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ABSTRACT The orbiting pulsar PSR 1913+16 upholds the theory of gen-
eral relativity based on observations made between the years 1974 and 1981.
According to the general relativistic quadrupole formula, one should expect the
orbital period derivative to have the value of dP/dt = −2.4× 10−12. The afore-
mentioned observations yielded a value of dP/dt = −(2.30± 0.22)× 10−12.The
outstanding agreement of the two would seem to confirm the veracity of the
theory general relativity.

INTRODUCTION
The orbiting pulsar PSR 1913+16 was discovered in 1975 by Hulse and

Taylor, and has since been observed in order to determine a number of its
properties. Specifically, the observations yielded the period time of the orbit
pulsar in a binary orbit with another star about a common center of mass.

The obtained data of the pulse arrival time were fit to a model in order to
calculate the pulse phase. The observed parameters led to the calculation of a
number of quantities, which may be categorized as follows

1. Traditional pulsar timing measurables. Parameters in this calegory in-
clude the period P, as well as its first and second time derivatives.

2. Classical derivable elements of a binary orbit. Examples of this include
the eccentricity e, as well as the binary orbital period Pb.

3. Relativistic terms. An important parameter in this category is the rate
of change of the orbital period dPb/dt

4. A number of additional terms, such as the angle of the orbit i.
In this paper, the mathermatical basis for calculating a number of these pa-

rameters will be shown, which will lead to the validation of the theory of general
relativity.

I GRAVITATIONAL WAVES IN A WEAK FIELD
In order to determine the change in energy in a system, we will first deter-

mine how the gravitational waves propagate. In particular, we will examine the
gravitational waves in a weak gravitational field. Observing Einstein’s equations
in a vacuum, Tµυ = 0,

(−∂2/∂t2 +∇2)h
αβ

= 0(1)

where h
αβ

= hαβ − 1/2 · ηαβh is the trace reverse of hαβ

We can rewrite(1) as
ηµνh

αβ

,µν = 0(2)

If we say that (1) has a wavelike solution of the form:

h
αβ

= Aαβexp(ikαx
α)(3)
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where Aαβ are constants of a tensor, and kα are constants of a one form. Then
we can rewrite (2) as:

ηµνkµkνh
αβ

= 0(4)

We require therefore that ηµνkµkν = 0. This implies that the four vector kα

is the direction of travel of the wave, which moves at the speed of light.
Imposing a gauge condition h

αβ

,β = 0 onto the Einstein equations, we find
that

Aαβkβ = 0(5)

The above shows that Aαβ must therefore be orthogonal to k.
Let us refer to k0 as the frequency of the wave (ω). For a parameter λ , and

a constant position vector at λ = 0 , the photon then travels on a curve:

xµ(λ) = kµλ+ lµ

The solution Aαβexp(ikµµ) is called a plane wave. As a result, the combination
of solutions for (1) and the gauge condition yield a superposition of plane waves.

Recalling the fact that an altered gauge remains a gauge within the Lorentz
class, we will solve:

(−∂2/∂t2 +∇2)ξα = 0

With a solution of
ξα = Bαexp(ikµx

µ)

Where kµ is the same as before, and Bα is a constant. We will get a change in
hαβ , and a consequent change in hαβ . Namely,

hαβ− > hαβ − ξα,β − ξβ,α

Dividing out the common exponential factor, and choosing appropriate Bα, we
can impose the following restrictions:

Aα
α = 0(6a)

AαβU
β = 0(6b)

for some fixed four velocity U. These two equations, combined with equation
(5), are the conditions for the Transverse-Traceless (TT) gauge.

II RESONANT DETECTOR
There are great technical difficulties involved in detecting gravitational waves.

In order to better understand what is involved in their detection, we will con-
sider an idealized resonant detector. Namely, let us consider two masses, m,
connected by a massless spring, with spring constant k. The unstretched length
of the spring is l0, and the damping constant is given by ν

Examining the system on the x-axis of the Transverse-Traceless(TT) cood-
inate system, and having the masses at positions x1, x2, the masses obey the
following:

mx1,00 = −k(x1 − x2 + l0)− ν(x1 − x2),0(2.1a);
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mx2,00 = −k(x2 − x1 − l0)− ν(x2 − x1),0(2.1b)

For ξ = x2 − x1 − l0 ; ω2
0 = 2k/m ; γ = ν/m

Combining with (2.1a) and (2.1b):

ξ,00 + 2γξ,0 + ω2
0ξ = 0(2.2)

This is the fundamental equation of the detector’s response due to the gravita-
tional wave, which is that of a simple damped harmonic oscillator. In the case
of a pulsar or binary star, this system can be used as a resonant detector for
gravitational waves with fixed frequencies.

If we say that
hTT

xx = AcosΩt,

we can state that the steady solution to ξ will simply be

ξ = Rcos(Ωt+ φ),

where R and φ are given by:

R = l0Ω2A/2((ω0 − Ω)2 + 4Ω2γ2)1/2

tanφ = 2γΩ/(ω2
0 − Ω2)

III APPROXIMATION OF WAVE GENERATION
Consider

(−∂2/∂t2 +∇2)hµν = −16πTµν(3.1)

In this section, we will try to find an approximate solution for this equation.
Separating Tµν into spatial and time-dependent functions, and assuming that
the time-dependent oscillates with frequency Ω (the real part of):

Tµν = Sµν(xi)exp(−iΩt)

this assumption is valid for two reasons: time dependence can generally be
reduced to a sum over sinusoidal motions by Fourier analysis, and the fact that
the binary system is periodic.
Another restriction to impose- the slow motion assumption- requires that the
spatial part ot Tµν be much smaller than 2π/Ω . This implies that the typical
velocity in the system be much less than 1.
Assuming that the solution has the form

hµν = Bµν(xi)exp(−iΩt)(3.2),

and combining this with 3.1:

(∇2 + Ω2)Bµν = −16π − Sµν ,

the amplitude of the gravitational waves will drop off as a function of 1/r, like
all radiation fields. The simplest solution for Bµν will have an exponential term
that increases with r and an exponential term that decreases with r. However,
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the term that decreases with r can be discarded, as this represents a term
travelling towards the origin, and we are interested in waves emitted from the
origin. Thus, we can express:

Bµν = (Aµνexp(iΩr))/r

where Aµν is a constant, to be determined in terms of the source.
Integrating each term of Bµν over a sphere with radius ε << 2π/Ω, we

obtain the following two terms:∫
Ω2Bµνd

3x ≤ Ω2|Bµν |max4πε3/3(3.3)

∫
∇2Bµνd

3x =
∫
n · ∇BµνdS = −4πAµν(3.4)

Note that the integral in the middle of equation 3.4 is a closed integral, by
Gauss’ Theorem. Since, in this case, we are looking at the source, we get the
right hand side of equation 3.4. Calling Sµνd

3x = Jµν , and evaluating the
combined (3.3)+(3.4) for ε-¿0, we get:

Aµν = 4Jµν

Recalling that hµν are related functions, as they are components of a tensor, we
will find terms to simplify hµν .

In particular,

−iΩJµ0e−iΩt =
∫
Tµν

,0 d3x

since Tµν obeys the conservation law, Tµ0
,0 = −Tµk

,k as a result. Therefore:

iΩJµ0e−iΩt =
∫
Tµk

,k d3x

Applying Gauss’ Theorem to a volume contained in the source, we see that
Tµν = 0 on the surface. For a nonzero Ω, this implies that

Jµ0 = h
µ0

= 0

Recall that
d2/dt2

∫
T 00xlxmd3x = 2

∫
T lmd3x(3.5)

Additionally, for a source in slow motion, T 00 is the Newtonian mass density, ρ.
The integral on the left hand side of equation (3.5) is the quadrupole moment
tensor of the mass distribution. It is denoted:

I lm =
∫
T 00xlxmd3x = Dlme−iΩt
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Neglecting all terms of order higher than r−2, and terms nondominant in slow
motion approximation, we obtain:

hjk = −2Ω2Djke
iΩ(r−t)/r

Additionally, if we use previous information about TT gauges, one that is trans-
verse to the radial direction (where the measured point on the wave is travelling
in the z direction), we see that:

h
TT

xx = −hTT

yy = −Ω2(Ixx − Iyy)eiΩ(r−t)/r(3.6)

Where Ijk is called the reduced quadrupole moment tensor, and is:

Ijk = ijk − 1/3δjkI
l
l

IV ENERGY DUE TO GRAVITATIONAL WAVES
Similar to gravitational waves, detectors can also add energy into objects

that they pass through. It can further be understood that they can take energy
away from their sources. This is a crucial point, as it will help us in understand-
ing what happens precisely with orbiting binary stars.

We previously examined a single oscillator constructed of two masses, and
assumed that this detector had a negligible effect on the gravitational wave
field. Unfortunately, this is not completely correct. Continuing with previous
reasoning, as the detector extracts energy from the waves, the waves become
increasingly weaker after passing through the detector. In other words, the
amplitude in the downstream will be lower than that in the upstream.

We are thus interested in the energy carried by a wave across a surface per
unit area per unit time, which is just the energy flux. Rather than considering a
single oscillator, it is more logical to think of a system with many oscillators on
the z = 0 plane. Say we have σ oscillators per unit area, on a nearly continuous
distribution of oscillators. In the TT gauge, the incident wave is thus:

h
TT

xx = AcosΩ(z − t) = −hTT

yy

Note that, due to the fact that the scattered energy due to friction can be
compensated for by the work applied by the tidal gravitational forces of the
wave onto the spring, each oscillator will have a steady oscillation. Recall from
II, steady oscillation has the form:

ξ = Rcos(Ωt+ φ)

where R and φ are given, as before:

R = l0Ω2A/2((ω0 − Ω)2 + 4Ω2γ2)1/2

tanφ = 2γΩ/(ω2
0 − Ω2)
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The energy from the wave to each oscillator can be written as:

dE/dt = mγ(dξ/dt)2

Averaging the above expression over a period of 2π/Ω , which is the energy to
each oscillator per unit time, gives:

< dE/dt >= 1/2mγΩ2R2.

Considering the decrease of the flux, F, on the z = 0 plane, with σ oscillators
per unit area:

δF = −1/2σmγΩ2R2(4.1)

Consider the quadrupole tensor for each oscillator, where the amplitude is half
the total stetching of the spring, R:

Ixx = ml0Rcost(Ωt+ φ).

Note that the wave amplitude produced by each oscillator a distance r away, is
much smaller than the incident wave. It is given by:

δhxx = −2Ω2ml0Rcos(Ω(r − t)− φ)/r

where we ignored terms in the above two equations, as R is much smaller than
l0, and 2Ω is negligible compared with Ω.

Consider a point, p1 a distance z away from the plane of oscillators, centred
at a point p2. Taking any oscillator, at a point p3, a distance ω away from p2,
we get that r = ((ω)2 + z2)1/2 .

At p1, the field due to oscillators is:

δh
total

xx = −2mΩ2l0R2π
∫ ∞

0

σcos(Ω(r − t)− φ)dr.

Observing the fact that the further away the observation point is, the smaller
the impact, we can say that σ is proportional to e( − εr) , in the limit when ε
goes to zero after integration.

The result is a net wave, given by:

δh
total

xx = 4πmσΩl0Rsin(Ω(z − t)− φ).

We will now place this in the TT gauge, so as to add this to the incident wave:

δh
TT

xx = −δhTT

yy = 2πmσΩl0Rsin(Ω(z − t)− φ).

The net result of the incident wave and the wave amplitude due to each oscillator
is:

δh
(
net)xx = (A− 2mσπΩl0Rsin(Ω(z − t)− ψ)

where the phase shift ψ is given by:

tanψ = −2(mσπΩl0Rcosφ)/A.
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Hence, the net reduction in the amplitude, apart from the phase shift, shall be:

δA = −2mπσΩl0Rsinφ(4.2).

Dividing (4.1) by (4.2), and ordering to remove R and φ give the result of

δF/δA = Ω2A/16π

which does not in the least depend on any properties of the oscillators. This is
useful, as it allows us to generalize, and thus obtain:

F = Ω2 < h
TT

µν h
TTµν

> (4.3)

where the average of the square of the wave is given by:

< (h
TT

xx )2 >= 1/2A2.

We will now examine the specific case of an isolated radiating system. Inte-
grating (4.3) over a sphere, distance r along the z axis (z is the direction from
the centre of coordinates where the radiation originates) gives:

F = Ω6 < 2IijI
ij − 4IzjI

j

z + I
2

zz > /16πr2.

The total luminosity is the integral of F over the sphere with radius r. There-
fore, the luminosity L of a source of gravitational waves is:

L =
∫
Fr2sinθdθdφ = 1/5Ω6 < IijI

ij
> .

For a general time dependence, this yields:

L = 1/5 < ˙̄Iij
˙̄I
ij

where the dots denote third time derivatives.
We are finally ready to consider our case, that of the binary pulsar. We will

get the following for L:

L = 8/5m2l40ω
6 = 4.0(mω)10/3.

The Newtonian energy, with orbital radius r = 1/2l0 is given by:

E = Mω2r2 −M2/2r

Comparing with (10.3), taking the logarithms, differentiating, and seeing that
dE/dt = L, we obtain:

L/E = −2/31/PdP/dt.

This shows the change in the period. Note that the change in the period
decreases. Before interpreting, it is important to state one last fact. The change
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in energy and change in period depend upon the eccentricity of the orbit. The
relativistic prediction of the change of orbit prediction is thus:

dP/dt = −2.4× 10−12.

This agrees exceptionally well with the observed value of

dP/dt = −(2.30± 0.22)× 10−12

CONCLUSION
The theory of general relativity successfully predicts the energy loss due to

gravitational radiation in the case of the orbiting pulsar PSR 1913+16. Ad-
ditionally, the theory of general relativity is the only theory which accurately
predicts the energy loss. Thus, it may be concluded that the orbiting pulsar
validates the theory of general relativity.
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