t) is a function of small magnitude, and
calculate a solution 71 of the initial value problem

() — S (7 ()7 + 402 (exp (r1 (1) — (1)) = 0 forall a<t<b

4 (18)
r(a) = r|(a) = 0.
Next, we obtain a solution ro of the problem
1
ro(t) — 1 (ré(t))2 +4)\% (exp (ro(t)) —q(t)) =0 forall a<t<b (19)

ro (b) =71 (b) and 75 (b) =171 (b).

From our first observation, we see that the difference between the solution of (18) and the nonoscillatory
function 7 obtained by applying Theorem 3 to the equation

(1) — 7 (7(5)” + 40 (exp(F() — (1)) = 0 (20)

is on the order of exp (—% MA). Moreover, according to our second observation, the difference between
the function r; and the nonoscillatory solution r of

#1(1) — 3 () + 432 (exp(r(1) — (1)) = a(t)w (1) (21)
whose existence is guaranteed by Theorem 3 is on the order of
exp <—;,u)\> (22)
on the interval [b — 7, b], as is the difference between the derivatives of these two functions. In particular,
r1 () =7 ()] + |7} (8) =+ ()] = O (exp <—;u>\)> . (23)
Together (12), (19), (21), and (23) imply that

ra(t) — (1) = O (exp (?A)) (24)

for all ¢ € [a, b]. That is, the difference between the solution r2 of the boundary value problem (19) and



the nonoscillatory solution 7 of (11) decays exponentially with .

In the high-frequency regime, the difference between r1 and the nonoscillatory function 7 is considerably
smaller than machine precision, as is the difference between r5 and the nonoscillatory function r.
Consequently, for the purposes of numerical computation, r; and r9 can be regarded as nonoscillatory.
In particular, solutions of the boundary value problems (18) and (19) can be obtained via a standard
method for the numerical solution of ordinary differential equations, and each of the functions r; and
ro can be approximated to high accuracy by a finite series expansion whose number of terms does not
depend on A. Moreover, the number of operations required to compute these expansions of 1 and 79
does not depend on .

There is one significant limitation on the accuracy obtained by the algorithm of this paper. When A is
large, the evaluation of the functions u, v defined via the formulas (2) and (3) requires the computation
of trigonometric functions of large arguments. There is an inevitable loss of accuracy when these
calculations are performed in finite precision arithmetic. Nonetheless, acceptable accuracy is obtained
in many cases. For instance, Section 5.3 describes an experiment in which the Bessel function of the
first kind of order 10% was evaluated to approximately ten digits of accuracy at a large collection of
points on the real axis.

We also note that although some accuracy is lost when evaluating (2), (3) in the high-frequency regime,
the phase function a produced by the algorithm of this paper is highly accurate. Among other things,
it can be used to rapidly calculate the roots of special functions to high precision. This and other
applications of nonoscillatory phase functions will be reported at a later date.

The remainder of this paper is organized as follows. Section 2 summarizes a number of mathematical
and numerical facts to be used in the rest of the paper. In Section 3, we develop the analytic apparatus
used in Section 4 to devise an algorithm for the rapid solutions of second order linear differential
equations in the high-frequency regime. Section 5 presents the results of several numerical experiments
conducted to assess the performance of the algorithm of Section 4.

2. Analytic and numerical preliminaries

2.1. Schwartz functions and tempered distributions

We denote by C® (R) the set of all infinitely differentiable functions f : R — C. We say that an
infinitely differentiable function ¢ : R — C is a Schwartz function if ¢ and all of its derivatives decay
faster than any polynomial. That is, if
sup [t/ (1)] < o0 (25)
teR

for all pairs i,j of nonnegative integers. The set of all Schwartz functions is denoted by S(R). We
endow it with the topology generated by the family of seminorms

k
el = Z sup ‘tkgo(”(ac)‘ k=0,1,2,..., (26)
§=0 teR

so that a sequence {p,} of functions in S(R) converges to ¢ in S(R) if and only if
lim |¢p, —¢|r =0 forall k=0,1,2,.... (27)
n—ao0

The space S(R) clearly contains the set CZ°(R™) of compactly supported infinitely differentiable func-

tions. We denote the space of continuous linear functionals on S(R), which are known as tempered
distributions, by S’(R).



See, for instance, [17] for a thorough discussion of Schwartz functions and tempered distributions.

2.2. The Fourier transform

We define the Fourier transform of a function f € S(R) via the formula
Q0
for = | exnl-ist)(@) o (28)
—00
The Fourier transform is an isomorphism S(R) — S(R) (meaning that it is a continuous, invertible
mapping S(R) — S(R) whose inverse is also continuous). The formula

(@, 0) = (W, ?) (29)
extends the Fourier transform to an isomorphism S’(R) — S’(R). The definition (29) coincides with
(28) when f € L' (R). Moreover, when f € L* (R),

R

fle) = Jim | exp(-iag)f(x) da. (30)
Owing to our choice of convention for the Fourier transform,
F=9(&) = 7©)3©) (31)
and
— 1 (® -~ .
f9&) =5 f_ FE&=mg(n) dn (32)
whenever f and g are elements of L' (R). Moreover,
f@) = 5 | explise)(e) dg (33)

whenever f and f are elements of L' (R). The observation that f is an entire function when f is a
compactly supported distribution is one consequence of the well-known Paley-Wiener theorem. See
[12, 13] for a thorough treatment of the Fourier transform.

2.8. The constant coefficient Helmholtz equation

The following theorem is a special case of a more general one which can be found in [18].

Theorem 1. Suppose that f € S(R). If X\ is a positive real number, then the function g defined by the
formula

1 [ .
@) = 55 | sin(hle =y £(w) dy (34
2)\ )
is an infinitely differentiable function,
J"(x) + Ng(z) = f(z) for all z € R, (35)
and
" f(©)
If X is complex number with positive imaginary part, then the function h defined by the formula
Q0
h(z) = o= | exp(2Xilz—yl) fy) dy (37)
22X J_p
is an infinitely differentiable function,
R"(z) + AN2h(z) = f(x) for all z € R, (38)



and

~

B(f) = )\27_52

We interpret the Fourier transform (36) of g as a tempered distribution defined via principal value
integrals; that is to say that for all ¢ € S(R),

HG) 1, F(©)p(e) . F(©)p(e)
<)\2 - 527¢> S 2) (lg% f|g,\>e A=¢ a - lg%j&,\pe A+¢€ df) ' (40)

The following variant of Theorem 1 can be found in [6].

Theorem 2. Suppose that f is continuous on the interval [a,b], and that X\ is a positive real number.
Suppose also that y : [a,b] — C is twice continuously differentiable, and that

y'(x) + Ny(z) = f(x) forall a <z <b. (41)
Then
y(z) = y(a) cos(A(x — a)) + Y E\a) sin(A\(z —a)) + }\L sin (A (z —u)) f(u) du (42)

foralla < x < 0.

2.4. Schwarzian derivatives

The Schwarzian derivative of a smooth function f: R — R is
e 3 ar 2
(= 2 -2 () (43)
@) 2\ ()
The Schwarzian derivative of x(t) is related to the Schwarzian derivative of its inverse ¢(z) through the
formula

{a,t} = — <‘Z)2 {t,z}. (44)

This identity can be found, for instance, in Section 1.13 of [21].

2.5. The Lambert W function

The Lambert W function or product logarithm is the multiple-valued inverse of the function

F(2) = 2 exp(2). (45)
We follow [7] in using Wy to denote the branch of W which is real-valued and greater than or equal to
—1 on the interval [—1/e, ). It is immediate from the definition of Wy that

zexp(z) <y ifand only if z < Wp(y). (46)

for all real numbers y > —1/e.

2.6. Chebyshev polynomials and interpolation

For each nonnegative integer m, we refer to the collection of points

pjzcos<7r‘7>, ji=0,1,....,m (47)

m



as the (m + 1)-point Chebyshev grid on the interval [—1, 1], and we call individal elements of this set
Chebyshev nodes or points.

Suppose that f : [-1,1] — R is a continuous function. For each integer m, there exists a unique
polynomial of degree m which agrees with f on the (m + 1)-point Chebyshev grid. We refer to this
polynomial as the m'* order Chebyshev interpolant for f and denote it by ¥,,[f]. In other words,
U, [f] is the polynomial of degree m defined by the requirement that

Ui [£1(ps) = £ (ps) (48)

for j =0,1,2,...,m. If fis Lipschitz continuous, then ¥,, [f] converges to f in L* ([—1,1]) norm as
m — o0. Moreover, in the event that f is analytic on an ellipse with foci +£1 the sum of whose semiaxis
isy>1,

[ L] = flo = O (m™7). (49)

Proofs of these and related facts can be found in [25], for instance.

Given the values of f on the (m + 1)-point Chebyshev grid po, p1,. .., pm, the value of ¥ [f] can be
calculated at any point z in [—1, 1] via the formula

() o (—1)
U [f] (x) @ox—w )/<§$_pj). (50)

The process of approximating a function f via ®[f] is referred to as Chebyshev interpolation and
(50) is known as the barycentric interpolation formula for Chebyshev polynomials. The stability of
barycentric interpolation is discussed extensively in [25].

Suppose that f : [—1,1] — R is continuous function, that m is a positive integer, and that ¢ is the
function defined by the formula

t
o) = | W [ @) dc (51)
If v = {vg,v1,...,vn} is the vector defined by the formula
vj = f(pj) (52)
and w = {wp, w1, ..., wp,} is the vector defined by the formula
wj = g(p;), (53)
then we refer to the (m + 1) x (m + 1) matrix Sy, such that
St = w (54)

as the spectral integration matrix of order m (that such a matrix exists is clear since the underlying
operation is linear).

The preceding constructions can be easily modified in order to accommodate functions defined on any
finite interval [a, b]. For instance, the (m + 1)-point Chebyshev grid on the interval [a, ] is the set

b— b
{ 2apj+a; :j=0,1...,m.} (55)

Remark 1. The set (47) is the collection of the extreme points of the m' order Chebyshev polynomial
Tym. The roots of Chebyshev polynomials are often used as interpolation nodes instead. There are few
meaningful differences between these two choices, although (47) includes the endpoints +1, which is
convenient when solving boundary value problems for ordinary differential equations.



3. Analytical apparatus

Here we develop the analytic apparatus used in Section 4 to design an algorithm for the numerical
solution of second order linear ordinary differential equations of the form (1) whose running time is
independent of the parameter A.

We will assume throughout this section that the coefficient ¢ in (1) extends to a strictly positive function
on the entire real line. We do this so that the notation of “nonoscillatory” can be defined using the
Fourier transform. Note that the numerical algorithm described in Section 4 does not require that ¢
be extended outside of the interval [a,b] on which (1) is given.

In Section 3.1, we reformulate Kummer’s equation as a nonlinear integral equation in preparation for
a statement of the main theorem of [5]. This is done in Section 3.2, and several consequences of this
result are discussed there. In Section 3.3, we develop a theorem which bounds the restriction of the
solution r of the logarithm form of Kummer’s equation to the interval (—o0,a] under the assumption
that the coefficient g is nearly equal to 1 there. This result is recorded as Theorem 4. In Section 3.4, we
observe that combining this theorem with standard techniques from the theory of ordinary differential
equations suffices to establish the two observations which underlie the algorithm of Section 4.

3.1. Integral equation formulation of Kummer’s equation

In this section, we reformulate Kummer’s equation
1a”(t) 3 (" (t))?
")) = A2q(t) — = = 56
(@) =X =550 1 v (56

as a nonlinear integral equation in preparation for the statement of the principal result of [5].

By letting

&/(t) = Aexp <7’(2t>) (57)

in (56) we obtain

#1(1) — 7 ((5)” + 40 (exp(r() — (1)) = 0, (59)

which we refer to as the logarithm form of Kummer’s equation. Representing the solution r of (58) in
the form

r(t) = log(q(t)) + 6(¢) (59)

results in the equation

(0 - 3 L8O - § F1(0)7 + 1300 (explo(0) - 1) = a)p(0) (60)

where the function p is defined by the formula

1[5 0¢®)\° d'()
PO =10 <4<q<t>> q<t>>‘ (o1

By expanding the exponential in (60) in a power series and rearranging terms we obtain

14'(t) ., 1., @)% (8(t)?
_2(5}((t))5(t)+4)\2q(t)5(t)—4(5 ()% + 4A2q(t) <( (2,)) L (3,)) +> =q(t)p(t). (62)

5// (t)



The change of variables

o) = [ Vaw) du (63)
transforms (62) into
8" (z) + 4X25(x) = S [d] (z) + p(x), (64)

where S is the nonlinear differential operator defined via the formula

S[f](z) = (f/(j))Q — 4)? <(f(x))2 + (f(@))” +- ) : (65)

2! 3!

We observe that the function p(t) defined in formula (61) is related to the Schwarzian derivative (see
Section 2.4) {x,t} of the function x defined in (63) via the formula

2 dt\?
= Y .
o) =~ s tont) = -2 () ot (66)
From (66) and Formula (44) in Section 2.4, we see that
p(z) = 2{t, z}; (67)

that is the function p(x) is twice the Schwarzian derivative of the inverse of the function x(t).

We also observe that the differential operator appearing on the left-hand side of (64) is the constant
coefficient Helmholtz equation. In order to exploit this observation, we define the operator T  for
functions f € S(R) via the formula

1 0
T[f](z) = 4)\f sin(2A |z —y|) f(y) dy for all = e R. (68)
—0
According to Theorem 1, T'[ f] is the unique solution of the ordinary differential equation
y'(x) + 4Ny (x) = f() (69)
such that
e F(©)
T =2 70
Consequently, introducing the representation
6(x) =T o] (z) (71)
into (64) results in the nonlinear integral equation
o(x) = S[T'[o]] (x) + p(x). (72)

3.2. Nonoscillatory solutions of Kummer’s equation

Equation (72) does not admit solutions for all functions p. However, according to the following result,
which appears as Theorem 12 in [5], if the function p is nonoscillatory then there exists a function v of
small magnitude such that the nonlinear integral equation

o(z) = S[T[o]] + p(z) + v(x) (73)

admits a solution o which is also nonoscillatory.

Theorem 3. Suppose that g € C* (R) is strictly positive, that x(t) is defined by the formula

£(t) = fo Vaw) du, (74)

10



and that the function p defined via the formula
p(x) = 2{t, =} (75)
is an element of S(R). Suppose further that there exist positive real numbers X\, I' and p such that
1
)\24max{ﬂ,F} (76)

and
p(&)] < Texp (—ulé]) forall R (77)

Then there ezist functions o and v in S(R) such that o is the unique solution of the nonlinear integral
equation

o(x) = S[T[o]] (z) + p(x) + v(z), forall zeR, (78)
B < srexp (~ulel)  for all Je] <V (79)
G(&) =0 forall |&]>2\, (80)
and
Iohie < - exp (=), (81)

Suppose that o and v are the functions obtained by invoking Theorem 3, and that x(¢) is the function
defined by the formula

x(t) = Jt Valu) du. (82)
We define § by the formula ’
6(z) = T'[o] (x), (83)
r by the formula
r(t) = log(q(t)) + d(x(t)), (84)

and a by the formula

_ AJ exp (7“(2“> du. (85)

From the discussion in Section 3.1, we conclude that d(z) is a solution of the nonlinear differential
equation

§"(x) + 4\*5(z) = S[8] (x) + p(x) + v(z) forall z e R, (86)
that d(z(t)) is a solution of the nonlinear differential equation
5 (t) — ;Zl(%)é’(t) - i (8(8) + 43%q(t) (exp(8() — 1) = q(t) (p(t) + v(t)) forall teR, (87)
that r(t) is a solution of the nonlinear differential equation
() — %(r’(t))2 + 4X2 (exp(r(t)) — q(t)) = q(t)v(t) for all teR, (88)
and that « is a solution of the nonlinear differential equation
(o/(t )) = \2 <4(;2> + 1) q(t) — ;Z‘Z/((t)) + Z (ZI//((:))>2 for all ¢teR. (89)

11



From (89), we see that « is a phase function for the second order linear ordinary differential equation
t
Y (t) + N2 <1 - Z&g) qt)y(t) =0 forall a<t<b. (90)
The following consequence of Theorem 3, which appears as Theorem 14 in [5], bounds the order of
magnitude of the difference between solutions of (90) and those of (1).

Corollary 1. Suppose that the hypotheses of Theorem 8§ are satisfied, that o and v are the functions
obtained by invoking it. Suppose also that o is defined as in (85), and that u, v are the functions defined
via the formulas

t) = ——= 91
ute) = <0 1)
and
U(t) = M. (92)
o/ (t)
Then there exist a constant C' and a basis {U, v} in the space of solutions of (1) such that
lu(t) — a(t)] < %exp (—pA)  forall a<t<b (93)
and
lu(t) — o(t)] < %exp (—pX)  forall a<t<b. (94)

The constant C' depends on the coefficient q appearing in (1), but not on the parameter \.

3.8. A bound on § in the event that p is small in magnitude

In this section, we bound the solution § of the nonlinear differential equation (86) and its derivative
under an assumption on the function p appearing in (86). More specifically, we show that when the
function p is of sufficiently small magnitude on the interval (—oo,a] and X is sufficiently large, the
restrictions of § and ¢’ to (—o0,a] are on the order of

exp <_A2“> . (95)

This result, whose proof is the purpose of this section, is recorded as Theorem 4.

Deriving bounds on the magnitude of § and ¢’ on the infinite interval (—o0,a] is complicated by the
fact that the operator T is defined via convolution with the nonintegrable kernel

1
o sin (2\|z]) . (96)
To sidestep this difficulty, we perturb the parameter A in the linear differential operator appearing on

the left-hand side of Equation (86) by an imaginary constant in of small magnitude. To be more precise,
for each sufficiently small n > 0 we define the operator T), for functions f € S(R) via the formula

1 0¢]
T, =— 2(A+1 — dy. 97
W@ = T | e @Ol =) £0) dy (97)
and we let J,, denote the function defined via
Oy(x) = Ty [o] (). (98)
According to Theorem 1, for each n > 0, ¢, is the unique solution of the equation
5;;(%) +4(A + in)25n(x) =o(z) (99)
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such that
Ty [6,](8) = 4()\_:);575))2_52
Since o is a solution of the integral equation (73), it follows from (99) that
(5;;(1’) + 4N+ in)28,(x) = S[0] (x) + p(z) + v(z). (101)
Note that it is indeed S [6] and not S [§,)] which appears on the right-hand side of (101). The advantage
of (101) over the nonlinear differential equation
§"(x) + 4X*5(x) = S[6] (z) + p(z) + v(=) (102)

defining ¢ is that the fundamental solution

for all ¢ e R. (100)

mexp (2(\ +in)i|z|) (103)

of the differential equation
y'(x) + 4(A +in)*y(x) = 0 (104)
associated with the Fourier transform is an element of L' (R).

The proof of Theorem 4 involves four technical lemmas. The first of these, Lemma 1, bounds the
functions |6(x) — 6,(x)| and |0’ (z) — 5;,(@’ for all  on the real line. Lemmas 2 and 3 provide inequal-
ities which are used in Lemma 4 to bound the magnitudes of 4, and 5,’7 on the interval (—o0, a] under
assumptions on the magnitude of the function p there. Lemma 4 is established via a standard “conti-
nuity” argument. That is, we use the continuity of the functions 4, and 57’7 to show that the subset of
(—o0, a] on which the relevant bound is satisfied is nonempty, open and closed in the relative topology
of (—o0,a]. Since (—0o0,a] is a connected space, it follows that the bound is satisfied on all of (—0, a].
Lemma 4 is then combined with the bounds on [§ — &,| and [§" — 5{7‘ provided by Lemma 1 to establish
the principal result of this section, Theorem 4, which bounds the magnitude of § and ¢’ on (—o0, a]
under the assumption that the function p is small there.

Lemma 1. Suppose that o € S(R), that there exist positive real numbers i, T' and X such that

B < 5 exp(~ulel) forall Je] <V (105)
and that
5() =0 forall |€] =2\ (106)
Suppose also that 1 is a positive real number such that
2n < A (107)
Suppose further that ¢ is defined via the formula
©
3a) = Tlol (@) = 55 | sin(@ e =y a(y) dy, (108)
and that &, is defined via the formula
0
04(w) = Ty ) 0) = Ty | S0 @O+ in)ile —ul)otu) dy (109)
Then
i[5, (2)| +|5(@)] = 0, (110)
|0(z)] < 4735)\2 for all zeR, (111)
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3

|6 (z)| < TN for all z e R,
3'n
16(x) — dp(x)] < e for all xeR,
and
3'n
o’ oy (x)] < 2N for all xeR.
Proof. We observe that functions
7 (§)

4\ +1in)? — &2
and
i€o ()
4\ +in)2 — &%

(112)

(113)

(114)

(115)

(116)

are elements of C° (R). Among other things, this implies that the inverse Fourier transforms of (115)
and (116), which are ¢, and d;, respectively, are elements of S(R). The conclusion (110) follows

immediately from this observation.

An elementary calculation shows that

1 B 1 4n 4\? + n?
AN +1in)2 — €2 4N2 - &2 Tl = £2 (4X2 — €2 — 4n?)2 + 6472 )2°
We observe that
4n 277
4)\2 52

for all n > 0 and |¢| < v/2\. Moreover,
AN A — 22202 — 4’ > 0
for all |¢] < v/2X and A > 27. Tt follows from (119) that

AN+ _ AN + 0
(AN2 — €2 —4n?)2 4+ 64n2X2 (22 — 4n?)2 + 64n2\2
4N +n?
T AN 1 4822 + 167"
14X\ 42
T OAZAN2 + 482
<l
<32
for all 0 < 21 < A, and [¢| < v/2). By inserting (120) and (118) into (117),we conclude that
1 1 277

’ OrmE-e ne-g|s
for all 0 < 21 < A and [£] < v/2)\. From Theorem 1 and (108) we see that
w ~

18] < o H H Sor ) a2 —¢?

14
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(118)

(119)

(120)

(121)

(122)



and

€5 (8)
167], < <5 5/ <o) |e—eo de. (123)
We insert (105) and (106) into (122) to obtain
30 [V2A 30 (V2 3T
< — < —, 124
O e I e e e B e S
which is (111). By inserting (105) and (106) into (123) we obtain
) 3r JWA 3 3T f\“ 3r
_ < = 125
Jo'], < o | Dz—gz| Ol dE < g | Ielexp (mulel) dE < o (125)
which is (1 12). Next, we observe that
s ¢ L (] o) a(¢)
Ol < [0 =0y <o - :
6= 0nlo. 2 H5 577”1 21 J_ o ‘4)\2 —& 4N +1in)2 —¢&2 de (126)
and that
Y i TS i * i€ (§) _ i€ ()
I =8l < o ligd— i <o | |15 e - iy e (127)
We insert (105), (106) and (121) into (126) to establish that
_ 30y V2A _ 3
o=l < 5y | exp(oul) de < 2 (128)

for all 0 < n < 2\, which is the conclusion (113). Finally, we combine (105), (106) and (121) with (127)
to conclude that

3Ty (V2 3T
/ / < 129
I =), < e | Ko (nle) de < S (129
for all 0 < 2ny < A, which establishes (114). O

The following technical lemma, which will be used in the proof of Lemma 4, bounds the magnitude of
S [6], where S is the nonlinear differential operator defined in (65), in terms of the solution 6, of the
complexified equation and its derivative.

Lemma 2. Suppose that the hypotheses of Lemma 1 are satisfied, and that
1
A = 4max {F, } . (130)
1

Suppose further that S is the nonlinear differential operator defined via (65). Then

(@) 1022
|S [0] (z)] ég—8+ | n(2)‘ + 0,(x)>  for all x€R. (131)

Proof. We define the function 7 via the formula

7(z) = 6(x) — by(x) (132)

so that 0 = §,) + 7,,. We invoke Lemma 1 and exploit the assumption (130) to obtain

IT(x)] < %, for all xeR (133)
17 ()| < 3 for all = eR. (134)
64m
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and

16(2)] < 6% for all z € R.
I8

From the definition (65) of S and the triangle inequality we conclude that

(§'(2))?
1S[0] ()] < u +42% [exp(8(x)) — 8(x) — 1]

for all x € R. We insert the inequality
2
lexp(z) —x — 1| < |x2’exp(|:r|) forall zeR

into (136) to obtain

/ 2
IS 9] (z)] < 19 (Z:” + 222 exp (|6(2)]) |6(x)>  for all z e R.
From (135) we obtain
3 102
< — | < —— :
exp (3(0)) < e () < o2 forall 2R

We insert (139) into (138) to see that

/()] 20472
5101 (@) < ==+ 50

We combine (132) with (140) and the fact that

16(x)]* for all zeR.

(o +y)? < (ol + ly)? <2 (Ja* + |yP°) forall z,yeR

to conclude that

o ()] + |7 ()P 2
3181 )] < DAL ITEE 408 1z o)

for all z € R. Next we insert (133) and (134) into (142) to see that
2 o @) 10262
L G
68 2 25
for all x € R, which is the conclusion of the theorem.

15[0] (2)] <

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

O

Our third technical lemma bounds the magnitude of the Fourier transform of the product of ¢ with a

decaying exponential function at the points +2\.

Lemma 3. Suppose that the hypotheses of Lemma 1 are satisfied, and that x is an arbitrary real

number. Then

2 2

—00

Proof. For any x € R, we define the function g, via the formula

9x(y) = exp (—2n |z —yl).
We observe that
oy Anexp(—izf)
I(g) - 4772 + 62

16

. ; 3I h)
U exp(+2Xiy) exp (—2n |z — y|) o(y) dy‘ < exp (_“> .

(144)

(145)

(146)



Consequently,

T = = [ s@on—6) que) de = - fo 5o — gy mep(Zixd) o (147)

27 J_ o 27 J_ o dn? + &2
We insert (105) and (106) into (147) to conclude that

. 30 (V2 An
5 (+20)] < 2 —E2A =€ p) s
|Gz -0 (£2))] < j exp (— [£2A — £ 1) A2 + €2 dé

am J_ /ax
< % exp (— (2>\ - \/EA) u) fw 41724152% (148)
< % exp <—/\2M>
In the third line of (148) we used the (easily verifiable) fact that
fjooo 41724:7_52(&' =27 forall n>0. (149)

O

We now combine Lemmas 1, 2 and 3 to develop a bound on the solution 4, of the complexified equation
5:;(1‘) +4(A+ 2'17)2577(:3) =o(z) = S[0] (z) + p(x) + v(x) (150)

and its derivative on the interval (—o0, a] under the assumption that the function p is of small magnitude
on that interval. The proof proceeds via a standard “continuity” argument.

Lemma 4. Suppose that the hypotheses of Theorem 3 are satisfied, and that o and v are the functions
obtained by invoking it. Suppose further that n > 0 and a are real numbers, that

4 2 24T\ 1 16T
A > max {,4T, 2n, — log () , — log <62> } , (151)
0 I n ) pn
and that
n?
Ip(z)| < 1 for all = < a. (152)
Suppose also that 6, is defined via the formula
Oy(x) = Ty [o] (2). (153)
Then
n
()l < 1 (154)
and
n
107 ()] < 1 (155)

for all x < a.
Proof. From the definition (97) of T;, and (153) we see that

by () = 4(1 | " exp 20\ +in)ilz — y) o(y) dy

A+in)i J_op
exp(2\ix) jm ,
= SRS —2n |z — —2
TNt in)i _Ooexp( nlz —yl) exp(—2Aiy) o(y) dy (156)
exp(—2\ix) JOO )
b A —2n |z — 2
0T ). exp(—2n |z — y|) exp(2Aiy) o(y) dy
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for all z € R. By differentiating (156) we conclude that

) =5 [ ep it imile — ) signte — o) o) dy

—00
exp(2Xix) (* .
= (2)j exp (—2n |z — y|) exp(—2Xiy) o(y) dy (157)
—00
exp(—2\iz) [* .
- (2)f exp(—2n|z — y|) exp(2X\iy) o(y) dy
X
for all x € R. We observe that
o0 o0
f exp(=2n | — y]) exp(2Xiy) o(y) dy = f exp(=2n |z — y]) exp(2Xiy) o(y) dy

o (158)
| (-2l = o) expl2ai) o(o) dy

for all z € R. By inserting (158) into (156), taking absolute values, and applying the triangle inequality
we obtain
1 X
@)l < 55 | exo(-2alz =) o)l dy
—a0
B (159)
+ || ezl = o) expexig) o(y) dy
4N )

for all z € R. By inserting (158) into (157) and taking absolute values, we conclude that

@< [ ew-2le—ul) lotw)] dy

11 (= (160)
+3 U exp(=21 |z — y|) exp(2Aiy) o(y) dy’
—0
for all x € R. We now combine Lemma 3 with our assumption that
2 24T
A= —log () . (161)
2 n
which is part of (151), to see that
w0 3r A
J exp(—2n|z — y|) exp(2Xiy) o(y) dy| < — exp e e (162)
. 2 2 16
for all x € R. We insert (162) into (159) and (160) in order to obtain the inequalities
1 [ n
|0y (2)] < o J_oo exp (=2n |z —vy|) |o(y)| dy + 6 forall zeR (163)
and
|0, (z)| < j exp (—2n |z —vy|) |o(y)| dy + 3% for all zeR. (164)
-0
Now we define 4 via the formula
d(z) =T o] (x). (165)
From (78) and (165) we conclude that
o(z) = S[6](z) + p(z) + v(x) forall zeR. (166)
We combine conclusion (81) of Theorem 3 with the assumption that
1 16T
A= —log <2> (167)
1t )

18



which is part of (151), in order to conclude that
r n?
< — —pA) < —. 168
ol < o exp(-md) < Jg (168)

We combine (152), (168) and the fact that
r 1
f exp(—2n|r —y|)dy = — forall zeR (169)
— 2n

in order to conclude that

|| exvt-20ke = s (ol + o)) dy < (170)

=16

for all z < a. We combine Lemma 2 with (169) in order to conclude that

F exp (~2ne — gD ISP @) dy < -2 + 22X G el + L s [EmE a7
R VS 136" 7500 —meapen M Ty g2 100

for all z € R. By combining (166), (170) and (171) we conclude that

@ 197 102)\2 5 1 2
exp(—2n |z — o dy < — + su on(x)|" + — su 8 (x 172
| eswmle—alow)] @< g2+ 5 sw p@f e g s G@F 07)

for all z < a. Inserting (172) into (163) and (164) yields the inequalities

540 < Tog8s * Toon Sp_ @)+ i swp (g (o] (173)
and
5, < S+ T swp o+ s[5 (17
both of which hold for all z < a.
We denote by €2 the set
{a: <a:|o(y)| < % and ’5;7(3/)’ < Z for all ye (—oo,x]}. (175)

The continuity of d, and d; imply that 2 is closed in the relative topology of (—co,a] (that is, the
topology it inherits as a subset of R). Conclusion (110) of Lemma 1 implies that €2 is nonempty. We
let * < a denote an element of €). By inserting the inequalities

16, (y)] < % for all y < z* (176)
and
10, ()] < g for all y < 2* (177)

into (173) and (174) we conclude that

551 1027 n 6643n n
5 ()] < _ n 178
10n(®)1 < Tosax  Tooox * 128% ~ 52400% © I (178)

and
, 199  102n n 5693n
19221 < 575+ 560 T 61 ~ 27200
for all z < 2*. The continuity of d, and d;, together with (178) and (179) imply an open neighborhood
of z* is contained in Q. In other words, € is open in the relative topology of (—o0,a]. In fact, £ must
be all of (—o0,a] since it is a nonempty set which is both open and closed in the relative topology of
the connected set (—o0, a]. The conclusions (154) and (155) follow immediately. O

n
=z 179

We now combine Lemmas 1, 2, 3 and 4 in order to establish the principal result of this section, which
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is a bound on the restriction of the nonoscillatory solution § of the nonlinear differential equation
6" () + 4X%6(z) = S [6] (z) + p(x) + v(x) (180)
to the interval (—o0,a] under the assumption that p is of small magnitude there.

Theorem 4. Suppose that the hypotheses of Theorem 3 are satisfied, and that o and v are the functions
obtained by invoking it. Suppose further that C1 is the real number

C1 = max {24F, 16F} , (181)
\ w

and that
4 T 2
Az max {4, — — —Wy (Cip } 182
far. 2 L 2w o) (182)
Suppose also that a is a real number, that
2
Ip(x)] < % exp (—pA)  for all = < a, (183)
and that d is defined via the formula
d(z) =T [o] (x). (184)
Then
o A
< P -
ool < G exo (-12)) (185)
and
C A
16" ()| < 71 exp <—“2> (186)

for all z < a.

Remark 2. In (182), Wy refers to the branch of the Lambert W function which is greater than or equal
to —1 on the interval [—1/e,0); see Section 2.5.

Proof. We let

n = Cyexp <_,u2)\> . (187)
From our assumption that
A= iWO (Cip), (188)
which is part of (182), and the inequality (46) of Section 2.5 we conclude that
A = 20 exp <_2'U)\> = 21). (189)
Moreover, by inserting (181) into (189) and using the inequality (46) we obtain
n < 24T exp <_2M)\> . (190)
and
n? < 1(:]11 exp (—puA). (191)
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It follows immediately from (190) and (191) that

24F 1 16T
A > max log ,—log | — ) ¢- (192)
[ n ) p 1)

Together (187), (192) and (182) ensure that the hypothesis (151) of Lemma 4 is satisfied. From (187)
and (183), we conclude that
2

Ip(2)l < 76 (193)
so the hypothesis (152) of Lemma 4 is satisfied as well. By invoking Lemma 4 we see that
n
y(2)] < - (194)
and
o () <1 195
o] < (195)
for all < a. Inserting (187) into (194) and (195) gives the inequalities
Cl M)\
(o)l < G exo (1)) (196)
and
& BA
’(5;7(:(:)’ < ~ oXP (—2) , (197)

which hold for all z < a. We combine the hypotheses (76) of Theorem 3, and conclusions (113) and
(114) of Lemma 1 to obtain

3I'n 3 UA
|6(x) — dp(x)] < T2 < 701 exp (—2> . (198)
Similarly, from (182) and conclusions (113) and (114) of Lemma 1 we obtain
3I'n 3 HA
/ !
— < . 1
|6 () 5()’ N C’lexp< 2) (199)
We combine (198) with (196) to obtain (185), and (199) with (197) to obtain (186). O

3.4. A continuity result

Theorem 4 implies that when the magnitude of the function p is sufficently small on the interval (—o0, a],
the values of d(a) and ¢’(a) are on the order of

1
exp <—2,u)\> . (200)
Moreover, the magnitude of the function v appearing in (86) is on the order of
exp (—pA). (201)

The following theorem follows from these observations and standard results regarding the continuity of
ordinary differential equations with respect to the perturbation of initial values and coefficients (see,
for instance, [6] or [27]).

Theorem 5. Suppose that the hypotheses of Theorem 8 are satisfied, that o and v are the functions
obtained by invoking it, and that 0 is the function defined via the formula

5(a) = T[o] () (202)
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so that § solves the equation
§"(x) + 4X35(2) = S[0] (x) + p(x) + v(z) for all z€R. (203)

Suppose also that n : [a,b] — R is a continuously differentiable function, and that there exists a constant
C > 0 such that

o)l + i/ < Coxp (-15)) (201

for all a < x < b. Then there exist a constant C' > 0 and a twice continuously differentiable function
do : [a,b] = R such that &y solves the initial value problem

50(x) + 4X%60(x) = S[0] (x) + p(x) +n(x) for all xo <z <21

So(a) = 0 (205)
Jo(b) = 0,
and
|6(z) — do(z)| + ‘5'(x) — 56(%)‘ < C'exp <—M2>\> (206)

foralla <z <b.

That the difference between the solution ry of the boundary value problem (19) and the nonoscillatory

solution r of (16) is on the order of exp (—“—;‘) follows easily from Theorem 5.

4. Numerical algorithm

In this section, we describe an algorithm for the solution of the boundary value problem
y'(t) + N2q(t)y(t) =0 forall a<t<b
c1y(a) + e2y/(a) = @ (207)
c3y(b) + cayf/ (b) = B.
where ¢1, ca, c3, ¢4, @, f and A > 0 are real numbers, and ¢ is strictly positive on the interval [a, b] and

analytic in an open set containing the interval [a,b]. It can be easily modified to address, inter alia,
initial value problems.

The algorithm exploits the analytical appparatus developed in Section 3 in order to construct a solution
ro of the logarithm form of Kummer’s equation

r(t) — i(r’z(t)f 4N (exp(ra(t) — q(6)) = 0 forall a<t<b. (208)

Once the function ry has been obtained, we construct a phase function « via the formula

alt) = vft exp <r2é“)> du. (209)

0
It has the property that the functions u, v defined by the formulas
cos(a(t))
u(t) = —35 210
(t) E (210)
and
u(t) = w (211)
o/ (1)]
form a basis in the space of solutions of the ordinary differential equation
y'(t) + XN2q(t)y(t) = 0 forall a<t<b. (212)
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We compute real numbers d; and dy such that the function
y(t) = diu(t) + dav(t) (213)

satisfies the boundary conditions
c1y(a) + c2y/(a) = a
c3y(b) + cay'(b) = B

by solving the system of two linear algebraic equations in the two unknowns di, d2 obtained by inserting
(213) into (214).

(214)

In addition to the value of A\ and a routine for evaluating the function ¢ at any point on the interval
[a, b], the user supplies as inputs to the algorithm an integer m > 0 and a partition

a=§ <& << <& =0 (215)
of the interval [a,b]. For each j = 1,...,n, the restrictions of the functions r and a to [§;_1,§;] are
represented by their values at the points

Tj0,L515L52y«+5Ljm,Ljm (216)
of the (m + 1)-point Chebyshev grid on the interval [£;_1,&;] (see Section 2.6). The assumption is, of
course, that the restrictions of these functions to each subinterval are well-approximated by polynomials
of degree m. Note that for each j = 1,...,n — 1, the last Chebyshev point in the interval [;_1,&;]
coincides with the first Chebyshev point in the interval [{;,&;41]; that is,

Tjm = §j+1 = Tj41,0 (217)

forall j=1,...,n—1.
The output of the algorithm consists of the values of a and o’ at each of the the nm + 1 points

T1,05- > Tlmy L2053 L2ms -+ - Tn0s -+ - s Trym (218)
(there are nm + 1 points rather than n(m+ 1) points because x1, = 2,0, T2,m = 30, etc.). Using this
data, the value of the solution yg of the boundary value problem (207) can be computed at any point
t in [a,b]. More specifically, to evaluate yo(t) at the point ¢, we calculate a(t) and o/(t) via Chebyshev
interpolation (as discussed in Section 2.6), then evaluate u(t) and v(t) using formulas (210) and (211),
and finally insert the values of u(t) and v(t) into (213) in order to obtain yo(t).

Our algorithm calls for solving a number of stiff ordinary differential equations. In our implementation,
we used the spectral deferred correction method described in [10]. It was chosen for its excellent stability
properties; however, any standard approach to the numerical solution of stiff ordinary differential
equation can be substituted for the algorithm of [10].

We now describe the procedure for the construction of the phase function « in detail. It consists of the
following four phases.

Phase 1: Construction of the Windowed Problem

In the first phase of the algorithm we construct a windowed version ¢ of the function ¢ using the
following sequence of steps:

1. We let
1—erf % (t - QTH’)
bit) - ( . )

so that ¢(t) ~ 1 for all ¢ near a and ¥ (t) ~ 0 for all ¢ near b. Note that the constant 13 in (219)
was chosen to be the smallest positive integer such that the quantities |1 — ¢(a)| and |p(b)| are
less than machine precision.

(219)
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2. We define the function ¢ by the formula

qt) = (t) + (1 = (t)q(t) (220)
so that ¢(t) ~ 1 when ¢ is close to a and ¢(t) ~ ¢(t) when ¢ is close to b. We refer to ¢ as the
windowed version of q.

Phase 2: Solution of the windowed problem
In this phase, we solve the initial value problem
P (t) — i (P (£) + 4N (exp(ri(t) — (8) =0 forall a<t<b
ri(a) =ri(a) =0,
with the windowed function ¢ is in place of the original function g. We denote by 7 the nonoscillatory

solution of the logarithm form of Kummer’s equation obtained by applying Theorem 3 to the second
order ordinary differential equation

(221)

Y () + N2y () = 0. (222)
According to the discussion in Section 3,
A
Ir () = F(t)| + |[ri(t) — 7 (1) = O <exp <—2“>> (223)

for all £ close to b. Assuming that ) is sufficiently large, the difference between r1 and the nonoscillatory
function 7 is well below machine precision and r; can be treated as nonoscillatory for the purposes of
numerical computation.

For each j = 1,...,n, we compute the solution of (221) at the points

Tj0s-->Tjm (224)
of the (m + 1)-point Chebyshev grid on [{;_1,&;]. If j = 1, then the initial conditions are taken to be
ri(a) = ri(a) = 0. (225)
If, on the other hand, j > 1, then we enforce the conditions
1 (zg1) = 7 (2j-1,m) (226)
and
' (@)1) =711 (Tj-1,m) 5 (227)

that is, we require that r1 and its first derivative agree at the left endpoint of the interval with the
value and derivative of the solution at the right endpoint of the previous interval.

Phase 3: Solution of the original problem
In this phase, we solve the problem
V(L) — i (rb(6))* + 472 (exp(ra(t) — q(t) =0 forall a<t<b
ra(b) = r1(b) (228)
ry(b) = r1(b)

The intervals are processed in decreasing order: the n' interval [¢,_1,&,] is the first to be processed,
then [£,-2,&,—1], and so on. Boundary conditions are imposed at the left end point of each interval;
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in particular, when processing the n'” interval we require that

72 (§n) = 11 (&n)

(229)
75 (6n) = 71 (&n)
and while processing each of the subsequent intervals [£;_1, ;] we require that
r2 (Zjm) = 72 (Tj11,0)
, o (230)
1o (Tjm) = 15 (Tj41,0) -

According to the discussion in Section 3,

r(t) —ra2(t)] = O (exp (—@)) (231)

for all @ < ¢t < b. As in the case of 71, (231) implies that in the high-frequency regime, the difference
between ro and the nonoscillatory solution 7 of the logarithm form of Kummer’s equation associated with
the coefficient ¢ is much smaller than machine precision. Consequently, we regard r as nonoscillatory
for the purposes of numerical computation.

Phase 4: Preparation of the output

In this final phase, the values of the functions o and o/ are tabulated at each of the points (218) via
the following sequence of steps:

1. We compute the values of o/ at the points (218) using the formula

&/(t) = Aexp (7’22(’5)> . (232)

2. For each j = 1,...,n, we apply the spectral integration matrix of order m (see Section 2.6) to
the vector
o’ (zj0)
o (z1)
” (233)
o' (Tjm)

in order to obtain the values
a; (25,0) @ (1) 5+ s @ (jm) (234)
of an antiderivative o of the restriction of o’ to the interval [£;_1, ;] at the nodes of the (m +1)-

point Chebyshev grid on that interval. Note that the value of o;(&;) is not necessarily consistent
with the value of j11(§;). This problem is corrected in the following steps.

3. For each j =1,...,n, we define a real number v; as follows
Vi = (&10) if j=1 (235)
Y= a(fj—l,m) if J>1
4. For each j = 2,...,n and each i =0, ..., m, the value of the phase function « at the point z; ; is
computed via the formula
a(zji) = aj(x:) — a; (x50) + 75 (236)

The output of the algorithm consists of the values of o’ at the nodes (216) computed in Step 1 of Phase
4 and the values of v at the nodes (216) computed in Step 4 of Phase 4.
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5. Numerical experiments

In this section, we describe numerical experiments performed to evaluate the performance of the al-
gorithm of Section 4. Our code was written in Fortran and compiled with the Intel Fortran Compiler
version 13.1.3. All calculations were carried out on a desktop computer equipped with an Intel Xeon
X5690 CPU running at 3.47 GHz. Unless otherwise noted, double precision (Fortran REAL*8) arith-
metic was used.

5.1. Comparison with a standard solver

We measured the performance of the algorithm of this paper by applying it to the initial value problem
Y () + Nq(t)y(t) =0 forall —1<t<1

y(=1)=0 (237)
y/(_l) = )‘7
where ¢ is defined by the formula
q(t) = 1 — t* cos(3t), (238)

for seven values of A. A reference solution was obtained by executing the spectral deferred correc-
tion method of [10] in extended precision (Fortran REAL*16) arithmetic. The interval [—1,1] was
partitioned into 10 equispaced subintervals and the 16 point Chebyshev grid was used to represent
the nonoscillatory phase function on each subinterval. For each value of A, the obtained solution was
compared to the reference solution at 1000 randomly chosen points on the interval [—1,1].

The results of this experiment are reported in Table 1. Each row there corresponds to one value of A
and reports the time required to construct the nonoscillatory phase function, the average time required
to evaluate the solution of (237) using this nonoscillatory phase function, and the maximum absolute
error which was observed. We see that the time required to solve (237) was independent of the value of
the parameter A\, and that the obtained accuracy decreased as A increased. This loss of precision was
incurred when the sine and cosine of large arguments were calculated in the course of evaluating the
functions u, v defined via formulas (2), (3).

Plots of the function ¢ defined by (238) and the windowed version of ¢ constructed as an intermediate
step by the algorithm of Section 4 are shown in Figure 1. Plots of the solution r of the logarithm form
of Kummer’s equation when A = 107 and the windowed version r; of 7 constructed as an intermediate
step by the algorithm of Section 4 are shown in Figure 2.

5.2. Phase functions for Chebyshev’s equation

Chebyshev’s equation
(1—t)y"(t) =ty (t) + N2y(t) =0 forall —1<t<1 (239)

admits an exact nonoscillatory phase function which can be represented via elementary functions. More
specifically,

ap(t) = Aarccos(t) (240)
is a nonoscillatory phase function for the second order equation
2412 + 427 (1 - t?)
"(t) + t)=0 forall —1<t<1 241
o ( Fiipar- e KO (241)
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obtained by introducing

D(t) = (1 - 1)y (t) (242)
into (239). For each A = 10,20, ...,1000, we applied the algorithm of Section 4 to (241) and compared
the resulting phase function to (240). Figure 3 displays a plot of the relative difference

o — ol (243)

el

between the exact phase function ag and the phase function « obtained via the algorithm of Section 4

as a function of A. We observe that as \ increases, the difference between the phase function obtained
via the algorithm and the function A arccos(t) decays at an exponential rate.

5.8. Fvaluation of Bessel functions.

We compared the cost of evaluating Bessel functions of integer order via the standard recurrence relation
with that of doing so using a nonoscillatory phase function.

We denote by J, the Bessel function of the first kind of order v. It is a solution of the second order
differential equation
2y () + ty () + (¢ — )y (t) = 0, (244)
which is brought into the standard form
A —1/4
w0+ (1- 250 ) v -0 (245)
via the transformation

v(t) = Ve y(t). (246)

An inspection of (245) reveals that J, is nonoscillatory on the interval

(0, ;m> (247)

and oscillatory on the interval

(;m, oo> | (248)

In addition to being a solution of a second order differential equation, the Bessel function of the first

kind of order v satisfies the three-term recurrence relation
2v

Jy41(t) = TJV(t) — Ju—1(t). (249)
The recurrence (249) is numerically unstable in the forward direction; however, when evaluated in the
direction of decreasing index, it yields a stable mechanism for evaluating Bessel functions of integer

order (see, for instance, Chapter 3 of [21]). These and many other properties of Bessel functions are
discussed in [26].

For each of 8 values of n, we obtained an approximation of the Bessel function J,, via the algorithm
of Section 4 and compared its values to those obtained through the recurrence relation at a collection
of 1000 randomly chosen points in the interval [%\/ 4n? — 1,10n]. The results of this experiment are
shown in Table 2. The phase function produced by the algorithm of Section 4 when n = 10 is shown
in Figure 4.
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5.4. FEwvaluation of Legendre functions

We used the algorithm of this paper to evaluate Legendre functions of the first kind of various orders
on the interval [—1,1].

For each real number v, we denote by P, the Legendre function of the first kind of order v. It is the
solution of Legendre’s equation
(1—t2)y"(t) —2ty/(t) +v(v + Dy(t) =0 forall —1<t<1 (250)
which is regular at the origin. Letting
P(t) = V112 y(t) (251)
in Equation (250) yields
1 v V2

w”(t)+<(1t2)2+1t2+(1t2)2>¢(t)=0 forall —1<t<1, (252)

which is in a suitable form for the algorithm of Section 4.

We observe that the coefficient in equation (252) is singular at +1, which means that phase functions
for Legendre’s equation are singular at +1 as well. Accordingly, in this experiment we used as input to
the algorithm of Section 4 a partition of the form

< <...<&1<fH<& <. 1<k (253)
where k = 50 and §; is defined by the formula
g=1- 9=l (254)

The set {¢;} is a “graded mesh” whose points cluster near the singularities +1 of the coefficient in
(252). Note that (253) is not a partition of the entire interval [—1, 1] but rather a partition of [—b, b],
where

b=1-27, (255)

6'" order Chebyshev expansions on each of the intervals [£;,&;11].

Functions were represented using 1

For each of 11 values of v, the algorithm of this paper was applied to Equation (252) and the solution
evaluated at a collection of 1000 randomly chosen points on the interval [—1,1]. In order to assess the
the error in each obtained solution, we constructed a reference solutions by performing the calculations
a second time using extended precision (Fortran REAL*16) arithmetic. The results are reported in
Table 3. Each row corresponds to one value of v and reports the time required to construct the
nonoscillatory phase functions, the average time required to evaluate the Legendre function of the first
kind of order v using this nonoscillatory phase function, and the maximum observed absolute error.
Figure 5 depicts the solution of the logarithm form of Kummer’s equation obtained by the algorithm
of this paper when v = 7 - 10°.

5.5. Fwaluation of prolate spheroidal wave functions

We used the algorithm of Section 4 to evaluate prolate spheroidal wave functions of order 0 and we
compared its performance with that of the Osipov-Rokhlin algorithm [22].
Suppose that ¢ > 0 is a real number. Then there exists a sequence
0 < Xeo < Xet < Xe2 <0 (256)
of positive real numbers such for each nonnegative integer n, the second order differential equation
(1= #)9" (1) = 269 (1) + (Xen — E2)p(t) = 0 (257)
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has a continuous solution on the interval [—1,1]. These solutions are the prolate spheroidial wave
functions of order 0 associated with the parameter c. We denote them by

Yeo(t), Ve, (L), Yep(t),. ... (258)

The monograph [23] contains a detailed discussion of the prolate spheroidal wave functions of order 0.
By introducing the function

p(t) =y()V1 -t (259)

into (257), we bring it into the form

1 X
"(t S — Pt ) p(t) = 0. 260
0+ (G 2 - ) (0 (260)
An inspection of (260) reveals that the coefficient in (260) is nonnegative on the interval [—1,1] when
Xn = ¢,

For several values of ¢ and x, . > c?, we evaluated the prolate spheroidial wave function Yen at a
collection of 100 randomly chosen points in the interval [—1, 1] by applying the algorithm of Section 4
to (260) and via the Osipov-Rokhlin algorithm. Table 4 presents the results and Figure 6 shows a plot
of a(t) — ct, where ¢ = 105, n = 63769, x.n = 1.00060408908491 x 10'* and « is the nonoscillatory
phase function for Equation (260) produced by the algorithm of Section 4.
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Figure 1: The function g defined by formula (238) in Section 5.1 (left) and the windowed version ¢ of ¢ (right).
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Figure 2: Plots of the solution r of the logarithm form of Kummer’s equation associated with the ordinary differential
equation (237) in Section 5.1 when A = 107 (left) and the function r1 constructed as an intermediate step by the algorithm

of Section 4 (right).

Table 1: The accuracy and running time of the algorithm of this paper when applied to the initial value problem (237) of

Section 5.1.
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Phase function  Avg. phase function = Maximum
construction time evaluation time error

10 7.25 x 10702 1.55 x 1076 6.93 x 10~ 14
102 9.17 x 10702 1.58 x 107 5.39 x 10713
103 6.74 x 10702 1.55 x 1079 3.01 x 10712
104 6.73 x 10702 1.55 x 1079 4.82 x 1071
10° 6.72 x 10702 1.59 x 1079 3.23 x 10710
106 6.66 x 10792 1.64 x 1079 5.15 x 1079
107 8.60 x 10792 1.61 x 10796 3.64 x 10798

31



0. i
=2 e |
o I * - ]
© — 4 o o
3 ", |
S -6 ’ ]
(= i o.°.o ]
o _3 i '...-“ 1
s —-10/ T |
LE — 12" ’_v..

- 14 :‘ .......“.’.....“.m.o...
0 200 400 600 800 1000
A

Figure 3: A plot of the base-10 logarithm of the relative difference between phase function obtained by applying the
algorithm of this paper to Chebyshev’s equation (241) and the well-known nonoscillatory phase function Aarccos(t) for
Chebyshev’s equation.

Phase function  Avg. phase function Avg. recurrence Maximum
construction time evaluation time evaluation time error

101 1.70x10792 secs 2.24x10797 secs 1.40x1079% secs  1.58x 10714
102 2.27x10792 secs 2.06x1077 secs 6.17x107% secs 1.75x10714
102 1.62x107%% secs 2.23x107% secs  4.60x107% secs 4.62x1071*
10*  1.65x10792 secs 2.24x107% secs  4.29x107% secs  3.52x 10713
105 1.62x10792 secs 2.29%x10797 secs 4.12x107% secs 4.70x10713
105 1.66x10792 secs 2.65x10797 secs 4.20x107% secs  1.66x10712
107 2.94x10792 secs 2.69%x10797 secs 4.22x107% secs  3.88x107 11
108 6.42x1079 secs 6.39%x107°7 secs 4.33x10%% secs  3.91x107!1

Table 2: A comparison of the time required to evaluate the Bessel function J,, using the standard recurrence relation with
that required to evaluate it using a nonoscillatory phase function. The recurrence relation approach scales as O(n) in the
order n while the time required by the phase function method is O(1).
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Table 3: The results obtained by applying the algorithm of Section 4 to Legendre’s differential equation (250). We observe
that the running time is independent of v, but that some accuracy is lost when evaluating Legendre functions of large

orders.
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Figure 4: A plot of the nonoscillatory phase function for Bessel’s equation (244) when n = 10
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Phase function  Avg. phase function Maximum
construction time evaluation time error

- 10% 2.92x10793 gecs 3.13x10797 secs 1.32x10713
7-10°  2.60x1079 secs 3.84%x107%7 secs  3.24x10713
7-10%  2.46x1079 secs 4.63x107%7 secs 1.09%x 10712
7-107  2.97x1079 secs 3.67x107% secs  3.21x10712
w108 2.53%x 1079 secs 3.61x10797 secs 1.35x10~11
V2-10*  5.61x1079 secs 3.20x 10797 secs 7.22x10713
V2105 5.43x1079 secs 3.54x10797 secs 3.32x1012
V2108 2.49x1079 secs 4.26x107°7 secs 1.13x10712
V2107 2.61x1079 secs 3.84x107% secs  2.79x10712
V2108 5.43x1079 secs 3.67x107% secs  8.65x10712
V2107 4.94x1079 secs 3.95x107% secs  2.85x107 1!
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Figure 5: A plot of the nonoscillatory solution of the logarithm form of Kummer’s equation associated with Legendre’s
differential equation (250) when v = - 10°. This function has singularities at the points +1 and is represented using a
graded mesh which becomes dense near them.
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Figure 6: A plot of the function «(t) —ct, where « is nonoscillatory phase function associated with equation (260), ¢ = 10,
n = 63769 , and xn,. = 1.00060408908491 x 10*°.
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