APM426: GENERAL RELATIVITY

J. COLLIANDER

(1) special relativity

(a) spacetime structure

- (i) light speed invariance; spacetime interval
- (ii) light cone
- (iii) Lorentz transformations; Poincaré group
- (iv) proper time/length
- (v) paradoxes and their resolution
- (b) mechanics
 - (i) Lagrangian and Hamiltonian descriptions of classical mechanics
 - (ii) relativistic mechanics; 4-momentum; relativistc free particle
- (2) manifolds, tensors
 - (a) manifolds, basic definitions
 - (b) tangent vectors; curves on a manifold; diffeomorphisms
 - (c) covectors/dual vectors/one-forms
 - (d) tensors
 - (i) operations on tensors: contraction, outer product
 - (ii) transformation properties
 - (iii) example: metric tensor
 - (iv) example: faraday tensor, electromagnetic field
 - (v) tensor notation
- (3) <u>curvature</u>
 - (a) covariant derivative
 - (i) partial derivative transforms badly
 - (ii) formal correction of partial derivative
 - (iii) algebraic definition of covariant derivative
 - (iv) many covariant derivatives exist on a manifold; connection
 - (v) parallel transport
 - (vi) $\exists!$ metric compatible covariant derivative
 - (b) Riemann curvature tensor
 - (i) commutator of covariant derivatives \rightarrow curvature tensor
 - (ii) parallel transport around infinitesimal closed loop
 - (iii) connection determines curvature
 - (iv) algebraic symmetry properties of curvature tensor
 - (v) counting active indices
 - (vi) differential identity for curvature tensor; Bianchi identity
 - (vii) contractions; Ricci tensor; Ricci scalar; Einstein tensor
 - (c) example calculations: S^2 in detail
 - (i) metric
 - (ii) metric compatible Christoffel coefficients; connection

Date: 26 March 2002.

SPRING 2002 VERSION

J. COLLIANDER

- (iii) connection determines curvature tensor
- (iv) Ricci tensor; Ricci scalar
- (d) geodesics
- (e) Riemannian normal coordinates at a point
- (4) general relativity
 - (a) cartoon overview of Lagrangian derivation of GR
 - (b) structural assumptions and fundamental objects
 - (i) spacetime: a Lorentz manifold (M,g)
 - (ii) matter fields; local causality and energy positivity postulates
 - (iii) Lagrangian density
 - (c) integration on a manifold; metric and chart induced volume elements
 - (d) tensor density
 - (e) Examples of Lagrangian field theories
 - (i) \mathbb{R} -valued scalar field \rightarrow Klein-Gordon equation
 - (ii) no matter fields \rightarrow Vacuum Einstein equation
 - (iii) gravity + scalar field \rightarrow Einstein-Klein-Gordon system
 - (iv) electromagnetic field \rightarrow Maxwell's equations
 - (v) gravity + em field \rightarrow Einstein-Maxwell system
 - (vi) C-valued scalar field; internal symmetry
 - (vii) em field + \mathbb{C} -valued scalar field \rightarrow Maxwell-Klein-Gordon system
 - (viii) Sketch: gravity + \mathbb{C} -valued scalar field + em field \rightarrow Einstein-Maxwell-Klein-Gordon system
 - (ix) Sketch: Yang-Mills and other gauge fields
- (5) <u>exact solutions</u>
- (6) discussion of student papers

University of Toronto