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Abstract

We study the development from Einstein’s relativistic energy-
momentum relation for free particles, E? — ¢?p? — m%c4 = 0, to the
Klein-Gordon equation, [—A29? + c?h?A —m3ct|y = 0, describing free
spin-less particles in quantum mechanics (QM). To this end, we will
introduce concepts of QM motivated by de Broglie’s particle-wave du-
alism (“p = hE”) and Einstein’s explanations of the photo electric
effect (“F = hw”). We show explicitly the Lorentz invariance of the
Klein-Gordon equation and contrast this with the non-relativistic free
Schrédinger equation [ihd; + h2/(2m)AJyp = 0.

1 Introduction into Quantum Mechanical
Phenomena

In this section we discuss fundamental physical observations which led to
the development of a new theory, the quantum mechanics. We introduce
Einstein’s quantum hypothesis to describe the photoelectric effect and de
Broglie’s ansatz to understand particles as wave objects. These form the
basis of (relativistic) quantum mechanics and are of untold importance.

In 1905, Albert Einstein realized, motivated by the photoelectric effect,
that the so called quanta, first used by Max Planck to describe that radiation



were emitted in packets only, were not a feature of atoms but of light itself.
Einstein therefore used Planck’s Law for light and explained that one should
think of the light as a stream of quanta (i.e., particles), the so called photons,
whose energy E was proportional to their frequency w,

E = hw, h=1.0546 x 107** Joule x sec (Planck’s constant). (1)

The same year, Einstein developed his special relativistic theory. Within
this theory he could relate the energy E of a free moving particle with its
momentum p by claiming

— T D =myc, (2>

where ¢ is the speed of light and mg the rest mass of the particle. With
Einstein’s hypothesis about the particle character of light we can derive an
energy-momentum relation for photons

E = cpl, (3)

where we used that the photons’ mass must be zero since they are propagating
with speed of light.

At the other hand, some physical phenomena as the diffraction of light
at small objects can only be explained by its wave character. We consider
such a (non-interacting) planar light wave travelling in the direction k with
a frequency w,

it

W(#, 1) = e(FEet), (4)

The wave vector k and w are related to the propagation speed ¢ by w = C|E\,
i.e., the length |k| of the wave vector equals 27/ with A being the wavelength

of the light. From (1) and (3) follows that the momentum of a photon is
proportional to its wave vector:

ho  hw
pl = —

AT
T

Since the momentum of the light is collinear with the propagation direction
we even get

7= hk. (5)



Plugging this and (1) into (4) we get

1 i

Y(T,t) = Yp(7,t) = Weg(ﬁf—m)’ (©)

where we additionally introduce a normalization factor whose convenience
becomes clear in the next section.

The above considerations show that there exist two different, equally
justified, models describing the structure of light. The connection between
both models is given by (5).

In 1923-24, de Broglie did an experiment in which he sent electrons to
a double slit. Surprisingly, he observed patterns on a screen behind which
did not look like the projection of the slits via geometrical optics but rather
like the interference structure of light waves diffracted at the same slit appa-
ratus. Motivated by this, he claimed that electrons also behaved like waves
and assigned to any particle with momentum p a wave vector k via (5).1
Therewith he extended the particle-wave dualism of light to every kind of
matter. Based on this we understand a free moving particle of momentum p’
and energy F as a planar wave of the form (6).

2 Mathematical Objects and Physical Inter-
pretations in Quantum Mechanics

In this section we introduce the mathematical objects of quantum mechanics
(henceforth abbreviated as QM) and give a physical meaning to them, e.g.,
we motivate how the assigned wave function (as figured out in the last
section) of a particle describes its configuration. Further, we work out the
dynamics of QM systems.

First, we recall the objects of Newton mechanics (NM) to contrast them
later with QM. The configuration of a single particle in the three dimensional
space is given by the pair (Z,p) € R2 x R of position ¥ and momentum
p. The Hilbert space H = R2 x R% of all possible configurations is the
configuration space. The motion of such a particle with mass m obeys by

!The corresponding wavelength A\ = 2wh/|p] is known as de Broglie wavelength of the
particle.



Newton’s law a differential equation of the form
mi(t) = F(T(t), (1)), (7)

where F'(Z,7) is the force onto the particle at position Z and velocity v =
p/m. Since (7) is a differential equation of second order in ¢, two initial
conditions on Z(t) are needed in order to solve it uniquely, e.g., Z(to) = Zo,
Z(to) = po/m. Thus, the motion of the particle is determined by assigning a
configuration (Zy, py) to a given time t.

Physical observables are real valued functions

f:H—R (8)

assigning to a given position and momentum a measurable quantity of the
system. An important example is the total energy observable

~2

H(Z,7) = §—m T V(3), (9)

where p?/2m describes the (non-relativistic) kinetic energy and V() the
potential energy induced by the force F'.

We now go over to describe configurations of QM systems. Thereby, we
restrict ourselves to the spin-less description of particles. During the last sec-
tion we have seen that a particle with momentum p can be associated with a
planar wave 1z given in (6). We want to generalize this association. We con-
sider configurations for a fixed time such that we drop — for the moment — the
time dependence in (6) by setting ¢ = 0. Assume we are given a momentum
distribution 1) € Hy := L*(R}C),eg., pr W(ﬁ)P/H&H%ﬁ is the probability
density that the particle possesses the momentum p’ (|| - ||+, denotes the
L*-norm of the Hilbert space Hy). To such a momentum configuration we
assign a wave function ¢ € Hz := L*(R2;C) by

1 N i
V@) = 450 = G / b(p)er?? dp
R3

which is the superposition of planar waves ¢y(Z,t = 0) weighted by @E(ﬁ)
Note that we recover (6) by choosing the delta-“function” as momentum
distribution, ¥ (p”) = §(p'—p”). We stress that the momentum distribution v



and the wave function ¢ are one-to-one related via the Fourier transformation
F: Hj;‘ - Hﬁ, given by

FU) =50 = gy [ @

Therefore the wave functions 1 span the whole Hilbert space Hz. It remains
to give physical significance to them. A non-zero element ¢ € Hz describes
the configuration of a single particle in the sense that & — [¢(Z)?/[|¥|3,.
is the probability density to find the particle at the position #. It is crucial
that ¢ already carries information about the momentum distribution @/A) since
both are related by F. This shows that all physical configurations are already
encoded in Hz or Hp, resp., and not by its product as in NM. Henceforth we
will denote the configuration space by ‘H := L*(R?;C) and understand it as
the space of configurations in either position or momentum representation,
B(7) o $(7), resp.

It seems convenient to define the mean position of a particle in a state
() in position representation. The expectation value of the jth coordinate
x; in the state ¢ is defined as

<&m:/%wmw% (10)

Using that the inner product on the Hilbert space H is given by (¢, ¢) =
Jrs 0(@)o(Z) d*x we can write (10) as

<XJ>¢ = W?Xﬂm )
where X is the position operator on ‘H defined by
[(X;9] (Z) = ().

Similarly, we get the expectation value of the jth coordinate of the mo-
mentum, p;, in the state ¢ by

U%W:/MW@Pﬁ%

R3



where ¢ = F is the momentum representation. We can express this in
terms of a momentum operator P;,

<PJ>¢ = (¥, Pv),
where P; must fulfil F [P;¢] (p) := pjzﬂ(ﬁ). It is easy to see that
[Py (T) = —ihdy; (7).

In what follows, we abbreviate the three components of position and momen-
tum operator by X and 157 resp.

The physical observables in a QM framework are described as operators
on H which are built of position and momentum operators. The procedure
which assigns an operator f(X,P) to a classical observable given in (8) is
called quantization. The most important example for our purposes is the
quantization of the total energy observable (9),

L, . P2 S 712 S
H=H(X,P)= %H/(X) :—%AqLV(X),

where P2 := P2+ P2+ P2 and V(X) is an operator only dependent upon the
position operator. We get the kinetic energy operator by setting V()? )= 0.

We want to describe the dynamics for a QM system. To this end we have
to find a differential equation which is solved for a family of configurations
¥(-,t) € H labelled by the time parameter ¢ describing the actual motion of
the system. Since the configuration of the system for an initial time ¢t = ¢,
is totally determined by a wave function v, the evolution t + (-, t) must
uniquely be given by the wanted differential equation and the initial condition
(-, to) = 1. This implies that the equation of motion must be of first order
in derivatives w.r.t. the time variable t, i.e., of the form

ho (-, 1) = F (¢(-,1)), (11)

where F'is a function on H. To fix the map F' we recall that the description
of interference phenomena for (material) wave functions must be contained
in the dynamics , i.e., we require the superposition principle for the equation
(11). In other words, we require that (11) is a linear equation. This makes
necessary that F'(¢)) = H1 is a linear operator, the so called Hamilton oper-
ator, on ‘H. The equation (11) now reads

iﬁ@t¢('>t) :H¢('7t) (12)
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and is known as Schraodinger equation.

To stress the physical significance of the Hamilton operator H we plug
the (planar) wave function ¢z(Z,t) given in (6) for a free particle into the
Schrodinger equation (12) and get

Egs(-,t) = Hiy( -, 1) (13)

which is an eigenvalue equation for H. Since E is the energy of the
free (planar) wave it is suggestive that H is the kinetic energy operator
H = P?/(2m) = —h?*/(2m)A. This together with (13) leads to the energy-

momentum relation )

p
E=-— 14

o (14)
as one expects for free (non-relativistic) particles. With these considerations
the free Schrodinger equation has the form

h2
and its solutions are the planar waves (6) fulfilling (14). To describe the
dynamics of particles in a potential V() we have to modify the free Hamilton
operator to H = P?/(2m) + V(X) and result in the interacting Schrodinger

equation
2

i0(7, 1) = [—h—A + V(a‘:’)} W(Z,1). (16)

2m

3 Non-Invariance of the Free Schrodinger
Equation under Lorentz Transformation

In this section we will show that the Schrodinger equation is not a rela-
tivistic one. This results in the fact that the energy-momentum relation
(14) of solutions of the free Schrédinger equation (planar waves) is not
a relativistic relation. To understand where the relativistic character of
the Schrodinger equation fails we show that it is not form invariant under
Lorentz transformations. This is done at a concrete example.

Let
L:={AeR" |ATgA =g} (17)
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be the group of Lorentz transformation, where the Minkowski metric g is
given by

-1 0 0 0
B 0 100
9= 0o 010
0 001
We denote for a given Lorentz transformation A
z' = Az, (18)

where © = (xy = ct, T) is the four-position vector. The transformation A can
be lifted to the wave functions (Z,t) = ¥ (z) by

V(@) = p(z) = Y(A™). (19)
The transformation of the four-gradient V = (0, ..., Js) obeys

3
/ / ! _ T 1
Zé‘ % Zayw’m)Aw—[A V], (20)
and consequently

9,0:1(x Z Ay By 0,00 (). (21)

v,0=0

Lorentz invariance of the free Schrodinger equation
h2
[ich@o - %(63 + 95 + 83)} Y(z) =0 (22)

would mean that we can replace the variable x, the wave function 1 and the
partial derivatives 9, by their transformed analogues ', 1)’ and 9|, and get
an equation still describing the same dynamical system. Since the temporal
and the spatial derivatives in (22) do not appear in the same order we see
directly that temporal and spatial coordinates are not treated equally within
the theory. To show in details that Lorentz invariance fails in the case of the
Schrodinger equation we specify our choice of a Lorentz transformation to
be a pure Lorentz boost,

cosh@ sinhf 0 0O

A sinh@ coshd 0 0
' 0 0 10|’

0 0 0 1



with @ # 0, which mixes time and spatial coordinates.? It follows immediately
that

Jo = cosh(0)d}) + sinh(0)d,,
01 = sinh(0)d), + cosh(9)d,
Dy = 0,
9y = 0,

Therefore, the Schrodinger equation (22) transforms under A to

2

[;—m (sinh?(0)9 + cosh®(0)0;? + 2sinh(6) cosh(0)9)d; + 05 + 05)

+ich (cosh(0)d), + sinh(0)d,) ] V(@) =0

which is not of the form (22). This shows that the free Schrédinger equation is
not Lorentz invariant and does not qualify for the description of relativistic
quantum mechanics. In the next section we will modify the Schrédinger
equation to get an Lorentz invariant expression.

4 The Klein-Gordon Equation

The requirement on a relativistic description of QM is an equation for wave
functions ¢ (x) which is form invariant under Lorentz transformations A € £
(defined in (17)) in the sense mentioned in the last section. We have seen
that this in particular demands that the time and spatial variables are
treated in the same way and therefore temporal and spatial derivatives of
the wanted wave equation must appear in the same order. In this section
we develop an equation for non-interacting waves which gives the right
relativistic energy-momentum relation of free particles. Further, we prove
that this equation is indeed Lorentz invariant.

In section 2 we have seen that we can obtain the free Schrodinger equation
(15) by quantizing the non-relativistic energy-momentum relation (14). To
this end we had to replace p formally by the 3-momentum operator P and

20One can check that pure rotations which only transform spatial coordinates among
each other leave (22) form invariant.



E/c by the operator ihdy =: Py which we will refer to from now on as the
zero component of the 4-momentum operator P = (F, }3)

The canonical ansatz to find a Lorentz invariant wave equation is to
quantize the relativistic energy-momentum relation (2) for free particles,

[—R*0F + WA + mie] (z) = 0. (23)

We introduce the notation of the d’Alembert operator, 0 := VIgV = A — 93
(where V = (0, ...,03)7T is the 4-gradient written as a column) to write (23)
in a compact form,

h

This equation is the free Klein-Gordon equation which describes the (free)
quantum dynamics of relativistic (spin-less) particles. It is suggestive that
(24) is invariant under Lorentz transformations A because the operator [J is
formally a Lorentz scalar. We will stress this in detail.

Let A € £ be a Lorentz transformation and recall from (18) — (21) the
transformation of x, ¢ and 9, induced by A. We then have

{D + (1) } b(x) = 0. (24)

OY(z) = ) OugusO-tb(x)

w1, 7=0

3
= Y Mg (AT 000 (2)

w,Tv,0=0
3

= > (AgA"), 0,0, ()

v,0=0

S )
v,0=0
= OY'(2),
where we used that ATgA = ¢ implies
AgA" = Ag(gA™'g7) = g.

Together with (19) we end up with

{D/ + (%)1 V(@) = 0.
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After having shown that the Klein-Gordon equation carries the features
of a relativistic equation we are now interested in its solutions. As for the
Schrodinger equation the planar waves

1 i

Up(x) = Wﬁw (25)

with a sharp 4-momentum p = (E/c, p) (we use the notation p-x :=p- ¥ —
Poxo) are the solutions for the Klein-Gordon equation. However, as one can
check by plugging (25) into (24), we get as energy momentum relation

p‘p—l—mgc2:0

which is exactly the equation (2). We mention that — in contrast to the non-
relativistic case (14) — the energy of solutions of the Klein-Gordon equation

can also be negative,
Ey = dcy/p? + m3c2.

The solutions yielding negative energy FE_ are physically connected with
antiparticles. It is impressionable that the relativistic description of quantum
mechanics already predicts the existence of antiparticles.

We close this section with a remark. Choosing my = 0 in (24) one get
the wave equation as it appears in electro dynamics. This is consistent with
the fact that the relativistic quantum mechanical description of (massless)
photons should be the same as described by Maxwell’s equations.

5 Lacks of the Klein-Gordon Equation and
Outlook

In this section we will state some lacks of the Klein-Gordon equation. From
(23) it is obvious that the Klein-Gordon equation is of second order w.r.t. the
time derivative. This implies that the dynamics of the system described by
(24) is not determined by a single initial condition ¥(-,ty) = 1o but rather
we have to require an additional condition on (-, ) = . Consequently,
a single wave function ¢y € H cannot encode the whole information of the
system’s configuration since it does not allows predictions of the configuration
at later times t > ty. To remove this weakness one can write the Klein-Gordon
equation as two coupled Schrodinger equations where we also split the wave

11



function ¢ = (¢, x) into two components referring to its part with positive
energy (particle), ¢, and negative energy (antiparticle), .3

Further, the Klein-Gordon equation is not qualified for describing
spin-1/2 particles. The relativistic description of spin particles requires a
totally new investigation which leads to the Dirac equation.*
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