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Linear scalar differential equations in the high-frequency regime

0 1 0
0 0 .. 0 The complexity of typical
solutions grow linearly with
: ) ' ) “frequency:”
0 0 e 1
—qo(t) —ar(t) - —qua(t) Q- max j IA(8)] dt
Jj=1,...,n

Eigenvalues : A1(t),...,An(t)



Frequency-independent exponential representations

Riccati equation:
Y'(©)+ Xa(ty(©) =0, y(6) = e [v(0) k)
¥ (1) + ($()* + Nq(t) = 0.

WKB approximation:

1) 1
Y(t) = Z Ny()+ 0 <F) where the v); depend on g but not A
j=o

Implication:

If g is nonoscillatory, then at high enough frequencies, we can treat the Riccati

equation as if it has a slowly-varying solution.



Frequency-independent exponential representations

Zhu Heitman, B— and Vladimir Rokhlin. “On the existence of nonoscillatory phase
functions for second order differential equations in the high-frequency regime,” Journal
of Computational Physics 290 (2015), 1-27.

The gist:

If g is slowly-varying, ¥'(t) + (¥(t))* + N[ q(t) + O (exp(—=CA)) | = 0
admits a slowly-varying solution.

Implication:

For numerical purposes,

¥ (t) + (¥(1)* + Nq(t) =0

always admits a slowly-varying solution.
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"Effectively 0 when X is even of ‘
The gist: _modest size.

If g is slowly-varying, ¥'(t) + (¥(t))* + X[ q(t) + O (exp(—CA)) | =0
admits a slowly-varying solution.

Implication:

For numerical purposes,

¥ (t) + (¥(1)* + Nq(t) =0

always admits a slowly-varying solution.

When X is small, all solutions

are slowly-varying.




The fundamental idea

We construct a collection of slowly-varying phases which represent a basis in
space of solutions of the ordinary differential equation by solving the obvious
“Riccati” equation

= forow)

&' (8) + (¥(1)° + qu(t)y(t) + qo(t) = 0
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The fundamental idea

We construct a collection of slowly-varying phases which represent a basis in
space of solutions of the ordinary differential equation by solving the obvious

{Uj(t) = exp (ij(t)dt) = 1,...,n}

YO +a(8)y" (O + a0y O+ a(y (D+a(B)y(®) =0, y(t) = exp ( [ dt)

“Riccati” equation

P (t) + 4" (£)(t) + 3 (1) + 69" (1) (1(1)” + gs(£)y" (£) + 68 (£) (1(1))?
+a3()0" () + 3qs() ()9 (t) + q2(t)y'(t)
+@())* + () ((1)* + () ((1))* + qu(t)(t) + go(t) = 0

= =



How can we construct slowly-varying solutions of the Riccati equation?

¥ (t) + (¥(t)* +q(t) =0

Newton-Kantorovich iterations:

di(t) = do(t) +8(t), &' (t) +2i/q(t)é(t) = — 23%
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How can we construct slowly-varying solutions of the Riccati equation?

\ These are slowly-varying. \

Newton-Kantorovich iterations:

P1(t) = o(t) + 6(t), t) + 2in/q(t)d(t 2\/7

() = (1) + 8(t),  8'(2) + 2wt +4(1))

e

“As long as the coefficient and the residual are ‘

slowly-varying, there is a slowly-varying solution.




How do we obtain initial guesses for higher order equations?

The eigenvalues Ai(t), ..., An(t) of

0 1 0

0 0 0

0 0 e 1

—qo(t) —aq(t) - —qua(t)
are asymptotic approximations of solutions of the Riccati equation obtained by
inserting
y(©) = oo ([ (o) o)

into

Y1) + a1 (B)y "V () + -+ ()Y (6) + qo(B)y(2) = 0.



How do we obtain initial guesses for higher order equations?

0 1 0 P (1) + 3¢ ()Y (1) + q(t)y' (1) +

0 0 1 )
—qo(t) —q(t) —qu(t) (@(1)° + q2()($(1))* + qu(t)9(t) + qo(t) = 0

Robust algorithm for computing the eigenvalues:

J. Aurentz, T. Mach, R. Vanderbril and D. S. Watkins, “Fast and backward stable

computation of the roots of polynomials,” SIAM Journal on Matrix Analysis and

Applications 36 (2015), 942-973.



What can go wrong?

Turning points: (i.e., locations where the eigenvalues coalesce)

The Riccati equation need not have solutions which extend across turning
points and which are slowly-varying on both sides.

Low-frequency regions:

On intervals where the frequency is small, the linearized equations do not admit
unique slowly-varying solutions.
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What can go wrong?

Subdivide the solution domain as

needed.

Turning points: (i.e., locations where the eigenvalues coalesce)

The Riccati equation need not have solutions which extend across turning
points and which are slowly-varying on both sides.

Low-frequency regions:

On intervals where the frequency is small, the linearized equations do not admit
unique slowly-varying solutions.

"Only apply in high-frequency regions and use ODE

solvers to extend the solutions.




A frequency-indendent solver

Assumption:

A1(t),...,An(t) are distinct on [a, b] and either of large magnitude on the interval
[a0, bo], or are of small magnitude throughout [a, b].

(in other words: if one of the A; is large anywhere on [a, b], it is large on [ag, bo])

Algorithm:
Compute initial values for 1,...,1, on [ag, bo]:
— Compute Aq(t),...,An(t) at the k-point Chebyshev grid on a subinterval [ag, bo].

— For each j, use Newton-Kantorovich iterations to construct a solution ; of the
Riccati equation over [ag, bg|. The linearized equations are solved via the obvious
Chebyshev spectral method.

Use an ODE solver to construct piecewise Chebyshev expansions of the phase
functions 1, ..., over [a, b].

10



Key properties of the solver

e Running time bounded independent of frequency.

e Phase functions are computed to near machine precision accuracy

regardless of frequency.

e ODE solutions are computed to accuracy consistent with their condition

number of evaluation.

e Allows for the rapid evaluation of the solution, in time independent of
frequency, anywhere in the solution domain.

e Allows for the solution of boundary value problems as well as initial value

problems.

e Highly parallelizable (although no experiments shown here exploit this).

11
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number of evaluation.

e Allows for the rapid evaluation of the solution, in time independent of

frequency, anywhere in the solution domain.

e Allows fbr the solution of boundary value problems as well as initial value

problem

llelizable (although no experiments shown here exploit this).

Compare with step methods that sample below

the Nyquist rate.
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Airy’s Equation

Relative error

y'(t) — ty(t) =0,

400 coefficients

Ai(t) +i Bi(t)
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Legendre’s differential equation

"
yo(t) + i—epti-g y(t) =0, 0<t<09
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Associated Legendre functions

y'(t) + <—;f +u(v+ 1)cosh2(t)> y(t) =0, p=10,000, —a<t<a

Pl s (tanh(1)) + 2 @2, (tanh(e)
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Associated Legendre functions
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High relative accuracy for both P and Q in the oscillatory and

nonoscillatory regimes
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Computation of Gauss-Jacobi quadrature rules

y"(t) + q(t)y(t) =0

1
2
q(t) = 2 (sech®(w)(a+ b +2v)(a+ b+ 2v +2) — 2 (a* + (a — b)(a + b) tanh(w) + b*))
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A third order scalar equation

. 1+t 7 > exp(2t) > exp(2t)sin(t)
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A system of linear ordinary differential equations
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Scattering from a radially symmetric potential

Au(x) + k* (1 +q(r)) u(x) = 0

urexp(it)) = exp (ikrcos (t - 7))
lim ~/r

r—oo

0“; (ryt) — ikus(r, t)‘ =0
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Scattering from a radially symmetric potential

Au(x) + K (1 + q(r)) u(x) = 0
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Many other applications ...

e Fast evaluation of special functions.

B—. "An algorithm for the numerical evaluation of the associated Legendre
functions that runs in time independent of degree and order,” Journal of
Computational Physics 360 (2018), 15-38.

B—. On the numerical evaluation of the prolate spheroidal wave functions of
order zero. Applied and Computational Harmonic Analysis 60 (2022), 53-76.

e Fast application of Sturm-Liouville eigentransforms.

B—, Ze Chen and Haizhao Yang. “Rapid Application of the Spherical Harmonic
Transform via Interpolative Decomposition Butterfly Factorization,” SIAM
Journal on Scientific Computing 43 (2021), A3789-A3808.
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Comparison with Magnus expansions in a simple case
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Comparison with Magnus expansions in a simple case
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