
Rapid Application of the Spherical Harmonic Transform via1

Interpolative Decomposition Butterfly Factorization2

James Bremer
Department of Mathematics, University of California, Davis, California, USA

3

Ze Chen
Department of Mathematics, National University of Singapore, Singapore

4

Haizhao Yang
Department of Mathematics, Purdue University, USA

5

September 16, 20206

Abstract7

We describe an algorithm for the application of the forward and inverse spherical harmonic8

transforms. It is based on a new method for rapidly computing the forward and inverse associ-9

ated Legendre transforms by hierarchically applying the interpolative decomposition butterfly10

factorization (IDBF). Experimental evidence suggests that the total running time of our method11

— including all necessary precomputations — is O
(
N2 log3 (N)

)
, where N is the order of the12

transform. This is nearly asymptotically optimal. Moreover, unlike existing algorithms which13

are asymptotically optimal or nearly so, the constant in the running time of our algorithm is14

small enough to make it competitive with state-of-the-art O
(
N3
)

methods at relatively small15

values of N . Numerical results are provided to demonstrate the effectiveness and numerical16

stability of the new framework.17

Keywords. Spherical harmonic transform, Legendre transform, block partitioning, butterfly18

factorization, interpolative decomposition, randomized algorithm19

AMS Classifications. 33C55, 42C10, 68W20, 15A2320

1 Introduction21

This paper is concerned with the efficient application of the forward and inverse spherical harmonic22

transforms (SHT). These transformations play an important role in many scientific computing23

applications, including in the fields of numerical weather prediction and climate modeling [24, 21,24

23], and are significant components in many numerical algorithms. The forward SHT of degree N25

maps the coefficients in the expansion26

f(θ, φ) =

2N−1∑
k=0

k∑
m=−k

βk,mP
|m|
k (cos(θ))eimφ, (1)

where P
m
k (x) denotes the L2 normalized associated Legendre function of order m and degree k,27

to the values of the expansion at a grid of discretization nodes formed from the tensor product of28

a 2N -point Gauss-Legendre quadrature in variable x = cos(θ) and a (4N − 1)-point trapezoidal29

1

quadrature rule in the φ variable. More explicitly, the expansion f is represented via its values at30

the set of points31

{(θl, φj) : l = 0, 1, . . . , 2N − 1, j = 0, 1, . . . , 4N − 2} , (2)

where32

− 1 < cos(θ0) < cos(θ1) < · · · < cos(θ2N−2) < cos(θ2N−1) < 1 (3)

are the nodes of the 2N -point Gauss-Legendre quadrature rule and φ0, φ1, . . . , φ4N−3, φ4N−2 are33

the equispaced nodes on (0, 2π) given by the formula34

φj =
2π(j + 1

2)

4N − 1
, for j = 0, 1, . . . , 4N − 3, 4N − 2. (4)

The inverse SHT is, of course, the mapping which takes the values of the function f(θ, φ) at the35

discretization nodes (2) to the coefficients in the expansion (1).36

If we let37

g(m, θ) =
2N−1∑
k=|m|

βk,mP
|m|
k (cos(θ)), (5)

then (1) can be written as38

f(θ, φ) =
2N−1∑

m=−2N+1

g(m, θ)eimφ. (6)

From (6), it is clear that given the values of g(m, θ) for each m = −2N + 1, . . . , 2N + 1 and each39

θ0, . . . , θ2N−1, the values of f(θ, φ) at the discretization nodes (2) can be computed inO
(
N2 log(N)

)
40

operations by applying the fast Fourier transform O (N) times. Similarly, the inverse of this41

operation, which takes the values of f(θ, φ) to those of g(m, θ), can be calculated in O
(
N2 log(N)

)
42

operations using O (N) fast Fourier transforms.43

We will refer to the mapping which, for a fixed m, takes the coefficients in the expansion (5) to44

the values of g(m, θ) at the O (N) discretization nodes in the θ as the forward associated Legendre45

transform (ALT). The inverse mapping, which takes the values of g(m, θ) to the coefficients in the46

expansion to the values of g(m, θ), will be referred to as the inverse ALT. The naive approach to47

applying one of these transforms requires O
(
N2
)

operations, and using such an approach leads to48

an SHT with an O
(
N3
)

operation count.49

There is a large literature devoted to accelerating the application of the associated Legendre50

transform (we review it in Section 1.1). However, existing algorithms leave much to be desired. The51

most widely used class of methods allow for the application of the ALT in O (N logκ(N)) opera-52

tions, but only after an O
(
N2
)

precomputation phase. Existing algorithms which have quasilinear53

complexity (when all necessary precomputations are taken into account) have such poor constants54

in their running times that they are slower than the former class of methods at practical values55

of N . Indeed, the current state-of-the-art method appears to be [20], which has very favorable56

constants but requires a precomputation phase whose complexity is O
(
N2
)
.57

In this paper, we propose a new method for applying the forward ALT whose total running time58

(including both the precomputation and application phases) appears to behave as O
(
N log3 (N)

)
.59

Moreover, the constants in the running time of our algorithm are such that it is competitive with60

state-of-the-art methods at relatively small values of N . We say that the running time of our61

algorithm “appears to be” O
(
N log3 (N)

)
because our evidence for this claim is experimental in62

nature. Proving a rigorous bound would seem to require that we estimate the ranks of certain63

2

submatrices of the matrix discretizing the ALT. This seems to be quite difficult, and, for now, we64

are relying on experimental evidence regarding the running time of our algorithm. Assuming our65

conjecture regarding the running time of our ALT is correct, the SHT can be applied using our66

ALT in O
(
N2 log3 (N)

)
time.67

Our algorithm operates by hierarchically applying the interpolative decomposition butterfly68

factorization (BF) [15, 3] (a newly proposed nearly linear scaling variant of butterfly algorithms69

[10, 12, 14, 9, 11]) and randomized low-rank approximation to speed up the calculation of the ALT.70

Butterfly algorithms are a collection of techniques for rapidly applying the matrices which result71

from discretizing oscillatory integral operators. They exploit the fact that these matrices have the72

complementary low-rank property (see [10] for a definition). A large class of special function73

transforms are integral operators of the appropriate type [14], and consequently can be applied74

rapidly using butterfly algorithms. Indeed, in the special case m = 0, the ALT can be applied75

via standard butterfly algorithms in O (N log (N)) time. These results do not, however, extend to76

the case m > 0. In that event, the associated Legendre functions are not oscillatory on the entire77

domain of interest. Instead, P̃mn (cos(θ)) is nonoscillatory on the interval78 (
0, arcsin

(√
m2 − 1/4

n+ 1/2

))
(7)

and oscillatory on79 (
arcsin

(√
m2 − 1/4

n+ 1/2

)
,
π

2

)
(8)

(see Figure 1, which contains plots of P̃mn (cos(θ)) for two different pairs of the parameters n and80

m). As a consequence, the integral operator associated with the ALT when m > 0 is not of the81

purely oscillatory type whose discretizations have the complementary low rank property and are82

therefore amenable to rapid application via butterfly algorithms.83

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-2

-1

0

1

2

Figure 1: On the left is a plot of the L2 normalized associated Legendre function P̃mn (cos(θ)) in
the case n = 100 and m = 20. On the right is a plot of P̃mn (cos(θ)) when n = 100 and m = 80.

In order to overcome this difficulty we apply the following methodology:84

• We hierarchically partition the transformation matrix into purely oscillatory and purely non-85

oscillatory blocks (see Figure 2 (b)).86

• In the purely nonoscillatory blocks, the corresponding matrix is numerically low-rank and87

hence its application to a vector can be accelerated to obtain linear scaling by randomized88

low-rank approximation algorithms.89

3

• The matrices corresponding to purely oscillatory blocks admit complementary low-rank struc-90

tures, the application of which to a vector can be accelerated via butterfly algorithms. We91

use the relatively new interpolative decomposition butterfly factorization (IDBF) [15], which92

yields nearly linear scaling in the degree N of the ALT transform in both precomputation93

and application.94

1 1.2 1.4 1.6

degree 104

0

0.5

1

1.5

t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1 1.2 1.4 1.6

degree 104

0

0.5

1

1.5

t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) (b)

Figure 2: An illustration of the partitioning process of an odd ALT matrix when N = 8192 and
order m = 8192. (a) The odd matrix with a piecewise continuous curve (red color) indicating the
positions of turning points. (b) The hierarchically partitioned blocks of the odd matrix.

The scheme relies heavily on the algorithm of [2] for the numerical evaluation of the associated95

Legendre functions. That algorithm allows each evaluation to be performed in time independent96

of the parameters n and m. If standard methods for calculating P̃mn , which have running times97

which grow with the parameters n and m, were used instead, the running time of our algorithm98

for applying the ALT would no longer scale as O
(
N log3 (N)

)
.99

1.1 Related works100

There has been a significant amount of research aimed at accelerating the associated Legendre101

Transform in order to more rapidly apply the spherical harmonic transform. In [5], an algorithm102

for applying the ALT which results in an SHT whose running time is O
(
N2 log(N)2

)
is described.103

However, this algorithm suffers from increasing numerical instability as N increases. In [13] and104

[16], asymptotically optimal schemes for the ALT which are numerically stable are described, but105

the constants in their running time make them unappealingly slow for practical values of N . The106

contribution [19] introduces a scheme based on the fast multiple method. It can apply the SHT107

in O
(
N2 log(N)2

)
operations after a precomputation phase whose running time is O

(
N3
)
. The108

asymptotic complexity of the precomputation phase can be reduced — however, it must be executed109

in extended precision arithmetic, which would most likely make it unacceptably slow in any case.110

The most widely-used algorithm today appears to be that of [20]. It uses the butterfly transform111

described in [14] to evaluate the ALT. Each ALT takes O
(
N2
)

and O
(
N log3 (N)

)
operations in112

4

the precomputation and application, respectively. This, of course, results in an SHT with a cost of113

O
(
N3
)

for precomputation andO
(
N2 log3 (N)

)
for application. A highly-optimized computational114

package based on [20] was developed in [17]. It is widely used and most likely represents the current115

state-of-the-art for rapidly applying the SHT. Though the application phase of this algorithm is116

nearly optimal, its precomputation phase is still prohibitively expensive when N is large.117

In [24] an algorithm for applying the ALT which bears some similarities to our scheme was118

proposed. It operates by partitioning the transformation matrix in the manner shown in Figure 3.119

The application phase of the resulting algorithm has lower complexity than that used in [20] and120

yields somewhat improved accuracy (roughly an extra digit of precision). However, the method of121

[24] still requires a precomputation phase whose running time behaves as O(N3).122

In [18], an algorithm which makes use of a rapid transformation between spherical harmonic123

expansions and bivariate Fourier series via the butterfly transform and hierarchically off-diagonal124

low-rank matrix decompositions. Although the application time of this algorithm O
(
N2 log2 (N)

)
,125

it requires a precomputation whose running time grows as O
(
N3 log (N)

)
.126

L
eg

en
d

re
p

oi
n
ts

x1

xi1

xi2

xi3

xN
2

xi4

xi5

xi6

xN

Legendre polynomials

α3N α2N αN N

B1
top

B1
bot

B2
top

B2
bot

B3
top

B3
bot

B4
top

B4
bot

I1
top

I1
bot

I2
top

I2
bot

I3
top

I3
bot

Figure 3: Block partitioning of the Legendre-Vandermonde matrix in [24], when N = 1024. xi,
i = 1, 2, . . . , N , are the Legendre points. The parameters i1, i2, . . . , i6 and α are the computed
partitioning coefficients, which are able to divide the Legendre-Vandermonde matrix into boundary
parts (denoted by symbol B) and internal (denoted by symbol I) parts. The internal parts can
be compressed by the BF while the boundary parts are directly computed for the corresponding
matvecs.

5

1.2 Outline of this paper127

The rest of the paper is organized as follows. In Section 2, we discuss existing low-rank matrix128

factorization techniques. Section 3 proposes a new algorithm for applying the Legendre Transform129

which is based on these factorization techniques. In Section 4, we discuss the computational130

complexity of our algorithm. Again, we do not have a rigorous bound on its running time, but we131

estimate it under an assumption on the behavior of the ranks of certain subblocks of the matrix132

discretizing the ALT. Section 5 describes several numerical experiments conducted to asses the133

efficiency of the proposed algorithm.134

For simplicity, we adopt MATLAB notations for the algorithm described in this paper: given135

row and column index sets I and J , K(I, J) is the submatrix with entries from rows in I and136

columns in J ; the index set for an entire row or column is denoted as “ : ”.137

2 Preliminaries138

In this section, we summarize certain facts and algorithms from mathematical and numerical analy-139

sis which will be repeatedly applied in the algorithm of Section 3. Subsection 2.1 outlines the linear140

scaling interpolative decomposition (ID) method, which is an important tool for the interpolative141

decomposition butterfly factorization (IDBF) discussed in Subsection 2.2. Subsection 2.3 describes142

low-rank approximation via randomized sampling.143

2.1 Linear scaling interpolation decomposition144

This subsection reviews the the algorithm of [15] for the construction of interpolative decomposi-145

tions.146

A column interpolative decomposition, which will abbreviate by cID , of A ∈ Cm×n is a factor-147

ization of the form148

A ≈ A(:, q)V, (9)

where q is an index set specifying k columns of A and V is a k × n matrix. The set q is called149

the skeleton index set, and the rest of indices are called redundant indices. The matrix V is called150

the column interpolation matrix. The algorithm described in this section takes as input a desired151

precision ε and adaptively determines k such that152

‖A−A(:, q)V ‖2 ≤ ε. (10)

The numerical rank of A to precision ε is defined via153

kε = min
{

rank(X) : X ∈ Cm×n, ‖A−X‖2 ≤ ε
}
, (11)

and it is the optimal possible value of k. In most cases, the algorithm of this section forms154

factorizations with k equal to or only slightly larger than kε.155

The algorithm takes as an input the matrix A as well as a parameter rk, which we refer to156

as the “adpative rank,” which serves as an upper bound for the rank of A. It proceeds by first157

constructing an index set containing t · rk rows of K chosen from the Mock-Chebyshev grids as in158

[22, 8, 1] or randomly sampled points; here, t is an oversampling parameter.159

We next compute a rank revealing QR decomposition of A(s, :). That is, we decompose A(s, :)160

as161

A(s, :)Λ ≈ QR = Q[R1 R2], (12)

6

where the columns of Q ∈ Cm×k are an orthonormal set in Cm, R ∈ Ck×n is upper trapezoidal,162

and Λ ∈ Cn×n is a carefully chosen permutation matrix such that R1 ∈ Ck×k is nonsingular. The163

value of k is chosen so that the L2 error in the approximation (12) is somewhat smaller than ε. We164

now define165

T = (R1(1 : k, 1 : k))−1[R1(1 : k, k + 1 : kt) R2(1 : k, :)] ∈ Ck×(n−k), (13)

such that166

K(s, q) = QR1(1 : k, 1 : k).

Then167

A(s, :) ≈ A(s, q)V (14)

with the approximation error determined by the error in the rank-revealing QR decomposition.168

Moreover,169

A ≈ A(:, q)V (15)

with an approximation error coming from the QR truncation and the error incurred when per-170

forming Lagrange interpolation from the subsampled rows of A. When the obtained accuracy171

is insufficient, the procedure is repeated with increased k. Using the steps outlined above, the172

construction of this factorization requires O
(
nk2

)
operations and O (nk) storage.173

A row interpolative decomposition (abbreviated rID) of the form174

A ≈ UA(q, :) (16)

can be constricted in O
(
mk2

)
operations using O (mk) storage. We refer to U as the row interpo-175

lation matrix.176

2.2 Interpolative decomposition butterfly factorization177

In this section, we briefly discuss the properties of the interpolative decomposition butterfly fac-178

torization, and the algorithm of [15] for producing it. We refer the reader to [15] for a detailed179

discussion.180

We first recall the definition of a complementary low-rank matrix given in [10]. Suppose that181

K ∈ CN×N . We denote the set of rows of K by X and the set of columns of K by Ω. The matrix182

K is said to satisfy the complementary low-rank property provided there exist two trees TX and TΩ183

of the same depth whose elements consist of subsets of X and Ω, respectively, and such that the184

following property holds: for any pair of nodes A ∈ TX and B ∈ TΩ which are at the same level,185

the submatrix K(A,B), obtained by restricting K to the rows indexed by the points in A and the186

columns indexed by the points in B, is numerically low-rank. By numerically low-rank, we mean187

that the ranks the submatrices grow no more quickly then logκ(N) with the size of the matrix K.188

In many cases of interest, κ = 0 — that is, the ranks of the submatrices are bounded by a constant189

independent of N . See Figure 4 for an illustration of the complementary low-rank property.190

An interpolative decomposition butterfly factorization (IDBF) of a complementary low-rank191

matrix K is a factorization of the form192

K ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (17)

where L is the the number of levels in the trees TX and TΩ, h = L/2 and each of the matrices U l193

and V l is sparse with O (N) entries. The number of levels L in this decomposition is on the order of194

log(N), where N is the dimension of K. This factorization is obtained by constructing interpolation195

decompositions of the low rank blocks of K using the algorithm of the preceding section. The IDBF196

7





















Figure 4: An illustration of the complementary low-rank property. Here, the matrix is 16 × 16
and the trees TX and TΩ correspond to dyadic decompositions of the the rows and colulmns of the
matrix, respectively. Each of the blocks illustrated in the diagram has low rank.

algorithm takes as input the parameter rk which is an estimate of the maximum possible ranks of197

the low-rank blocks.198

Given anN×N matrixK, or equivalently anO (1) algorithm to evaluate an arbitrary entry ofK,199

the algorithm of [15] constructs this data-sparse representation of K in O
(
N logκ+1(N)

)
operations200

using O
(
N logκ+1(N)

)
storage. Once this factorization has been constructed, the matrix K can201

be applied in O
(
N logκ+1(N)

)
operations.202

2.3 Low-rank approximation by randomized sampling203

In this section, we discuss an existing linear complexity algorithm for constructing an approximate204

singular value decomposition (SVD) of a matrix.205

Suppose that A ∈ Cm×n has singular values206

|σ1| ≥ |σ2| ≥ · · · ≥ |σl| , (18)

where l = min(n,m). A k-rank singular value decomposition of A is a factorization of the form207

A ≈ UΣV T , (19)

where U ∈ Cm×r is orthogonal, Σ ∈ Rr×r is diagonal, V ∈ Cn×r is orthogonal and208 ∥∥A− UΣV T
∥∥

2
= σk+1. (20)

The construction of a factorization of this form is a notoriously expensive calculation. However,209

using randomized algorithms, approximate SVDs of the same form with slightly lower accuracy can210

be rapidly constructed. That is, randomized algorithms result in factorizations of the form (19) for211

which212 ∥∥A− UΣV T
∥∥

2
(21)

is no longer equal to the optimal value σk+1, but is instead slightly larger.213

One of the first practical randomized algorithms for constructing approximate SVDs was pro-214

posed in [7]. It operates by applying a random transform to the matrix A and requires O (nmk)215

operations. By using a special random transform which can be applied rapidly via the FFT, a216

variant of the algorithm of [7] which requires O (nm log(k)) can be obtained.217

In [6], a method which operates by randomly sampling O (1) rows and columns of the input218

matrix is described. It only requires O (m+ n) operations and O (m+ n) storage. Here, we denote219

this algorithm as Function randomizedSVD and it is presented in Algorithm 1. Assuming the220

whole low-rank matrix A is known, the input of Function randomizedSVD is A, O (1) randomly221

sampled row indices R and column indices C, as well the parameter r. Equivalently, it can also be222

8

assumed that A(R, :) and A(:, C) are known as the inputs. The outputs are the matrices U ∈ Cm×r,223

Σ ∈ Rr×r, and V ∈ Cn×r which give an approximate SVD (19).224

In Function randomizedSVD, for simplicity, given any matrix K ∈ Cs×t, Function qr(K) per-225

forms a pivoted QR decomposition K(:, P) = QR, where P is a permutation vector of the t columns,226

Q is a unitary matrix, and R is an upper triangular matrix with positive diagonal entries in de-227

creasing order. Function randperm(m,r) denotes an algorithm that randomly selects r different228

samples in the set {1, 2, . . . ,m}.229

In most cases, in order to obtain higher accuracy, we add an over sampling parameter q and230

we same rq rows and columns and only generate a rank r truncated SVD in the penultimate line231

in Algorithm 1. Larger q results in better stability of Algorithm 1. In our numerical experiments,232

q = 2 is empirically sufficient to achieve accurate low-rank approximations.233

Function [U,Σ, V]← randomizedSVD(A,R, C, r)
[m,n]← size(A)
P ← qr(A(R, :)) ; Πcol ← P (1 : r) // A(R, P) = QR
P ← qr(A(:, C)T) ; Πrow ← P (1 : r) // A(P, C) = RTQT

Q← qr(A(:,Πcol)) ; Qcol ← Q(:, 1 : r) // A(P,Πcol) = QR
Q← qr(A(Πrow, :)

T) ; Qrow ← Q(:, 1 : r) // A(Πrow, P) = RTQT

Srow ← randperm(m, r) ; I ← [Πrow, Srow]
Scol ← randperm(n, r) ; J ← [Πcol, Scol]

M ← (Qcol(I, :))
†A(I, J)

(
QTrow(:, J)

)†
// (·)† : pseudo-inverse

[UM ,ΣM , VM]← svd(M)
U ← QcolUM ; Σ← ΣM ; V ← QrowVM

Algorithm 1: Randomized sampling for a rank-r approximate SVD with O (m+ n) oper-
ations, such that A ≈ UΣV T .

3 Block partitioning algorithm234

In this section, we propose a block partitioning algorithm based on IDBF and low-rank approxi-235

mation by randomized sampling for evaluating the forward ALT in three steps. As we observe in236

Section 3.1, the inverse ALT can be applied in essentially the same fashion. Several classical facts237

concerning normalized associated Legendre functions will be discussed in each step as necessary.238

3.1 The relationship between the forward and inverse associated Legendre239

transforms240

For fixed N and |m| ≤ N , the forward ALT transform consists of computing the values of the sum241

g(m, θ) =
2N−1∑
k=|m|

βk,mP
|m|
k (cos(θ)), (22)

at the nodes of the 2N -point Gauss-Legendre quadrature rule. We let

x0 = cos (θ0) , x1 = cos (θ1) , . . . , x2N−1 = cos (θ2N−1)

and
w0, w1, . . . , w2N−1

9

denote the nodes and weights of this quadrature. There are (2N−|m|) coefficients in the expansion
(22) and 2N target points, so this amounts to applying the 2N × (2N −|m|) matrix whose ij entry
is

P
|m|
j (cos(θi))

to the vector242 
β|m|,m
β|m|+1,m

...
β2N−1,m

 . (23)

of coefficients.243

It is well-known that for k ≥ |m|, P |m|k (x) is a polynomial of degree k − |m|, and that the244

functions245 {
P
|m|
k (x) : k = |m|, . . . , 2N − 1

}
(24)

form an orthonormal basis in the space of polynomials of degree no larger than 2N − 1. The
2N -point Gauss-Legendre quadrature rule exactly integrates the product of any two polynomials
of degree 2N − 1. In particular, it follows that the when the (2N − |m|) × 2N matrix whose ij
entry is

P
|m|
i (cos(θj))wj

is applied to the vector 
g(m, θ0)
g(m, θ1)

...
g(m, θ2N−1)


the result is the vector of coefficients (23). In other words, due to the orthonormality of the246

associated Legendre polynomials and the method used to discretize spherical harmonic transforms,247

the matrix B which discretizes the inverse ALT is related to the matrix A discretizing the forward248

ALT via the formula249

B = ATW, (25)

where W is a diagonal matrix. The methodology described in this section for applying the forward250

ALT can be easily used to apply its transpose, and hence also the inverse ALT.251

3.2 Odd and even Legendre transform matrices252

It is well-known (see, for instance, Chapter 14 of [4]) that P
m
k (x) is odd when k − |m| is odd, and253

even when k− |m| is even. This, together with the fact that the Gauss-Legendre quadrature nodes254

are symmetric around 0, allows us to reduce the cost of applying the forward ALT by a factor of 2.255

More explicitly, the sum (22) can be rewritten as256

g(θ,m) = g1(θ,m) + g2(θ,m), (26)

where g1 and g2 are defined via the formulas257

g1(θ, n) =
∑

0≤k≤2N−|m|−1, k is odd

βk+|m|,mP
|m|
k+|m|(cos(θ)) (27)

10

and258

g2(θ, n) =
∑

0≤k≤2N−|m|−1, k is even

βk+|m|,mP
|m|
k+|m|(cos(θ)). (28)

Because of the symmetry of the Gauss-Legendre nodes, we have259

g1(θl,m) = −g1(θ2N−1−l,m) and g2(θl,m) = g2(θ2N−1−l,m) (29)

for l = 0, 1, . . . , 2N − 1. Therefore, we can reduce the cost of applying the forward ALT by only260

computing the values of (22)) and (23) at the nodes θ0, θ1, . . . , θN−1 and using these to compute261

g(m, θ) at each of the Gauss-Legendre nodes.262

Computing the sum (27) at each of the N positive Gauss-Legendre nodes amounts to applying263

an N ×
(
N − d |m|2 e

)
matrix, which we refer to as the odd ALT matrix. Computing (27) at each264

of the N positive Gauss-Legendre nodes amounts to applying an N ×
(
N − b |m|2 c

)
, which we refer265

to as the even ALT matrix.266

3.3 A block partitioning scheme267

When |m| > 0, the associated Legendre function P
|m|
k (cos(θ)) has a single turning point on the268

interval (0, π/2). Its location is given by the formula269

t∗k,m = arcsin

(√
m2 − 1/4

k + 1/2

)
. (30)

See, for instance, Chapter 14 of [4] for details. On the interval (0, t∗k,m), P
|m|
k (cos(θ)) is nonoscilla-270

tory and on (t∗k,m, π/2) it is oscillatory. We can view (30) as defining a piecewise continuous curve271

which divides the odd and even ALT matrices into oscillatory and nonoscillatory regions. We will272

refer to this as the “turning point curve.” Any subblock of these matrices which intersects this273

curve will have high rank. As a consequence of this, the even and odd ALT matrices do not have274

the complementary low-rank property. Figure 2 (a) shows an example of an odd ALT matrix with275

a graph of this piecewise continuous curve overlaid on top of it.276

We use the following procedure to hierarchically partition the even and odd and ALT matrices277

into blocks each of which will either be of small dimension or will have complementary low-rank278

property. We will denote the resulting collection of subblocks by Bs. Since the shape of the matrices279

are not square when m 6= 0, we initially take Bs to consist of blocks each of which consist of all280

columns of the matrix and b rows, where281

b =

 b
N

N−d |m|
2
e
e for odd matrices,

b N

N−b |m|
2
c
e for even matrices.

(31)

Each of these blocks is nearly square. The symbol bxe means the nearest integer to x. Next, we282

repeatedly apply the following procedure. We split each block in Bs which intersects the piecewise283

curve defined by (30) into a 2 × 2 grid of subblocks. We stop this procedure only once all blocks284

which contain turning points have either fewer than n0 rows or columns, where n0 is a specified285

parameter. This makes the maximum partition level is L = log
(
N
n0

)
. For each partition level l of286

Bs, the turning point curve intersects no more than 2l − 1 submatrices. Therefore, this procedure287

11

takes at most O (N) operations to partition the odd and the even matrices into submatrices, since288

O

(
L∑
l=1

(
2l − 1

))
∼ O

(
2N

n0
− log

(
N

n0

)
− 2

)
∼ O (N) . (32)

See Figure 2 (b), which shows an example of an odd ALT matrix which has been partitioned into289

blocks by this procedure.290

3.4 Factorization and application of the blocks291

In each of the partitioned matrices, there are three types of blocks: oscillatory blocks, non-292

oscillatory blocks, and the blocks which intersect the turning point curve. We deal with each293

of these different kinds of blocks through different means:294

1. For an oscillatory block Bo, we use the IDBF to construct a factorization295

Bo ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (33)

where L = O (log (N)) and h = L
2 . This takes only O (N log (N)) operations. After that we296

can apply the subblock Bo in nearly linear time.297

2. In the non-oscillatory region, the entries of the odd and even ALT matrices can be of extremely298

small magnitudes. Therefore, when processing a non-oscillatory block Bn, we first take the299

largest subblock Bn′
which does not contain any elements of magnitude smaller than machine300

precision. Next, we use the algorithm of Section 2.3 to construct a factorization of the form301

Bn′ ≈ UΣV T . (34)

This takes O (N log (N)) operations and the application of Bn can be effected in nearly linear302

time.303

3. For a block Bt including turning points, we also let Bt′ be a smaller submatrix which excludes304

as many entries whose magnitudes are smaller than machine precision as possible. These305

blocks are applied to a vector through a standard matrix-vector multiplication with no made306

attempt to accelerate it.307

Figure 5 shows the boxes which result after as many elements of negligible magnitude as possible308

have been excluded. Empty blocks with 0× 0 size are omitted in the figure and will not be utilized309

in the application step.310

4 Conjecture regarding computational complexity311

A rigorous estimate of the computational complexity of our algorithm would seem to require a312

bound on the ranks of the subblocks of the odd and even ALT matrices which are in the oscillatory313

regions. To the author’s knowledge, no such bounds are presently known, except in the special314

case m = 0 (such an estimate can be found in [24]). We can, however, develop an estimate on the315

complexity of our algorithm assuming that the ranks of these boxes grow as O
(
log(N)2

)
. This is316

consistent with the numerical experiments presented in the following section.317

We will assume that the matrix we are applying is an N × N odd ALT matrix which we will318

denote by A. We first observe that subdividing a matrix with the complementary low-rank property319

12

0.6 0.8 1 1.2 1.4 1.6

degree 104

0

0.5

1

1.5

t

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1 1.2 1.4 1.6

degree 104

0

0.5

1

1.5

t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1.4 1.6

degree 104

0

0.5

1

1.5

t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a) m = 4096 (b) m = 8192 (c) m = 16384

Figure 5: A visualization of the partitioning procedure for the forward ALT matrix. In each case,
N = 8192. From left to right, the orders of the transform are m = 4096, m = 8192 and m = 16384.

into subblocks and using the IDBF to apply each subblock separately has the same asymptotic320

complexity as using the IDBF to apply the entire matrix (see [15]) One consequence of this is that321

the cost of using the butterfly transform to factorize the subblocks of one of the even or odd ALT322

matrices is no greater than the cost to apply an N ×N matrix of the same dimensions whose ranks323

scale in the same fashion. So the cost of factorizing the oscillatory blocks behaves as324

O
(
N log3(N)

)
, (35)

assuming our conjecture regarding the behavior of the ranks is correct. The complexity of applying325

a matrix using the IDBF is the same as that of forming the factorization, so the cost of applying326

the oscillatory subblocks of the ALT matrix using the IDBF behaves as327

O
(
N log3(N)

)
(36)

as well.328

We neglect the boxes in the nonoscillatory regime because the cost is, obviously, extremely low329

because of the very rapid decay of the associated Legendre functions as one moves away from the330

turning point into the nonoscillatory regime (see Figure 5). This makes the total cost to form the331

low rank factorizations used by our transform O
(
N log3(N)

)
332

Next, we count the cost of applying the blocks which intersect with the turning point curve.333

The maximum partition level is L = log
(
N
n0

)
, and the turning point curve intersects no more than334

2l − 1 submatrices for each partition level l. Each box is at most n0 × n0 in size, which means the335

cost of applying these blocks is336

O
(
n2

0L
(
2L − 1

))
= O (N log(N)) . (37)

This makes the total cost to apply the ALT matrices via our method337

O
(
N log3(N)

)
. (38)

13

If our algorithm for applying the ALT is used to implement the SHT, the complexity of the338

SHT is O
(
N2 log3(N)

)
, assuming that our conjecture regarding the ranks of the subblocks of the339

ALT matrices holds.340

5 Numerical results341

This section presents several numerical examples to demonstrate the efficiency of the proposed342

algorithm. All implementations are in MATLAB® on a server computer with a single thread343

and 3.2 GHz CPU, and are available in the ButterflyLab (htps://github.com/ButterflyLab/344

ButterflyLab).345

For the forward ALT, given an order m, we let gd(θ) denote the results given by applying the346

discretized operator directly using a standard matrix-vector multiplication, and we let gb(θ) denote347

the results obtained via the proposed algorithm. The accuracy of our method is estimated via the348

relative error defined by349

εfwd =

√∑
θ∈S1
|gb(θ)− gd(θ)|2∑
θ∈S1
|gd(θ)|2

, (39)

where S1 is an index set containing 256 randomly sampled row indices of the non-zero part in the350

odd matrix or the even matrix.351

We use ad(k) and ab(k) denote the results obtained by applying the inverse ALT using a standard352

matrix-vector multiplication and via our algorithm, respectively. The definition of the error εinv in353

this case is354

εinv =

√∑
k∈S2

|ab(k)− ad(k)|2∑
k∈S2

|ad(k)|2
, (40)

where S2 is an index set containing 256 randomly sampled row indices of the odd matrix or the355

even matrix.356

In all of our examples, the tolerance parameter ε for interpolative decompositions is set to357

10−10, the minimum length n0 for the partitioned block is set to 512, and the rank parameter r for358

randomized SVD in low-rank phase matrix factorization is set to 30.359

Number of the blocks: Our first experiment consists of counting the number of blocks which360

remain after those which contain no non-negligible elements are discarded. Figure 6 visualizes the361

results of this experiment for different N and with m set to be 0.5N , N and 1.5N . We observe362

that the number of remaining blocks scales nearly linearly as the problem size increases.363

Selection of Mock-Chebyshev points or randomly selected points: Next, we compare364

the results of using Mock-Chebyshev points and randomly selected points for evaluating IDs in the365

IDBF process. The results are shown in Figure 7. In these experiments, the order parameter m is366

set to be equal to N and the adaptive rank rk for IDBF is set to be 50, 100 or 150. We observe that367

the accuracy of results increases as the rank parameter rk increases, and that the accuracy of IDs368

performed with Mock-Chebyshev points is higher than that of the IDs performed with randomly369

selected points. Moreover, we conclude that letting rk = 150 suffices to achieve high-accuracy with370

Mock-Chebyshev points.371

Thus, for the rest of experiments, we will use Mock-Chebyshev points as grids to compute IDs372

in the IDBF algorithm, and the adaptive rank rk for IDBF will be fixed at 150.373

14

htps://github.com/ButterflyLab/ButterflyLab
htps://github.com/ButterflyLab/ButterflyLab
htps://github.com/ButterflyLab/ButterflyLab

10 11 12 13 14 15 16 17
log

2
(N)

2

3

4

5

6

7

8

9

10
lo

g
2
(

)
N

partition

N
N log

2
(N)

10 11 12 13 14 15 16 17
log

2
(N)

3

4

5

6

7

8

9

10

lo
g

2
(

)

N
partition

N
N log

2
(N)

10 11 12 13 14 15 16 17
log

2
(N)

0

1

2

3

4

5

6

7

8

9

lo
g

2
(

)

N
partition

N
N log

2
(N)

(a) m = 0.5N (b) m = N (c) m = 1.5N

Figure 6: Plots of the number of the remaining blocks a a function of N for m = 0.5N , m = N ,
and 1.5N .

Associated Legendre transforms of different orders: In these experiments, we measured374

the accuracy and efficiency of the proposed algorithm for various orders of m.375

Figure 8 shows that the accuracy of the proposed algorithm is unaffected by the order m of376

the ALT, even though the accuracy decays slightly as the problem size increases. The slightly377

increasing error appears to be due to the randomness of the proposed algorithm in Subsection 2.3.378

As the problem size increases, the probability of capturing the low-rank matrix with a fixed rank379

parameter becomes slightly smaller.380

Figure 9 visualizes the computational complexity of the factorizing and applying the forward381

and inverse ALT matrices. There, T fwdfac and T fwdapp are the factorization time and the application382

time of the proposed algorithm for the forward ALT, respectively. And T fwdmat and T fwddir are the time383

for constructing the normalized associated Legendre matrix and performing the matrix application384

directly. The definitions of T invfac , T
inv
app , T invmat, and T invdir for the inverse ALT are analogous. We385

observe that the running times of each these processes scale nearly linearly with the problem size.386

Figure 10 compares the factorization time and the application time of the proposed algorithm387

with the brute force approach to applying the ALT (that is, direct application of the matrix388

discretizing the ALT). We observe a significant improvement at larger problem sizes.389

6 Conclusion and future work390

This paper introduces an algorithm for the application of the forward and inverse associated Leg-391

endre transforms. Experimental results suggest that its total running time, including both an392

application and a precomputation phase, is O
(
N log3(N)

)
. Using this algorithm, the forward393

and inverse spherical harmonic transforms can be applied in O
(
N2 log3(N)

)
time, assuming our394

conjecture regarding the running time our algorithm is correct.395

The blocked IDBF algorithm used here is extremely dependent on the method used to form396

interpolative decompositions. The most efficient and accurate methods for forming such factoriza-397

tions is still an ongoing topic of research, and the authors plan to develop improved versions of398

their algorithm which incorporate new developments.399

Moreover, the authors are actively working on developing a rigorous bound on the ranks of400

blocks of the forward and inverse ALT matrices. Such a bound enable a rigorous complexity401

15

1024 2048 4096 8192 16384 32768 65536 131072
N

-11

-10

-9

-8

-7
lo

g
10

(
)

fwd (Cheb)
fwd (rand)

inv (Cheb)
inv (rand)

r
k
 = 50

1024 2048 4096 8192 16384 32768 65536 131072
N

-11

-10.5

-10

-9.5

-9

-8.5

-8

lo
g

10
(

)

fwd (Cheb)
fwd (rand)

inv (Cheb)
inv (rand)

r
k
 = 100

1024 2048 4096 8192 16384 32768 65536 131072
N

-11

-10.5

-10

-9.5

-9

-8.5

lo
g

10
(

)

fwd (Cheb)
fwd (rand)

inv (Cheb)
inv (rand)

r
k
 = 150

Figure 7: The results of experiments comparing the error in applying the associated Legendre
transform when different grids of points are used to form interpolative decompositions in the IDBF
algorithm. Here, N is the size of the matrix, and the order m is set to be N in each case. The
adaptive rank rk for IDBF is set to be 50, 100 and 150 from the top panel to the bottom panel.
“Cheb” and “rand” represent IDs with Mock-Chebyshev points and randomly selected points,
respectively.

estimate for the spherical harmonic transform.402

Acknowledgments. The authors are grateful to an anonymous reviewer for many helpful403

comments. The authors thank Yingzhou Li for his discussion on block partitioning the oscillatory404

region of associated Legendre transform. J.B. was supported in part by NSF grants DMS-1418723405

and DMS-2012487. Z. C. was partially supported by the Ministry of Education in Singapore under406

the grant MOE2018-T2-2-147. H. Y. was partially supported by NSF under the grant award DMS-407

1945029.408

16

1024 2048 4096 8192 16384 32768 65536 131072
N

-15.2

-15.0

-10.7

-10.5

-10.3

-10.1

-9.9

lo
g

10
(

fw
d

)

m = 0
m = 0.5N

m = N
m = 1.5N

1024 2048 4096 8192 16384 32768 65536 131072
N

-15.2

-15.0

-10.7

-10.5

-10.3

-10.1

-9.9

lo
g

10
(

in
v)

m = 0
m = 0.5N

m = N
m = 1.5N

Figure 8: The errors in the application of associated Legendre transforms of different orders. The
top panel shows the error εfwd of the forward ALT, and the bottom panel shows that error εinv of
the inverse ALT. Here, N is the size of the matrix, and the order m was set to be 0, 0.5N , N or
1.5N . The adaptive rank rk for IDBF was taken to be 150.

References409

[1] J. P. Boyd and F. Xu. Divergence (Runge Phenomenon) for least-squares polynomial approxi-410

mation on an equispaced grid and Mock Chebyshev subset interpolation. Applied Mathematics411

and Computation, 210(1):158 – 168, 2009.412

[2] J. Bremer. An algorithm for the numerical evaluation of the associated Legendre functions413

that runs in time independent of degree and order. Journal of Computational Physics, 360:15414

– 38, 2018.415

[3] Z. Chen, J. Zhang, K. L. Ho, and H. Yang. Multidimensional phase recovery and interpolative416

decomposition butterfly factorization. Journal of Computational Physics, 412:109427, 2020.417

[4] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.22 of 2019-418

03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,419

C. W. Clark, B. R. Miller and B. V. Saunders, eds.420

[5] J. Driscoll and D. Healy. Computing Fourier transforms and convolutions on the 2-sphere.421

Advances in Applied Mathematics, 15(2):202 – 250, 1994.422

17

10 12 14 16
log

2
(N)

-10

-5

0

5

10

lo
g

2
(T

)

T
fac
fwd T

fac
inv T

app
fwd T

app
inv N log

2
2(N) N log

2
3(N)

10 12 14 16
log

2
(N)

-10

-5

0

5

10

lo
g

2
(T

)

T
fac
fwd T

fac
inv T

app
fwd T

app
inv N log

2
2(N) N log

2
3(N)

10 12 14 16
log

2
(N)

-10

-5

0

5

10

lo
g

2
(T

)

T
fac
fwd T

fac
inv T

app
fwd T

app
inv N log

2
2(N) N log

2
3(N)

(1) m = 0 (2) m = 0.5N

10 12 14 16
log

2
(N)

-10

-5

0

5

10

lo
g

2
(T

)

T
fac
fwd T

fac
inv T

app
fwd T

app
inv N log

2
2(N) N log

2
3(N)

10 12 14 16
log

2
(N)

-10

-5

0

5

10

lo
g

2
(T

)

T
fac
fwd T

fac
inv T

app
fwd T

app
inv N log

2
2(N) N log

2
3(N)

(3) m = N (4) m = 1.5N

Figure 9: The computational complexity of the ALT for different orders m. Here, N is the size
of the matrix, and order m is set to be 0, 0.5N , N or 1.5N . “Fac” and “App” represent the
factorization time and the application time, respectively. All times are in seconds.

[6] B. Engquist and L. Ying. A fast directional algorithm for high frequency acoustic scattering423

in two dimensions. Commun. Math. Sci., 7(2):327–345, 2009.424

[7] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic425

algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,426

2011.427

[8] P. Hoffman and K. Reddy. Numerical Differentiation by High Order Interpolation. SIAM428

Journal on Scientific and Statistical Computing, 8(6):979–987, 1987.429

[9] Y. Li and H. Yang. Interpolative butterfly factorization. SIAM Journal on Scientific Comput-430

ing, 39(2):A503–A531, 2017.431

[10] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. Butterfly Factorization. Multiscale432

Modeling & Simulation, 13(2):714–732, 2015.433

[11] Y. Liu, X. Xing, H. Guo, E. Michielssen, P. Ghysels, and X. S. Li. Butterfly factorization via434

randomized matrix-vector multiplications. arXiv:2002.03400 [math.NA], 2020.435

[12] E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for analyzing scatter-436

ing from large structures. Antennas and Propagation, IEEE Transactions on, 44(8):1086–1093,437

Aug 1996.438

18

1024 2048 4096 8192 16384 32768 65536 131072
N

0

2

4

6

8

10

T
m

at
fw

d
 /

T
fa

c
fw

d

m = 0
m = 0.5N
m = N
m = 1.5N

1024 2048 4096 8192 16384 32768 65536 131072
N

0

2

4

6

T
m

at
in

v
 /

T
fa

c
in

v

m = 0
m = 0.5N
m = N
m = 1.5N

1024 2048 4096 8192 16384 32768 65536 131072
N

0

10

20

30

40

50

T
di

r
fw

d
 /

T
ap

p
fw

d

m = 0
m = 0.5N
m = N
m = 1.5N

1024 2048 4096 8192 16384 32768 65536 131072
N

0

10

20

30

40

50

T
di

r
in

v /
T

ap
p

in
v

m = 0
m = 0.5N
m = N
m = 1.5N

Figure 10: A comparison of the speed of the proposed algorithm for the ALT with the brute force
approach. Here, N is the size of the matrix, and order m is 0, 0.5N , N or 1.5N . The adaptive
rank rk for IDBF is set to be 150. From the top to bottom, the charts give the ratios T fwdmat /T

fwd
fac ,

T invmat/T
inv
fac , T

fwd
dir /T fwdapp and T invdir /T

inv
app are shown.

[13] M. J. Mohlenkamp. A fast transform for spherical harmonics. The Journal of Fourier Analysis439

and Applications, 5(2):159–184, 1999.440

[14] M. O’Neil, F. Woolfe, and V. Rokhlin. An algorithm for the rapid evaluation of special function441

transforms. Appl. Comput. Harmon. Anal., 28(2):203–226, 2010.442

[15] Q. Pang, K. L. Ho, and H. Yang. Interpolative decomposition butterfly factorization. SIAM443

Journal on Scientific Computing, 42(2):A1097–A1115, 2020.444

19

[16] V. Rokhlin and M. Tygert. Fast Algorithms for Spherical Harmonic Expansions. SIAM J. Sci.445

Comput., 27(6):1903–1928, Dec. 2005.446

[17] D. S. Seljebotn. WAVEMOTH-FAST SPHERICAL HARMONIC TRANSFORMS BY BUT-447

TERFLY MATRIX COMPRESSION. The Astrophysical Journal Supplement Series, 199(1):5,448

feb 2012.449

[18] R. M. Slevinsky. Fast and backward stable transforms between spherical harmonic expansions450

and bivariate Fourier series. Applied and Computational Harmonic Analysis, 47(3):585–606,451

2019.452

[19] M. Tygert. Fast algorithms for spherical harmonic expansions, II. Journal of Computational453

Physics, 227(8):4260–4279, 2008.454

[20] M. Tygert. Fast algorithms for spherical harmonic expansions, III. Journal of Computational455

Physics, 229(18):6181 – 6192, 2010.456

[21] N. P. Wedi, M. Hamrud, and G. Mozdzynski. A Fast Spherical Harmonics Transform for457

Global NWP and Climate Models. Monthly Weather Review, 141(10):3450–3461, 2013.458

[22] H. Yang. A unified framework for oscillatory integral transforms: When to use NUFFT or459

butterfly factorization? Journal of Computational Physics, 388:103–122, Jul 2019.460

[23] F. Yin, G. Wu, J. Wu, J. Zhao, and J. Song. Performance Evaluation of the Fast Spherical461

Harmonic Transform Algorithm in the Yin–He Global Spectral Model. Monthly Weather462

Review, 146(10):3163–3182, 2018.463

[24] F. Yin, J. Wu, J. Song, and J. Yang. A High Accurate and Stable Legendre Transform Based464

on Block Partitioning and Butterfly Algorithm for NWP. Mathematics, 7, 10 2019.465

20

	Introduction
	Related works
	Outline of this paper

	Preliminaries
	Linear scaling interpolation decomposition
	Interpolative decomposition butterfly factorization
	Low-rank approximation by randomized sampling

	Block partitioning algorithm
	The relationship between the forward and inverse associated Legendre transforms
	Odd and even Legendre transform matrices
	A block partitioning scheme
	Factorization and application of the blocks

	Conjecture regarding computational complexity
	Numerical results
	Conclusion and future work

