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Linear scalar differential equations in the high-frequency regime

y pnq
ptq ` qn´1ptqy pn´1q

ptq ` ¨ ¨ ¨ ` q1ptqy 1
ptq ` q0ptqyptq “ 0

¨

˚

˚

˚

˚

˚

˚

˝

0 1 ¨ ¨ ¨ 0

0 0 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

´q0ptq ´q1ptq ¨ ¨ ¨ ´qn´1ptq

˛

‹

‹

‹

‹

‹

‹

‚

Eigenvalues : Λ1ptq, . . . ,Λnptq

The complexity of typical

solutions grow linearly with

“frequency:”

Ω “ max
j“1,...,n

ż

|Λjptq| dt
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Frequency-independent exponential representations

Riccati equation:

y2
ptq ` λ2qptqyptq “ 0, yptq “ exp

ˆ
ż

ψptq dt

˙

ψ1
ptq ` pψptqq

2
` λ2qptq “ 0.

WKB approximation:

ψptq “

n
ÿ

j“0

λ1´jψjptq ` O
ˆ

1

λn

˙

where the ψj depend on q but not λ

Implication:

If q is nonoscillatory, then at high enough frequencies, we can treat the Riccati

equation as if it has a slowly-varying solution.
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Frequency-independent exponential representations

Zhu Heitman, B— and Vladimir Rokhlin. “On the existence of nonoscillatory phase

functions for second order differential equations in the high-frequency regime,” Journal

of Computational Physics 290 (2015), 1-27.

The gist:

If q is slowly-varying, ψ1
ptq ` pψptqq

2
` λ2

r qptq ` O pexpp´Cλqq s “ 0

admits a slowly-varying solution.

Implication:

For numerical purposes,

ψ1
ptq ` pψptqq

2
` λ2qptq “ 0

always admits a slowly-varying solution.
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Frequency-independent exponential representations

Zhu Heitman, B— and Vladimir Rokhlin. “On the existence of nonoscillatory phase

functions for second order differential equations in the high-frequency regime,” Journal

of Computational Physics 290 (2015), 1-27.

The gist:

If q is slowly-varying, ψ1
ptq ` pψptqq

2
` λ2

r qptq ` O pexpp´Cλqq s “ 0

admits a slowly-varying solution.

Implication:

For numerical purposes,

ψ1
ptq ` pψptqq

2
` λ2qptq “ 0

always admits a slowly-varying solution.

When λ is small, all solutions

are slowly-varying.

Effectively 0 when λ is even of

modest size.
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The fundamental idea

We construct a collection of slowly-varying phases which represent a basis in

space of solutions of the ordinary differential equation by solving the obvious

“Riccati” equation numerically.

"

ujptq “ exp

ˆ
ż

ψjptq dt

˙

: j “ 1, . . . , n

*

y2
ptq ` q1ptqy 1

ptq ` q0ptqyptq “ 0, yptq “ exp

ˆ
ż

ψptq dt

˙

ψ1
ptq ` pψptqq

2
` q1ptqψptq ` q0ptq “ 0
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The fundamental idea

We construct a collection of slowly-varying phases which represent a basis in

space of solutions of the ordinary differential equation by solving the obvious

“Riccati” equation numerically.

"

ujptq “ exp

ˆ
ż

ψjptq dt

˙

: j “ 1, . . . , n

*

y3
ptq ` q2ptqy2

ptq ` q1ptqy 1
ptq ` q0ptqyptq “ 0, yptq “ exp

ˆ
ż

ψptq dt

˙

ψ2
ptq`3ψ1

ptqψptq`q2ptqψ1
ptq`pψptqq

3
`q2ptqpψptqq

2
`q1ptqψptq`q0ptq “ 0
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The fundamental idea

We construct a collection of slowly-varying phases which represent a basis in

space of solutions of the ordinary differential equation by solving the obvious

“Riccati” equation numerically.

"

ujptq “ exp

ˆ
ż

ψjptq dt

˙

: j “ 1, . . . , n

*

y4
ptq`q3ptqy3

ptq`q2ptqy2
ptq`q1ptqy 1

ptq`q0ptqyptq “ 0, yptq “ exp

ˆ
ż

rptq dt

˙

ψ3
ptq ` 4ψ2

ptqψptq ` 3pψ1
ptqq

2
` 6ψ1

ptqpψptqq
2

` q3ptqψ2
ptq ` 6ψ1

ptqpψptqq
2

`q3ptqψ2
ptq ` 3q3ptqψ1

ptqψptq ` q2ptqψ1
ptq

`pψptqq
4

` q3ptqpψptqq
3

` q2ptqpψptqq
2

` q1ptqψptq ` q0ptq “ 0
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How can we construct slowly-varying solutions of the Riccati equation?

ψ1
ptq ` pψptqq

2
` qptq “ 0

Newton-Kantorovich iterations:

ψ0ptq “ i
a

qptq

ψ1ptq “ ψ0ptq ` δptq, δ1
ptq ` 2i

a

qptqδptq “ ´
q1

ptq

2
a

qptq

...

ψj`1ptq “ ψjptq ` δptq, δ1
ptq ` 2ψjptqδptq “ ´

´

ψ1
j ptq ` pψjptqq

2
` qptq

¯

...
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How can we construct slowly-varying solutions of the Riccati equation?

ψ1
ptq ` pψptqq

2
` qptq “ 0

Newton-Kantorovich iterations:

ψ0ptq “ i
a

qptq

ψ1ptq “ ψ0ptq ` δptq, δ1
ptq ` 2i

a

qptqδptq “ ´
q1

ptq

2
a

qptq

...

ψj`1ptq “ ψjptq ` δptq, δ1
ptq ` 2ψjptqδptq “ ´

´

ψ1
j ptq ` pψjptqq

2
` qptq

¯

...

These are slowly-varying.

As long as the coefficient and the residual are

slowly-varying, there is a slowly-varying solution.
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How do we obtain initial guesses for higher order equations?

The eigenvalues Λ1ptq, . . . ,Λnptq of

¨

˚

˚

˚

˚

˚

˚

˝

0 1 ¨ ¨ ¨ 0

0 0 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

´q0ptq ´q1ptq ¨ ¨ ¨ ´qn´1ptq

˛

‹

‹

‹

‹

‹

‹

‚

are asymptotic approximations of solutions of the Riccati equation obtained by

inserting

yptq “ exp

ˆ
ż

ψptq dt

˙

into

y pnq
ptq ` qn´1ptqy pn´1q

ptq ` ¨ ¨ ¨ ` q1ptqy 1
ptq ` q0ptqyptq “ 0.
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How do we obtain initial guesses for higher order equations?

˜

0 1

´q0ptq ´q1ptq

¸

ψ1
ptq` pψptqq

2
` ψptqq1ptq ` q0ptq “ 0

¨

˚

˝

0 1 0

0 0 1

´q0ptq ´q1ptq ´q2ptq

˛

‹

‚

ψ2
ptq ` 3ψ1

ptqψptq ` q2ptqψ1
ptq`

pψptqq
3

` q2ptqpψptqq
2

` q1ptqψptq ` q0ptq “ 0

Robust algorithm for computing the eigenvalues:

J. Aurentz, T. Mach, R. Vanderbril and D. S. Watkins, “Fast and backward stable

computation of the roots of polynomials,” SIAM Journal on Matrix Analysis and

Applications 36 (2015), 942-973.
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What can go wrong?

Turning points: (i.e., locations where the eigenvalues coalesce)

The Riccati equation need not have solutions which extend across turning

points and which are slowly-varying on both sides.

Low-frequency regions:

On intervals where the frequency is small, the linearized equations do not admit

unique slowly-varying solutions.
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What can go wrong?

Turning points: (i.e., locations where the eigenvalues coalesce)

The Riccati equation need not have solutions which extend across turning

points and which are slowly-varying on both sides.

Low-frequency regions:

On intervals where the frequency is small, the linearized equations do not admit

unique slowly-varying solutions.

Subdivide the solution domain as

needed.

Only apply in high-frequency regions and use ODE

solvers to extend the solutions.
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A frequency-indendent solver

Assumption:

Λ1ptq, . . . ,Λnptq are distinct on ra, bs and either of large magnitude on the interval

ra0, b0s, or are of small magnitude throughout ra, bs.

(in other words: if one of the Λj is large anywhere on ra, bs, it is large on ra0, b0s)

Algorithm:

Compute initial values for ψ1, . . . , ψn on ra0, b0s:

– Compute Λ1ptq, . . . ,Λnptq at the k-point Chebyshev grid on a subinterval ra0, b0s.

– For each j , use Newton-Kantorovich iterations to construct a solution ψj of the

Riccati equation over ra0, b0s. The linearized equations are solved via the obvious

Chebyshev spectral method.

Use an ODE solver to construct piecewise Chebyshev expansions of the phase

functions ψ1, . . . , ψn over ra, bs.
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Key properties of the solver

• Running time bounded independent of frequency.

• Phase functions are computed to near machine precision accuracy

regardless of frequency.

• ODE solutions are computed to accuracy consistent with their condition

number of evaluation.

• Allows for the rapid evaluation of the solution, in time independent of

frequency, anywhere in the solution domain.

• Allows for the solution of boundary value problems as well as initial value

problems.

• Highly parallelizable (although no experiments shown here exploit this).
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• Running time bounded independent of frequency.

• Phase functions are computed to near machine precision accuracy

regardless of frequency.

• ODE solutions are computed to accuracy consistent with their condition

number of evaluation.

• Allows for the rapid evaluation of the solution, in time independent of

frequency, anywhere in the solution domain.

• Allows for the solution of boundary value problems as well as initial value

problems.

• Highly parallelizable (although no experiments shown here exploit this).

Compare with step methods that sample below

the Nyquist rate.

High-accuracy computation of zeros, Gaussian quadra-

ture weights, barycentric interpolation weights, etc.
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Airy’s Equation

y2
ptq ´ typtq “ 0, ´10, 000 ď t ď 50

400 coefficients 0.22 milliseconds
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Legendre’s differential equation

y2
ptq `

ˆ

1

p1 ´ t2q2
`
νpν ` 1q

1 ´ t2

˙

yptq “ 0, 0 ď t ď 0.9
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Associated Legendre functions

y2
ptq `

´

´µ2
` νpν ` 1q cosh2ptq

¯

yptq “ 0, µ “ 10, 000, ´α ă t ă α

rPµ
µ`λptanhptqq `

2i

π
rQµ
µ`λptanhptqq
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High relative accuracy for both P and Q in the oscillatory and

nonoscillatory regimes
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Computation of Gauss-Jacobi quadrature rules

y2ptq ` qptqyptq “ 0

qptq “
1

4

`

sech2pwqpa ` b ` 2νqpa ` b ` 2ν ` 2q ´ 2
`

a2 ` pa ´ bqpa ` bq tanhpwq ` b2
˘˘
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A third order scalar equation

y3
ptq ´

1 ` t2

1 ` t4
sinptqy2

ptq ` k2 expp2tq

p1 ` t2q2
y 1

ptq ´ k2 expp2tq sinptq

1 ` t2 ` t4 ` t6
yptq “ 0

Λ1ptq “ sinptq
1 ` t2

1 ` t4
, Λ2ptq “ ik

expptq

1 ` t2
and Λ3ptq “ ´ik

expptq

1 ` t2
.
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A system of linear ordinary differential equations

y1
ptq “

¨

˚

˝

1`t2

1`t4
1

1`t4

´k
´

1
1`t2

¯

´ik
´

2`t
5`t

¯

˛

‹

‚

yptq, ´1 ă t ă 1, yp0q “

˜

1

0

¸

Λ1p0q „ ´
2k

5
i ´

5

2
i ` O

ˆ

1

k

˙

, Λ2p0q „ 1 `
5

2
i ` O

ˆ

1

k

˙
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Scattering from a radially symmetric potential

∆upxq ` k2
p1 ` qprqq upxq “ 0

upxq “ ui pxq ` uspxq

$

’

’

&

’

’

%

ui pr exppitqq “ exp
´

ikr cos
´

t ´
π

4

¯¯

lim
rÑ8

?
r

ˇ

ˇ

ˇ

ˇ

Bus
Br

pr , tq ´ ikuspr , tq

ˇ

ˇ

ˇ

ˇ

“ 0
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Scattering from a radially symmetric potential

∆upxq ` k2
p1 ` qprqq upxq “ 0

k Maximum absolute Time

error (in seconds)

28 2.20 ˆ 10´12 9.58ˆ10´01

29 5.95 ˆ 10´12 1.93ˆ10`00

210 6.50 ˆ 10´12 4.06ˆ10`00

211 2.04 ˆ 10´11 8.57ˆ10`00

212 4.31 ˆ 10´11 1.77ˆ10`01

213 2.27 ˆ 10´10 3.70ˆ10`01

214 1.90 ˆ 10´10 7.79ˆ10`01

215 3.48 ˆ 10´10 1.62ˆ10`02

216 7.33 ˆ 10´10 3.56ˆ10`02

217 1.95 ˆ 10´09 7.22ˆ10`02
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Many other applications ...

• Fast evaluation of special functions.

B—. “An algorithm for the numerical evaluation of the associated Legendre

functions that runs in time independent of degree and order,” Journal of

Computational Physics 360 (2018), 15-38.

B—. On the numerical evaluation of the prolate spheroidal wave functions of

order zero. Applied and Computational Harmonic Analysis 60 (2022), 53-76.

• Fast application of Sturm-Liouville eigentransforms.

B—, Ze Chen and Haizhao Yang. “Rapid Application of the Spherical Harmonic

Transform via Interpolative Decomposition Butterfly Factorization,” SIAM

Journal on Scientific Computing 43 (2021), A3789-A3808.
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Comparison with Magnus expansions in a simple case

y2
ptq ` ν2

´

1 ` t2
¯

yptq “ 0, 0 ď t ď 1.0
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