
A frequency-independent solver for systems of linear ordinary

differential equations

Tony Hua, James Bremera,∗

aDepartment of Mathematics, University of Toronto

Abstract

When a system of first order linear ordinary differential equations has eigenvalues of large
magnitude, its solutions generally exhibit complicated behaviour, such as high-frequency
oscillations, rapid growth or rapid decay. The cost of representing such solutions using
standard techniques grows with the magnitudes of the eigenvalues. As a consequence, the
running times of standard solvers for ordinary differential equations also grow with the
size of these eigenvalues. The solutions of scalar equations with slowly-varying coefficients,
however, can be represented via slowly-varying phase functions at a cost which is bounded
independent of the magnitudes of the eigenvalues of the corresponding coefficient matrix.
Here we couple an existing solver for scalar equations which exploits this observation with
a well-known technique for transforming a system of linear ordinary differential equations
into scalar form. The result is a method for solving a large class of systems of linear
ordinary differential equations in time independent of the magnitudes of the eigenvalues of
their coefficient matrices. We discuss the results of numerical experiments demonstrating
the properties of our algorithm.

Keywords: fast algorithms, ordinary differential equations

1. Introduction

A system of n first-order linear ordinary differential equations in n unknowns

y′(t) = A(t)y(t), (1)

where A : [a, b] → Cn×n is a smooth matrix-valued function, is said to be nondegenerate on
[a, b] provided A(t) admits n distinct eigenvalues λ1(t), . . . , λn(t) for each t in (a, b). The
complexity of the solutions of such a system generally increases with the magnitudes of
the λ1(t), . . . , λn(t). This can be readily seen from standard results in asymptotic analysis.
The simplest case is when all of the eigenvalues are of large magnitude throughout [a, b]. In
this event, it is convenient to write A(t) = ωA0(t), where ω is chosen so that the uniform

∗Corresponding author
Email address: bremer@math.toronto.edu (James Bremer)

norms of the eigenvalues µ1(t), . . . , µn(t) of A0(t) over the interval]a, b] are bounded
independent of ω. Then, it is well known that there exists a fundamental solution Ψ(t) of
(1) such that, for all t ∈ [a, b],

∥Ψ(t)−Ψ0(t)∥ = ∥Ψ0(t)∥O
(
1

ω

)
as ω → ∞, (2)

where ∥ · ∥ is any matrix norm on Cn×n and Ψ0(t) is of the form

Ψ0(t) = Y (t) exp

ω
∫ t

0
µ1(s) ds

ω
∫ t

0
µ2(s) ds

. . .

ω
∫ t

0
µn(s) ds

 . (3)

Each of the functions

fj(t) = exp

(
ω

∫ t

0

µj(s) ds

)
(4)

is rapidly-varying in the sense that its derivatives increase quickly with ω. Indeed, for
every j = 1, . . . , n, positive integer i and t ∈ [a, b], we have∣∣∣∣∣f

(i)
j (t)

fj(t)

∣∣∣∣∣ = O
(
ωi
)
as ω → ∞. (5)

Among other things, this implies that the cost to represent each fj to a fixed accuracy
using a polynomial expansion grows linearly with ω. It then follows from (3) and (4) that
every solution of (1) is rapidly varying in this sense as well. Because almost all standard
ODE solvers use polynomial expansions of the solutions either implicitly or explicitly,
this means that the running times of standard ODE solvers also increase linearly with ω
when applied to (1). Similar results can be established in the case in which only certain
eigenvalues ofA(t) are of large magnitude, although, of course, in such cases some solutions
of (1) are rapidly varying while others are not. We refer the reader to Chapter 7 of [22]
for a discussion of methods for the asymptotic approximation of solutions of systems of
linear ordinary differential equations that includes a proof of the estimate (2).

Fortunately, a large class of scalar ordinary differential equations of the form

y(n)(t) + qn−1(t)y
(n−1)(t) + · · ·+ q1(t)y

′(t) + q0(t)y(t) = 0 (6)

admit phase functions whose complexity depends on that of the coefficients q0, . . . , qn−1

but not the magnitudes of the eigenvalues λ1(t), . . . , λn(t) of the corresponding coefficient

2

matrix

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−q0(t) −q1(t) −q2(t) · · · −qn−2(t) −qn−1(t)

. (7)

Indeed, if the q0, . . . , qn−1 are smooth and slowly varying on an interval I, and λ1(t), . . . , λn(t)
are distinct for all t in I, then it is possible to find smooth, slowly-varying functions
ψ1, . . . , ψn : I → C such that

uj(t) = exp (ψj(t)) , j = 1, . . . , n, (8)

constitute a basis in the space of solutions of (6) given on the interval I. That slowly-
varying phase functions exist under mild conditions on the coefficient qj, at least in an
asymptotic sense, has long been known. In fact, this observation underlies the WKB
method and almost all other techniques for the asymptotic approximation of solutions of
ordinary differential equations in the high-frequency regime (see, for instance, [16], [22]
and [21, 19, 20]). A careful proof of the existence of slowly-varying phase functions for
second order differential equations, which can be extended to higher order scalar equations,
is given in [7].

Here, we couple the algorithm of [1] with a standard technique for reducing systems of lin-
ear ordinary differential equations to scalar form. The result is a solver for a large class of
linear systems of differential equations which runs in time independent of the magnitudes
of the eigenvalues of (1). We refer to our method as a “frequency-independent” solver
because, in most cases of interest, it is the imaginary parts of the eigenvalues of (1) which
are of large magnitude. Indeed, when the coefficient matrix A(t) has eigenvalues whose
real parts are large, some of the vector-valued solutions of (1) have components which
behave like combinations of rapidly increasing or decreasing exponential functions and
most initial and boundary value problems for (1) are numerically intractable. We discuss
this issue in more detail in Section 4 of this paper. It is clear from (5) that the condition
number of evaluation of the fj increases with the the magnitudes of the eigenvalues of the
coefficient matrix A(t) (see, for instance, Chapter 1 of [9] for a definition of the condition
number of evaluation of a function). It follows from this and the asymptotic estimate
(2) that the solutions of (1) will have the same property. As a consequence, we expect
the accuracy of any numerical solver to decrease as the eigenvalues of A(t) increase in
magnitude, whether those eigenvalues have large real parts or not. Our algorithm is no
exception, and the accuracy with which it computes the solutions of (1) decreases as the
magnitudes of the eigenvalues of the coefficient matrix increase.

As in [5], we focus here on the case in which the system is nondegenerate on the interior

3

of the domain [a, b] of the differential equation. However, our algorithm can easily be
extended to systems which are nondegenerate on an interval [a, b] except at a finite number
of turning points by applying it repeatedly, on a collection of subintervals of [a, b] as in
[6]. Moreover, by combining our algorithm with an appropriate Levin method such as
[13], inhomogenous equations of the form

y′(t) = A(t)y(t) + f(t) (9)

can be treated efficiently. This topic is beyond the scope of the present article, but we
refer the interested reader to [18] in which a similar approach is used to efficiently solve
inhomogeneous second order linear ordinary differential equations of the form

y′′(t) + q(t)y(t) = f(t), a < t < b, (10)

in the event that the coefficient q is of large magnitude.

There is, though, one significant difficulty with our method. The transformation matrices
we form to convert the system (1) to the scalar form (7) can be ill-conditioned. By the
condition number of a matrix-valued function B(t) : [a, b] → Cn×n, we mean the quantity

sup
a≤t≤b

∥B(t)∥∥B−1(t)∥, (11)

where, for the sake of concreteness, we choose ∥ · ∥ to be the Frobenius norm defined for
a matrix C in Cn×n with entries Cij via formula

∥C∥ =

√√√√ n∑
i,j=1

|Cij|2. (12)

The condition numbers of the transformation matrices we form tend to increase with the
dimension of the system under consideration. As a consequence, the obtainable accuracy
of our method generally decreases as the dimension of the system increases. In the case
of systems of two and three dimensions, this effect appears to be quite mild. In our
experiments, we were able to achieve between 8 and 12 digits of when solving such systems
(where, as expected, the accuracy decreased as the magnitude of the eigenvalues of A(t)
grew). However, for a larger system of four equations, the accuracy of our method varied
between 5 and 9 digits. We expect this effect to become more pronounced for systems of
five or more equations, and this substantially limits the applicability of our method.

Despite the challenge of constructing well-conditioned transformations which convert a
system to scalar form, the algorithm of this paper applies to a large class of systems of
linear ordinary differential equations of modest orders and our method appears to be the
first high-accuracy solver for such problems which runs in time independent of frequency.
We view this work as a step toward developing robust frequency-independent solvers for
systems of ordinary differential equations, and we discuss several obvious directions for
further development in the final section of this paper.

Because the cost of standard solvers becomes prohibitive when the eigenvalues of (1)
are large, many specialized techniques have been developed for solving systems of linear

4

ordinary differential equations in this regime. At the present time, the most widely-used
such methods are based on Magnus expansions. Introduced in [15], Magnus expansions
are certain series of the form

∞∑
k=1

Ωk(t) (13)

such that exp (
∑∞

k=1Ωk(t)) locally represents a fundamental matrix for the system of
differential equations (1). The first few terms for the series around t = 0 are given by

Ω1(t) =

∫ t

0

A(s) ds,

Ω2(t) =
1

2

∫ t

0

∫ t1

0

[A(t1), A(t2)] dt2dt1 and

Ω3(t) =
1

6

∫ t

0

∫ t1

0

∫ t2

0

[A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]] dt3dt2dt1,

(14)

where [A,B] denotes the matrix commutator AB−BA. The straightforward evaluation of
the Ωj is nightmarishly expensive; however, a clever technique which renders the calcula-
tions manageable is introduced in [11] and it paved the way for the development of a class
of numerical solvers which represent a fundamental matrix for (1) over an interval I via a
collection of truncated Magnus expansions. While the entries of the Ωj are slowly-varying
whenever the entries of A(t) are slowly-varying, the radius of convergence of the series in
(13) depends on the magnitude of the coefficient matrix A(t), which is, in turn, related
to the magnitudes of the eigenvalues of A(t). Of course, this means that the number of
Magnus expansions which are needed, and hence the cost of the method, depends on the
magnitudes of the eigenvalues of A(t). See, for instance, [10], which gives for estimates of
the growth in the running time of Magnus expansion methods in the case of an equation
of the form (16) as a function of the magnitude of the coefficient q.

It is only relatively recently that numerical algorithms which exploit the existence of
slowly-varying phase functions have appeared. The algorithm of [5] uses a continuation
scheme of sorts to construct slowly-varying ψ1 and ψ2 such that

exp(ψ1(t)) and exp (ψ2(t)) (15)

form a basis in the space of solutions of a second order differential equation of the form

y′′(t) + q(t)y(t) = 0, a ≤ t ≤ b, (16)

where q is a slowly-varying real-valued function which does not change sign on the interval
(a, b). The running time of this algorithm is independent of the size of the eigenvalues of
the system corresponding to (16), which are given by

λ1(t) =
√

−q(t) and λ2(t) = −
√
−q(t). (17)

The condition that q does not change sign implies that (16) is nondegenerate on (a, b) and
it is imposed because slowly-varying phase function need not extend across turning points

5

where the eigenvalues of coefficient matrix coalesce. The method of [5] can, however, be
generalized to the case in which (16) is nondegenerate on [a, b] except at a finite number
of turning points. Indeed, if a = ξ1 < ξ2 < . . . < ξk = b is a partition of [a, b] such
that ξ2, . . . , ξk−1 are the roots of q in the open interval (a, b), then simply applying the
method of [5] to each of the subintervals [ξj, ξj+1], j = 1, . . . , k−1, results in a collection of
2(k−1) slowly-varying phase functions which efficiently represent the solutions of (16). A
detailed discussion of this approach, including an account of many numerical experiments
performed to demonstrate its efficacy, can be found in [6].

The continuation method of [5] readily extends to the case of higher order scalar equations
with slowly-varying coefficients. However, the authors have found that a strongly related
algorithm introduced in [1] performs slightly better in practice. When applied to an
equation of the form (6) with slowly-varying coefficients, the method of [1] produces a
collection ψ1, . . . , ψn of slowly-varying phase functions such that the functions (8) comprsie
basis in the space of solutions of (6). The running time of this algorithm is largely
independent of the magnitude of the eigenvalues of the corresponding coefficient matrix
(7).

The remainder of this article is structured as follows. In Section 2, we discuss the reduction
of systems of linear ordinary differential equations to scalar form. Section 3 reviews the
algorithm of [1] for the construction of slowly-varying phase function which represent the
solutions of scalar equations. In Section 4, we detail the algorithm of this paper. Section 5
discusses the results of numerical experiments conducted to demonstrate the properties
of our algorithm. We close with a few brief remarks in Section 6.

2. Reduction of a system of ordinary differential equations to a scalar equation

It is well known that essentially any system of n linear ordinary differential equations in n
unknowns can be transformed into an nth order scalar equation. This is a standard result
in differential Galois theory (see, for instance, [8] or [17]) which goes back at least to [14].
In this section, we discuss the well-known mechanism our algorithm uses for constructing
such a transformation.

We first observe that if I is an open subinterval of R and Φ: I → C is invertible for all
t ∈ I, then letting

z(t) = Φ(t)y(t) (18)

transforms the system

y′(t) = A(t)y(t) (19)

into

z′(t) = B(t)z(t), (20)

where

B(t) = Φ′(t)Φ(t)−1 + Φ(t)A(t)Φ(t)−1. (21)

6

Our goal is to construct Φ(t) in such a way that (21) is of the scalar form (7). Trans-
formations of this type correspond to cyclic vectors for the transpose of A(t), which are
smooth maps v : I → Cn such that the matrix

Φ(t) =

v(t)

D [v] (t)

D2 [v] (t)
...

Dn−1 [v] (t)

, (22)

where D is the operator defined via

D [v] (t) = v′(t) + (A(t))Tv(t), (23)

is invertible for all t ∈ I. Indeed, it is easy to see that when Φ(t) is of the form (22), the
matrix

Φ′(t) + Φ(t)A(t) (24)

is given by
D [v] (t)

D2 [v] (t)
...

Dn [v] (t)

 , (25)

so that B(t) is of the scalar form (7).

Because the set of cyclic vectors is dense in a certain sense, it is easy to find them. Indeed,
one of the standard mechanism used by computer algebra systems to convert systems of
differential equations to scalar form entails simply choosing random polynomial vector
fields v(t) until a cyclic vector is found. We refer the reader to [8] and its references for
details.

The approach we use to find cyclic vectors is similar. Our algorithm takes as input a
constant vector v which generates the transformation Φ(t) via (22). The user is expected
to make arbitrary choices of this vector until one produces a suitable transformation
matrix. It is important to note that it is not sufficient for Φ(t) to be merely invertible, as
it is in symbolic computations. The condition number of the transformation matrix affects
the obtainable accuracy of the algorithm, and so various choices of v must be made until
a relatively well-conditioned transformation is found. As mentioned in the introduction,
it is increasingly difficult to find a suitable transformation matrix as the dimension of the
system under consideration grows.

Many other mechanisms for converting systems of differential equations to scalar form have

7

been proposed. For instance, [4] discusses a procedure of this type which is analogous
to Gaussian elimination. It applies a sequence of “elementary operations” (which are
somewhat more complicated than those used in Gaussian elimination) to incrementally
convert the coefficient matrix into the desired form. A partially pivoted version of this
algorithm aimed at producing a numerically well-conditioned transformation matrix could
almost certainly be developed. Moreover, it is clear that various well-known optimization
algorithms could be adapted to the problem of finding well-conditioned transformation
matrices.

In the algorithm we present here, we use the simplest possible approach — repeatedly
make arbitrary choices until a reasonable outcome is obtained — and we leave investiga-
tions into improved methods for future work.

3. Phase functions for scalar equations

In this section, we discuss the construction of slowly-varying phase functions for scalar
equations of the form (6) with slowly-varying coefficients. One obvious method entails
solving the nonlinear (n− 1)st order scalar equation satisfied by the derivatives r1, . . . , rn
of the phase functions ψ1, . . . , ψn which is obtained by inserting the representation

y(t) = exp

(∫
r(t) dt

)
(26)

into (6). By a slight abuse of terminology, we call this nonlinear equation the (n − 1)st

order Riccati equation, or the Riccati equation corresponding to (6). The general form of
this equation is quite complicated, but it is relatively simple at low orders. When n = 2,
the equation is

r′(t) + (r(t))2 + q1(t)r(t) + q0(t) = 0; (27)

when n = 3, it is

r′′(t) + 3r′(t)r(t) + (r(t))3 + q2(t)r
′(t) + q2(t)(r(t))

2 + q1(t)r(t) + q0(t) = 0; (28)

and, for n = 4, the equation is

r′′′(t) + 4r′′(t)r(t) + 3(r′(t))2 + 6r′(t)(r(t))2 + (r(t))4 + q3(t)(r(t))
3 + q3(t)r

′′(t)

+ 3q3(t)r
′(t)r(t) + q2(t)(r(t))

2 + q2(t)r
′(t) + q1(t)r(t) + q0(t) = 0.

(29)

Because most solutions of Riccati equation corresponding to (6) are rapidly varying when
the eigenvalues λ1(t), . . . , λn(t) of (7) are of large magnitude, some mechanism is needed to
select slowly-varying solutions. The algorithm of [5], which applies to second order linear
ordinary differential equations of the form (16) with slowly-varying coefficients, uses a
continuation scheme of sorts to do so. More explicitly, it introduces a smoothly deformed
version of the coefficient q̃ which equal to an appropriately chosen constant λ2 on a small
interval [a0, b0] in [a, b] and agrees with q outside of a neighbourhood of U of [a0, b0]. The
values of two slowly-varying solutions r̃1 and r̃2 of the Riccati equation corresponding to

8

the deformed version

y′′(t) + q̃(t)y(t) = 0, a < t < b, (30)

of (16) are known at c; indeed, we can take r̃1(c) = iλ and r̃2(c) = −iλ. Solving the
Riccati equation corresponding to (30) using these as initial values allows us to compute
the values of the derivatives of two slowly-varying phase functions r1 and r2 for the original
(16) outside the neighborhood U of [a0, b0]. We can then solve the Riccati equation for the
original equation to find the values of r1 and r2 inside U . This technique could be easily
generalized to the case of higher order scalar equations, but the authors have found the
approach of [1], which is inspired by the classical Levin scheme for numerical evaluation
of oscillatory integrals, to be somewhat more effective.

Introduced in [12], the Levin method is based on the observation that inhomogeneous
equations of the form

y′(t) + p0(t)y(t) = f(t) (31)

admit solutions whose complexity depends on that of p0 and f , but not on the magnitude
of p0. This principle extends to the case of inhomogeneous equations of the form

y(n)(t) + pn−1(t)y
(n−1)(t) + · · ·+ p1(t)y

′(y) + p0(t)y(t) = f(t). (32)

That is, such equations admit solutions whose complexity depends on that of the right-
hand side f and of the coefficients p0, . . . , pn−1, but not on the magnitudes of the coeffi-
cients p0, . . . , pn−1. This is exploited in [1] by applying Newton’s method to the Riccati
equation for (6). Starting the Newton iterations with a slowly-varying initial guess en-
sures that each of linearized equations have slowly-varying coefficients, and so admit
slowly-varying solutions. Consequently, a slowly-varying solution of the Riccati equation
can be constructed via Newton’s method as long as an appropriate initial guess is known.
Conveniently enough, there is an obvious mechanism for generating n slowly-varying ini-
tial guesses for the solution of the (n − 1)st order Riccati equation. In particular, the
eigenvalues λ1(t), . . . , λn(t) of the coefficient matrix (7), which are often used as approxi-
mations of solutions of the Riccati equation in asymptotic methods, are suitable for this
purpose. A similar methodology is used in [7] in order to develop estimates on the com-
plexity of the slowly-varying phase functions for second order equations of the form (16)
in terms of a measure of the complexity of the coefficient q.

Complicating matters is the fact that the differential operator

D [y] (t) = y(n)(t) + pn−1(t)y
(n−1)(t) + · · ·+ p1(t)y

′(y) + p0(t)y(t) (33)

appearing on the left-hand side of (32) admits a nontrivial nullspace comprising all solu-
tions of the homogeneous equation

y(n)(t) + pn−1(t)y
(n−1)(t) + · · ·+ p1(t)y

′(y) + p0(t)y(t) = 0. (34)

This means, of course, that (32) is not uniquely solvable. But it also implies that most
solutions of (32) are rapidly-varying when the coefficients p0, . . . , pn−1 are of large magni-
tude since the homogeneous equation (34) admits rapidly-varying solutions in such cases.

9

It is observed in [12] that when the solutions of (34) are all rapidly-varying but (32) ad-
mits a slowly-varying solution y0, a simple spectral collocation method can be used to
compute y0 provided some care is taken in choosing the discretization grid. In particular,
if the collocation grid is sufficient to resolve the slowly-varying solution y0, but not the
solutions of (34), then the matrix discretizing (33) will be well-conditioned and inverting
it yields y0.

The article [1] describes an algorithm for constructing slowly-varying phase functions
for scalar linear ordinary differential equations based on these principles. It operates
in a manner very similar to the algorithm of [5] in that it first computes the values of
the derivatives r1, r2, . . . , rn of the desired slowly-varying phase functions ψ1, . . . , ψn at a
point c, and then solves the Riccati equation numerically with those values used as initial
conditions in order to construct r1, r2, . . . , rn over the whole interval [a, b]. Rather than
the continuation method of [5], however, the values of the r1, r2, . . . , rn at c are computed
by applying the Levin approach to a single small subinterval of [a, b] containing c. The
Riccati equation is then solved to calculate r1, . . . , rn over the whole interval, and these
are integrated to obtain the phase functions ψ1, . . . , ψn. Because most solutions of the
Riccati equation are rapidly-varying and we are searching for one of a small number of
slowly-varying solutions, the ordinary differential equations being solved are extremely
stiff. We use a fairly standard adaptive Chebyshev method designed for stiff problems.
It is described in detail in [1], but we note that essentially any solver designed to handle
stiff ordinary differential equations should suffice.

The algorithm of [1] takes as input:

1. the interval [a, b] over which the equation is given;

2. an external subroutine for evaluating the coefficients q0, . . . , qn−1 in (6);

3. a point η on the interval [a, b] and the desired values ψ1(η), . . . , ψn(η) for the phase
functions at that point;

4. a positive integer k which controls the order of the piecewise Chebyshev expansions
used to represent phase functions;

5. a parameter ϵ which specifies the desired accuracy for the phase functions; and

6. a subinterval [a0, b0] of [a, b] over which the Levin procedure is to be applied and a
point σ in that interval.

It outputs a collection of n2 piecewise Chebyshev expansions of order (k − 1) represent-
ing the desired slowly-varying phase functions ψ1, . . . , ψn and their derivatives of orders
through (n − 1). By a (k − 1)st order piecewise Chebyshev expansions on the interval
[a, b], we mean a sum of the form

m−1∑
i=1

χ[xi−1,xi)(t)
k−1∑
j=0

λij Tj

(
2

xi − xi−1

t+
xi + xi−1

xi − xi−1

)

+χ[xm−1,xm](t)
k−1∑
j=0

λmj Tj

(
2

xm − xm−1

t+
xm + xm−1

xm − xm−1

)
,

(35)

10

where a = x0 < x1 < · · · < xm = b is a partition of [a, b], χI is the characteristic function
on the interval I and Tj is the Chebyshev polynomial of degree j. The characteristic
function of a half-open interval appears in the first line of (35), while the second line
conains the characteristic function of a closed interval. This ensures that exactly one of
the characteristic appearing functions in (35) is nonzero for each point t in [a, b].

The algorithm of [1] uses the same partition of the interval [a, b] for all of the piecewise
Chebyshev expansions it outputs. In most cases, this increases the cost of storing the
functions ψj and their derivatives somewhat, but it has the advantage of reducing the
time required to simultaneously evaluate the ψ1, . . . , ψn and all of their derivatives at
a specified point t. That is because the cost of finding the subinterval containing t is
actually much larger than the cost to evaluate a Chebyshev expansion of modest order
on current computers.

Our choice to use piecewise Chebyshev expansions to represent the phase functions ψj is
largely arbitrary. Many different families of Sturm-Liouville eigenfunctions, such as the
Legendre polynomials or the prolate spheroidal wave functions of order 0, would serve just
as well. One minor advantage of using Chebyshev expansions is that explicit formulas are
available for the entries of various spectral differential and integration matrices used by
the algorithm of [1], whereas these matrices must be computed via numerical procedures
when bases other the Chebyshev polynomials are used.

We note that the matrix

Θ(t) =

u1(t) u2(t) · · · un(t)

u′1(t) u′2(t) · · · u′n(t)
...

...
. . .

...

u
(n−1)
1 (t) u

(n−1)
2 (t) · · · u(n−1)

n (t)

 , (36)

where the uj(t) are given by (8), is a fundamental matrix for the system (20) with B(t)
taken to be the coefficient matrix (7) associated with the scalar equation. In other words,
the columns of Θ(t) constitute a basis in the space of solutions of the system (20).

4. Numerical Algorithm

Here, we describe our numerical algorithm for solving initial and boundary value problems
for a system of linear ordinary differential equations of the form (1) over an interval
[a, b] under the assumption that the eigenvalues λ1(t), . . . , λn(t) of the system’s coefficient
matrix A(t) are distinct on (a, b). Our algorithm can easily be extended to the case in
which the equation is nondegenerate except at a finite set of turning points in [a, b] by
applying it to a collection of subintervals of [a, b].

Our scheme takes as input the following:

1. A positive integer n specifying the dimension of the system;

2. the interval [a, b] over which the problem is given;

11

3. a positive integer k which controls the order of the piecewise Chebyshev expansions
used to represent functions on [a, b];

4. a subroutine for evaluating the elements aij(t) of the matrix A(t) and all of their
derivatives of orders up to n at a specified point t;

5. a parameter ϵdisc specifying the desired precision for discretizations used to represent
the inverse transformation matrix Φ(t)−1 and the coefficients q0(t), . . . , qn−1(t) of the
scalar equation;

6. a parameter ϵphase specifying the desired precision for the phase functions represent-
ing the solutions of the scalar equation;

7. a subinterval [a0, b0] of [a, b] over which the Levin procedure used in the construction
of the slowly-varying phase functions for the scalar equation is performed; and

8. a constant vector v ∈ Cn.

We note that while our algorithm requires as input a subroutine for evaluating the deriva-
tives of the entries of the coefficient matrix A(t) of orders up to n, it is possible for the
user-supplied routine to compute these derivatives numerically given only the values of
the coefficient matrix A(t).

The output of our algorithm consists of two collections of piecewise Chebyshev expansions.
The first collection consists of n2 piecewise Chebyshev expansions of order (k−1), each of
which represents one entry of the inverse Φ(t)−1 of the transformation matrix Φ(t) defined
via (22) with v the vector supplied by the user. The second collection of expansions
comprises n2 piecewise Chebyshev expansions of order (k − 1) representing n slowly-
varying phase functions ψ1(t), ψ2(t), . . . , ψn(t) for the scalar equation (6) corresponding
to the coefficient matrix B(t) given by the formula (21), as well as the derivatives up to
order (n− 1) of these phase functions. The matrix (36), where the uj are given by (8), is
a fundamental matrix for the scalar system corresponding to (6), and

Ψ(t) = Φ(t)−1Θ(t) (37)

is a fundamental matrix for the original system (1). Our decision to use expansions in
Chebyshev polynomials to represent the entries of Φ(t)−1 and Θ(t) is largely arbitrary.
As with the algorithm [1], many other choices of orthonormal basis would serve just as
well.

It is important to note that we do not compute piecewise Chebyshev expansions repre-
senting the entries of the fundamental matrix Ψ(t). These are rapidly-varying functions
which would be extremely expensive to represent in such a fashion. Instead, we com-
pute peicewise Chebyshev expansions of the slowly-varying phase functions and of the
slowly-varying entries of the transformation matrix and use these representations to eval-
uate Ψ(t) as needed via the following procedure. First, we use the piecewise Chebyshev
expansions representing the phase functions ψ1, . . . , ψn and their derivatives to evaluate
them at the point t. We then use these values and the formula (8) to evalate the entries
of Θ(t). Next, we form the matrix Φ(t)−1 using the piecewise Chebyshev expansions of
its entries computed by our algorithm. Finally, we evaluate Ψ(t) by taking the product
of Φ(t)−1 and Θ(t). Although this sounds cumbersome, it is reasonably efficient because

12

of the speed with which Chebyshev expansions can be evaluated and the relatively small
dimensionality of the systems we consider.

Once the fundamental matrix (37) has been formed, a large class of initial and boundary
value problems for (1) can be readily solved. For instance, there is a unique solution of
(1) which satisfies the conditions

C1y(t1) + C2y(t2) = η, (38)

where t1 and t2 are points in [a, b], if and only if the matrix

Q = C1Ψ(t1) + C2Ψ(t2) (39)

is invertible and, in this event, it is given by y(t) = Ψ(t)Q−1η. As mentioned in the
introduction, when the coefficient matrix A(t) has one or more eigenvalues whose real parts
are of large magnitude, many initial and boundary value problems for (1) are numerically
intractable. This phenomenon is best illustrated with a simple example. We observe that

Ψ(t) =

 exp(t) exp(ωt)

0 exp(ωt)

 (40)

is a fundamental matrix for (1) when

A(t) =

ω (ω − 1)

0 1

 . (41)

The eigenvalues of A(t) are 1 and ω, and the unique solution of (38) which satisfies the

initial condition y(0) = (1 0)T is y(t) = Ψ(t)η, where η = (1 0)T . However, if η is

calculated numerically, then errors are inevitable and the obtained solution is of the form

Ψ(t)

 1 + ϵ1

ϵ2

 = (1 + ϵ1)

 exp(t)

0

+ ϵ2

 exp(ωt)

exp(ωt)

 , (42)

where ϵ1 and ϵ2 are small perturbations of the exact coefficients introduced by whatever
numerical procedure is used to approximate η. When ω is large and positive, (42) will
obviously deviate substantially from the exact solution of the initial value problem, even if
ϵ1 and ϵ2 are on the order of machine zero, which is the best that can be hoped for. When

ω is large and negative instead, we choose the initial condition to be y(0) = (1 1)T . In

this case the exact solution is Ψ(t)(0 1)T , while the obtained solution is of the form

Ψ(t)

 ϵ1

1 + ϵ2

 = ϵ1

 exp(t)

0

+ (1 + ϵ2)

 exp(ωt)

exp(ωt)

 . (43)

Clearly, the relative difference between the two will be extremely large even if ϵ1 and ϵ2
are on the order of machine zero. The fundamental issue is that different entries of the

13

matrix (40) grow at vastly different rates. Standard asymptotic estimates for solutions of
systems of ordinary differential equations, such as those in Chapter 7 of [22], show that
the same will generally be true when A(t) has eigenvalues whose have real parts are of
large magnitude.

The first step of our algorithm consists of adaptively discretizing Φ(t)−1 and the coeffi-
cients q0(t), . . . , qn−1(t) of the reduced scalar equation. To do so, our algorithm maintains
two lists of subintervals of [a, b]: one consisting of “accepted subintervals” and the other
of subintervals which have yet to be processed. A subinterval is accepted if the entries
of Φ(t)−1 and the functions q0(t), . . . , qn−1(t) are deemed to be adequately represented by
a (k − 1)st order Chebyshev expansion on that subinterval. Initially, the list of accepted
subintervals is empty and the list of subintervals to process contains the single interval
[a, b]. We then proceed as follows until the list of subintervals to process is empty:

1. Remove a subinterval [c, d] from the list of intervals to process.

2. Construct the k-point extremal Chebyshev grid t1, . . . , tk on the interval [c, d]. The
nodes are given by the formula

tj =
d− c

2
cos

(
π
k − j

k − 1

)
+
d+ c

2
. (44)

3. Evaluate Φ(t) at each of the nodes t1, . . . , tk.

4. For each j = 1, . . . , k, compute a singular value decomposition of the matrix Φ(tj)
and use it to form the inverse Φ(tj)

−1.

5. For each j = 1, . . . , k, use Formula (21) to compute the matrix B(tj).

6. Construct (k−1)st order Chebyshev expansions representing each entry of Φ(t) and
the functions q0(t), . . . , qn−1(t), appearing in the final row of B(t).

7. For each of the expansions formed in the previous step, which are of the form

k−1∑
j=0

αj Tj

(
2

d− c
t+

d+ c

d− c

)
, (45)

we compute the “goodness of fit” metric∑k
j=k−3 |αj|2∑k−1
j=0 |αj|2

. (46)

8. If every one of the goodness of fit metrics computed in the previous step is less than
ϵ2disc then we move the interval [c, d] into the list of accepted intervals. Otherwise,
we put the intervals [

c,
c+ d

2

]
, and

[
c+ d

2
, d

]
(47)

into the list of intervals to process.

Upon termination of this first step, we have piecewise Chebyshev expansions of order
(k − 1) representing Φ(t)−1 and the coefficients q0(t), . . . , qn−1(t) of the reduced scalar

14

equation. The same partition of [a, b] is used for each piecewise expansion and it is
determined by the list of accepted intervals. We note that the matrix Φ(t) depends on
the entries aij(t) of the coefficient matrix A(t) and their derivatives of orders up to (n−1),
while Φ′(t) depends on the aij(t) and their derivatives through order n.

In the second step of the algorithm, we use the method of [1], which is discussed in
Section 3 of this article, to construct piecewise Chebyshev expansions of order (k − 1)
representing slowly-varying phase functions ψ1(t), . . . , ψn(t) for the scalar equation (6)
and their derivatives of orders up to (n − 1). The precision parameter ϵphase is passed
to this algorithm, as is the integer k controlling the order of the Chebyshev expansions
used to represent function and the interval [a0, b0] over which the Levin procedure is to be
applied. For the sake of simplicity, we choose the constants of integration for the phase
functions via the requirements

ψ1(a) = ψ2(a) = · · · = ψn(a) = 0. (48)

The coefficients q0(t), . . . , qn−1(t) are evaluated using the piecewise Chebyshev expansions
formed in the first step of the procedure.

5. Numerical Experiments

In this section, we present the results of numerical experiments conducted to illustrate the
properties of the algorithms of this paper. The code for these experiments was written
in Fortran and compiled with version 13.1.1 of the GNU Fortran compiler. They were
performed on a desktop computer equipped with an AMD 9950X processor and 64GB of
memory. Although this processor has 16 cores, only one was utilized in our experiments.

The algorithm of [1], which we use as a component of the algorithm here, calls for comput-
ing the eigenvalues of companion matrices. Standard eigensolvers lose significant accuracy
when applied to many matrices of this type. Accordingly, we used the backward stable
and highly accurate method described in [3, 2] to perform these calculations.

In each of the experiments described below, we considered a system of linear ordinary
differential equations whose coefficient matrix depends on a parameter ω which controls
the magnitudes of the eigenvalues of the coefficient matrix for the problem. For each
ω = 28, 29, . . . , 220, we solved an initial or boundary value problem for the system over
the finite interval [−1, 1] using the method of this paper. The parameter k controlling the
order of Chebyshev expansions used by our algorithm was always taken to be 30, while the
parameters ϵdisc and ϵphase which specify the desired precision for the discretization of the
transformed system and for the solution of the scalar equation varied from experiment to
experiment. Likewise, different choices of the interval [a0, b0] on which the Levin procedure
was performed and the vector v used to generate the transformation matrix Φ were made
for each experiment.

The accuracy of each solution y obtained by our algorithm was measured by comparison
with a reference solution z computed using a standard solver. To be more explicit, the

15

error in each solution was measured via the quantity

max
1≤i≤m

∥y(ti)− z(ti)∥2
∥z(ti)∥2

, (49)

where m = 10, 000 and t1, . . . , tm are the equispaced points in the interval [−1, 1] given by
the formula ti = −1+ 2 (i− 1)/(m− 1). The time taken by our method was measured by
repeating the calculation 100 times and averaging the results. For each experiment, we
provide a figure containing four plots which report the following quantities, all of which
are functions of the parameter ω:

1. the time required by our method;
2. the maximum observed value of (49);
3. the number of m of subintervals in the piecewise discretization schemes used to

represent the phase functions and the number l of subintervals in the piecewise
discretization scheme used to the entries of the transformation matrix Φ(t)−1; and

4. an estimate of the condition number of the transformation matrix Φ(t)−1, as defined
via (11).

Because the same piecewise discretization scheme is used for all of the phase functions
and their derivatives, the total number of Chebyshev coefficients used to represent them
is simply kn2m. Likewise, the total number of Chebyshev coefficients used to represent
the transformation matrix Φ(t)−1 is kn2l. We estimated the condition numbers of each of
the transformation matrices Φ(t)−1 by calculating the quantity ∥Φ−1(t)∥∥Φ(t)∥ at 1, 000
equispaced nodes in [a, b] and selecting the maximum of the obtained values.

We note that, as discussed in the introduction, the condition number of evaluation of the
solutions of a system of the form (1) increases with magnitudes of the eigenvalues of A(t).
Accordingly, the accuracy of any numerical method will deteriorates as the magnitudes
of the eigenvalues of A(t) increase. Our algorithm is no exception, and we see this effect
clearly in the results of our experiments.

5.1. An initial value problem for a system of two equations
In our first experiment, we solved the system of differential equations (1), where

A(t)

 1 + t2 1
1+t4

−ω
1+t2

−iω(2+t)
5+t

 , (50)

over the interval [−1, 1] subject to the condition y(0) = (1 1)T . Various computer algebra

systems can express the eigenvalues λ1(t), λ2(t) of the coefficient matrix appearing in (50)
in terms of elementary functions; however, these formulas are too complicated to reproduce
here. To give a sense of the magnitudes of λ1(t), λ2(t), we note that

λ1(0) =
−2iω

5
− 5i

2
+O

(
1

ω

)
and

λ2(0) = 1 +
5i

2
+O

(
1

ω

)
.

(51)

16

28 211 214 217 220
0.0

0.5

1.0

1.5

2.0
Ti

m
e

(in
 m

illi
se

co
nd

s)

28 211 214 217 220
10 16

10 13

10 10

10 7

10 4

10 1

Re
la

tiv
e

ac
cu

ra
cy

28 211 214 217 220
0

1

2

3

4

5

Di
sc

re
tiz

at
io

n
su

bi
nt

er
va

ls Transformation

Phases

28 211 214 217 220
0

20

40

60

80

100

Co
nd

iti
on

 n
um

be
r

Figure 1: The results of the experiment of Subsection 5.1.

The Levin procedure was performed on the interval [−0.5, 0.0] and the accuracy param-
eters were taken to be ϵdisc = 1.0 × 10−12 and ϵphase = 1.0 × 10−12. The vector v which

generates the transformation matrix Φ was chosen to be v = (1 0)T .

The results of this experiment are reported in Figure 1. For every value ω considered,
480 Chebyshev coefficients were needed to represent the transformation matrix and phase
functions. There was surprisingly little variation in the time required by our method
given its complexity and the number of adaptive subprocedures it relies on. Indeed,
approximately 0.8 milliseconds were required for all values of ω considered. Finallly, we
note that, as ω increased from 28 to 220, the relative error increased in an almost linear
fashion from 1.42× 10−13 to 4.47× 10−10.

17

28 211 214 217 220
0

2

4

6

8

10
Ti

m
e

(in
 m

illi
se

co
nd

s)

28 211 214 217 220
10 16

10 13

10 10

10 7

10 4

10 1

Re
la

tiv
e

ac
cu

ra
cy

28 211 214 217 220
0

5

10

15

20

Di
sc

re
tiz

at
io

n
su

bi
nt

er
va

ls Transformation

Phases

28 211 214 217 220
100

102

104

106

108

1010

Co
nd

iti
on

 n
um

be
r

Figure 2: The results of the experiment of Subsection 5.2.

5.2. A boundary value problem for a system of two equations

In this experiment, we solved the system (1), where

A(t) =

 iω 2+sin2(6t)
1+t2

− ω
1+t2

i+ ω exp(t) iω exp(t)

 , (52)

over the interval [−1, 1] subject to the condition 1 0

0 0

y(−1) +

 0 0

1 0

y(1) =

 1

1

 . (53)

As with the experiment described in the preceding section, while explicit formulas for
λ1(t), λ2(t) are available, they are too complicated to reproduce here. However, the fol-

18

lowing formulas give a sense of their magnitudes:

λ1(0) =
3i

2
ω − i

2

√
ω(4i+ 5ω) ∼ i

2

(
3 +

√
5
)
ω − 1√

5
+O

(
1√
ω

)
and

λ2(0) =
3i

2
ω +

i

2

√
ω(4i+ 5ω) ∼ i

2

(
3−

√
5
)
ω +

1√
5
+O

(
1√
ω

)
.

(54)

The Levin procedure was performed on the interval [−0.5, 0.0] and we took the accuracy
parameters to be ϵdisc = 1.0×10−12 and ϵphase = 1.0×10−12. The vector v which generates

the transformation matrix Φ was v = (0 1)T . Figure 2 gives the results of this experiment.

For ω = 28, 1,920 Chebyshev coefficients were used to represent the phase functions and
transformation matrix, while 1,560 coefficients were needed when ω = 29. For all other
values of ω, 1,200 Chebyshev coefficients sufficed. It is unsurprising that the number
of coefficients decreased with ω, because the complexity of phase functions generally
decreases with increasing frequency. The time required by our algorithm was a bit higher
when ω = 28 and ω = 29, but, again, this is a consequence of the slightly higher complexity
of the phase functions for those values of ω. The obtained relative error in the solutions
increased from approximately 2.305 × 10−12 when ω = 28 to around 2.284 × 10−9 when
ω = 220.

The condition number of the transformation matrix was roughly 1.392×103 when ω = 28

and it increased in an almost linear fashion to 5.701× 107 by the time ω = 220. Although
5.701×107 is quite a large condition number, from (54) we see tht the condition number of
evaluation of the solutions behaves as O (ω). In particular, when ω = 220, the condition
number of the transformation matrix is about an order of magnitude larger than the
condition number of evaluation of the solutions, so it seems likely that only a modest
amount of accuracy was lost to the ill-conditioning of the transformation matrix.

5.3. An initial value problem for a system of three equations

In this experiment, we solved the system of differential equations (1), where

A(t) =

−iω

(
3t2 + et−12t2 + 3et + et cos(17t) + 3

)
−iω

(
e−12t2 + cos(17t) + 3

)
−iωet

(
−3t2 + e−12t2 − 2

)
−iω

(
e−12t2 + 1

)
−iωet

(
e−12t2 + cos(17t) + 3

)
−iω

(
e−12t2 + cos(17t) + 3

)
iω

(
3t2 + et−12t2 + 3et + (et + 1) cos(17t) + 5

)
iωet

(
−3t2 + e−12t2 − 2

)
iω

(
et−12t2 + 3et + (et + 1) cos(17t) + 2

)
 ,

19

over the interval [−1, 1] subject to the condition y(−1) = (1 0 −1)T . The eigenvalues of

A(t) are given by the following formulas:

λ1(t) = iω (2 + cos(12t)) ,

λ2(t) = −3iω(1 + t2) and

λ3(t) = −iω
(
1 + exp

(
−12t2

))
.

(55)

The Levin procedure was performed on the interval [−0.25, 0.0] and the accuracy param-
eters were taken to be ϵdisc = 1.0 × 10−12 and ϵphase = 1.0 × 10−12. The initial vector for

constructing the transformation matrix was chosen to be v = (1 0 0)T . Figure 3 gives

the results of this experiment. For all values of ω considered, 3,780 Chebyshev coefficients
were used to represen the transformation matrix. The number of Chebyshev coefficients
required to represent the phase functions decreased from 1,620 to 540 as ω increased from
28 to 220. The time taken by our algorithm also decreased slightly with increasing ω. The
condition number of the transformation matrix increased from 5.097× 103 (when ω = 28)
to 2.088× 107 (when ω = 220). Again, because the eigenvalues are on the order of ω, the

28 211 214 217 220
0

2

4

6

8

10

Ti
m

e
(in

 m
illi

se
co

nd
s)

28 211 214 217 220
10 16

10 13

10 10

10 7

10 4

10 1

Re
la

tiv
e

ac
cu

ra
cy

28 211 214 217 220
0

5

10

15

20

Di
sc

re
tiz

at
io

n
su

bi
nt

er
va

ls Transformation

Phases

28 211 214 217 220
100

102

104

106

108

1010

Co
nd

iti
on

 n
um

be
r

Figure 3: The results of the experiment of Subsection 5.3.

20

condition number of the transformation matrix was only about an order of magnitude
larger than the condition number of evaluation of the solutions when ω = 220. There
was somewhat more variability in the obtained accuracy than in previous experiments;
however, relatively high accuracy was still achieved in all cases and it is unclear if the
variation is due to intrinsic properties of the problem (i.e., variation in the condition
number) or the properties of our algorithm.

5.4. A boundary value problem for a system of three equations

In this experiment, we solved the system of differential equations (1), where

A(t) =

4(1+4iω)e3t

2
+8iωe3t

2
sin(3t)−iωt log(t+ 1001

1000)
4e3t2−t

0

2e2t
2
t
(
−8iωet

2
+2iω sin(3t)+log(ω) sin(t)+4iω+1

)
4e3t2−t

− log(ω) sin(t) + 8iωet
2

2e2t
2
(−iω log(t+ 1001

1000)+2iω sin(3t)+4iω+1)
4e3t2−t

0

2iet
2
t(ω log(t+ 1001

1000)−2ω sin(3t)−4ω+i)
4e3t2−t

it2
(
8ωet

2−2ω sin(3t)+i log(ω) sin(t)−4ω+i
)

4e3t2−t

i
(
4ωe3t

2
log(t+ 1001

1000)+(−4ω+i)t−2ωt sin(3t)
)

4e3t2−t

 , (56)

over the interval [−1, 1] subject to the condition
1 1 0

1 0 1

0 1 0

y(−1) +

0 0 1

0 1 0

0 −1 0

y(1) =

1

0

1

 . (57)

The eigenvalues of A(t) are given by the following formulas:

λ1(t) = 1 + 2iω (2 + sin(3t)) ,

λ2(t) = − log(ω) sin(t) + 8iω exp(t2) and

λ3(t) = iω log
(
1 + 10−3 + t

)
.

(58)

The Levin procedure was performed on the interval [−0.1, 0.0] and the accuracy param-

eters ϵdisc = 1.0 × 10−12 and ϵphase = 1.0 × 10−12. We used v = (1 1 1)T . as the initial

vector for constructing the transformation matrix Φ. Figure 4 gives the results of this
experiment. For each value of ω considered, 2,970 Chebyshev coefficients were used to
represent the transformation matrix and 2,700 were used to represent the phase functions,
for a total of 5,6700 coefficients. The running time of the algorithm trended downward
as ω increases, falling from approximately 14 milliseconds when ω = 28 to a bit over 10
milliseconds when ω = 220.

21

28 211 214 217 220
0

5

10

15

20
Ti

m
e

(in
 m

illi
se

co
nd

s)

28 211 214 217 220
10 16

10 13

10 10

10 7

10 4

10 1

Re
la

tiv
e

ac
cu

ra
cy

28 211 214 217 220
0

5

10

15

20

Di
sc

re
tiz

at
io

n
su

bi
nt

er
va

ls Transformation

Phases

28 211 214 217 220
100

102

104

106

108

1010

Co
nd

iti
on

 n
um

be
r

Figure 4: The results of the experiment of Subsection 5.4.

5.5. An initial value problem for a system of four equations

In this experiment, we solved the system of differential equations (1), where coefficient
matrix A(t) is given by

cos(t)(log(t+2)−i
√
ω)−8iωe2t

2

4et2+cos(t)
0 −

iet
2
cos(t)

(
2ωet

2−
√
ω−i log(t+2)

)
(t2+1)(4et2+cos(t))

0
−iω(t−8)+t(2et−iω) sin(t)+2ett

4t2−2t−2t sin(t)+4
0

−
4i(t2+1)

(
2ωet

2−
√
ω−i log(t+2)

)
4et2+cos(t)

0
2et

2
(−iω cos(t)−2i

√
ω+2 log(t+2))

4et2+cos(t)

0
t(2et(t2+1)−iω(t2−3))
2(t2+1)(2t2−t−t sin(t)+2)

0

22

0

−(2et(t2+1)−iω(t2−3))(sin(t)+1)

2t2−t−t sin(t)+2

0

iω(t4+2t2−2t+1)−2iωt sin(t)−2et(t2+1)
2

(t2+1)(2t2−t−t sin(t)+2)

 ,

over the interval [−1, 1] subject to the condition y(0) = (1 −1 1 −1)T The eigenvalues

of A(t) are:

λ1(t) = −2iω exp(t2),

λ2(t) =
2iω

1 + t2
,

λ3(t) = log(2 + t)− i
√
ω and

λ4(t) = − exp(t) +
iω

2
.

(59)

The Levin procedure was performed on the interval [−0.25, 0.00], and the accuracy pa-
rameters were taken to be ϵdisc = 1.0 × 10−10 and ϵphase = 1.0 × 10−10. The initial vector

for constructing the transformation matrix was taken to be v = (0 1 1 0)T . Because the

condition number of the transformations Φ our algorithm forms tend to increase with the
order of the system, the accuracy achievable by the algorithm of this paper generally de-
creases with order. This is why the accuracy parameters needed to be lowered somewhat
for this experiment. Figure 5 gives the results of this experiment.

For all values of ω except 220, our solver took under 10 milliseconds and the transformation
matrix and phase functions were represented using 1,920 Chebyshev coefficients. When
ω = 220, 4,320 Chebyshev coefficients were needed and the running time increased to
around 16 milliseconds. The relative accuracy of the obtained solution increased from
around 8.717 × 10−10 when ω = 28 to approximately 7.859 × 10−7 when ω = 220. The
condition number of the transformation matrix increased from 2.500 × 104 when ω = 28

to 1.023 × 108 when ω = 220. The condition numbers of the transformation matrix
are somewhat larger than in previous experiments because this experiment concerns a
system of four equations. The obtained accuracy is, nonetheless, reasonable high. It is
not entirely clear why the cost to represent the phase functions, and also the algorithm’s
running time, increased substantially when ω was taken to be 220, but the performance
of the algorithm is still acceptable in this case.

6. Conclusions

We have introduced a numerical method for solving a large class of systems of ordinary
differential equations of modest dimensions in time independent of the magnitudes of the
eigenvalues of the system’s coefficient matrix. It operates by transforming the system
into a scalar equation via a standard approach, and then calculating slowly-varying phase
functions which represent a basis in the space of solutions of the scalar equation.

23

28 211 214 217 220
0

5

10

15

20
Ti

m
e

(in
 m

illi
se

co
nd

s)

28 211 214 217 220
10 16

10 13

10 10

10 7

10 4

10 1

Re
la

tiv
e

ac
cu

ra
cy

28 211 214 217 220
0

2

4

6

8

10

Di
sc

re
tiz

at
io

n
su

bi
nt

er
va

ls Transformation

Phases

28 211 214 217 220
100

102

104

106

108

1010

Co
nd

iti
on

 n
um

be
r

Figure 5: The results of the experiment of Subsection 5.5.

Our algorithm is limited to systems of modest dimensions because the transformation
matrices we use become increasingly ill-conditioned as the dimension of the system grows.
The set of transformations which take a given system to scalar form, however, is well-
known to be large in various senses and it is likely that well-conditioned transformations
exist. The most obvious way to overcome the difficulties of our current approach would
be to develop an optimization algorithm to efficiently search through the set of possible
transformations for a well-conditioned one. The development of a numerical version of
the elimination algorithm of [4] (which we briefly discuss in Section 2) is another possible
approach to constructing a stable transformation matrix. Alternatively, one could simply
insert the representation (36) into the system (1) and derive a system of differential
equations satisfied by the phase functions ψ1, . . . , ψn and the entries of the transformation
matrix Φ(t) which could be solved numerically. The authors are actively investigating
these and other possible methods for improving the algorithm of this paper.

Despite its limitations, the method shows that the solutions of a large class of systems of
differential equations can be represented more efficiently than was previously believed to
be possible. Moreover, we view it as a promising first step toward the development of a

24

class of efficient generaly purpose “frequency-independent” solvers for systems of ordinary
differential equations with slowly-varying coefficient matrices.

7. Acknowledgments

JB was supported in part by NSERC Discovery grant RGPIN-2021-02613. The authors
are grateful to Kirill Serkh for many helpful discussions regarding this work. The authors
would also like to thank the anonymous reviewers of this work for their many helpful
comments.

8. Data availability statement

The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

9. Competing Interests Declaration

The authors confirm that there are no known conflicts of interest associated with this
publication and there has been no significant financial support for this work that could
have influenced its outcome.

References

[1] Aubry, M., and Bremer, J. A solver for linear scalar ordinary differential equa-
tions whose running time is bounded independent of frequency. arXiv 2311.08578
(2023).

[2] Aurentz, J., Mach, T., Robol, L., Vanderbril, R., and Watkins, D. S.
Fast and backward stable computation of roots of polynomials, part II: Backward
error analysis; companion matrix and companion pencil. SIAM Journal on Matrix
Analysis and Applications 39 (2018), 1245–1269.

[3] Aurentz, J., Mach, T., Vanderbril, R., and Watkins, D. S. Fast and
backward stable computation of roots of polynomials. SIAM Journal on Matrix
Analysis and Applications 36 (2015), 942–973.

[4] Barkatou, M. A. An algorithm for computing a companion block diagonal form
for a system of linear differential equations. Applicable Algebra in Engineering, Com-
munication and Computing 4 (1993), 185–195.

[5] Bremer, J. On the numerical solution of second order differential equations in the
high-frequency regime. Applied and Computational Harmonic Analysis 44 (2018),
312–349.

[6] Bremer, J. Phase function methods for second order linear ordinary differential
equations with turning points. Applied and Computational Harmonic Analysis 65
(2023), 137–169.

25

[7] Bremer, J., and Rokhlin, V. Improved estimates for nonoscillatory phase func-
tions. Discrete and Continuous Dynamical Systems, Series A 36 (2016), 4101–4131.

[8] Churchill, R., and Kovacic, J. Cyclic vectors. In Differential Algebra and
Related Topics, L. Guo, W. F. Keigher, P. J. Cassidy, and W. Y. Sit, Eds. World
Scientific, 2002, pp. 191–217.

[9] Higham, N. J. Accuracy and Stability of Numerical Algorithms, second ed. SIAM,
2002.

[10] Iserles, A. On the global error of discretization methods for highly-oscillatory
ordinary differential equations. BIT 32 (2002), 561–599.

[11] Iserles, A., and Nørsett, S. P. On the solution of linear differential equations
in Lie groups. Philosophical Transactions: Mathematical, Physical and Engineering
Sciences 357, 1754 (1999), 983–1019.

[12] Levin, D. Procedures for computing one- and two-dimensional integrals of functions
with rapid irregular oscillations. Mathematics of Computation 38 (1982), 531–5538.

[13] Levin, D. Fast integration of rapidly oscillatory functions. Journal of Computational
and Applied Mathematics 67 (1996), 95–101.

[14] Loewy, A. Über einen Fundamentalsatz für Matrizen oder Lineare Homogene Dif-
ferentialsysteme. Sitzungsberichte der Heidelberger Akademie der Wissenschaften,
Mathematisch-naturwissenschaftliche Klasse, 1918.

[15] Magnus, W. On the exponential solution of differential equations for a linear
operator. Communications on Pure and Applied Mathematics 7 (1954), 649–673.

[16] Miller, P. D. Applied Asymptotic Analysis. American Mathematical Society,
Providence, Rhode Island, 2006.

[17] Put, M., and Singer, M. Galois Theory of Linear Differential Equations. Spinger
Berlin, Heidelberg, 2003.

[18] Serkh, K., and Bremer, J. Phase function methods for second order inhomo-
geneous linear ordinary differential equations. Journal of Scientific Computing 98
(2023).

[19] Spigler, R. Asymptotic-numerical approximations for highly oscillatory second-
order differential equations by the phase function method. Journal of Mathematical
Analysis and Applications 463 (2018), 318–344.

[20] Spigler, R., and Vianello, M. A numerical method for evaluating the zeros of
solutions of second-order linear differential equations. Mathematics of Computation
55 (1990), 591–612.

26

[21] Spigler, R., and Vianello, M. The phase function method to solve second-
order asymptotically polynomial differential equations. Numerische Mathematik 121
(2012), 565–586.

[22] Wasow, W. Asymptotic expansions for ordinary differential equations. Dover, 1965.

27

