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Introduction

The traditional arena of geometry and topology is a set of points with some
particular structure that, for want of a better name, we call a space. Thus, for
instance, one studies curves and surfaces as subsets of an ambient Euclidean space.
It was recognized early on, however, that even such a fundamental geometrical
object as an elliptic curve is best studied not as a set of points (a torus) but rather
by examining functions on this set, specifically the doubly periodic meromorphic
functions. Weierstrass opened up a new approach to geometry by studying directly
the collection of complex functions that satisfy an algebraic addition theorem, and
derived the point set as a consequence. In probability theory, the set of outcomes
of an experiment forms a measure space, and one may regard events as subsets of
outcomes; but most of the information is obtained from “random variables”, i.e.,
measurable functions on the space of outcomes.

In noncommutative geometry, under the in influence of quantum physics, this
general idea of replacing sets of points by classes of functions is taken further. In
many cases the set is completely determined by an algebra of functions, so one
forgets about the set and obtains all information from the functions alone. Also,
in many geometrical situations the associated set is very pathological, and a direct
examination yields no useful information. The set of orbits of a group action, such
as the rotation of a circle by multiples of an irrational angle, is of this type. In such
cases, when we examine the matter from the algebraic point of view, we often obtain
a perfectly good operator algebra that holds the information we need; however, this
algebra is generally not commutative.

The Gelfand-Naimark theorem gives us a complete equivalence between the cat-
egory of locally compact Hausdorff spaces with continuous maps and the category
of commutative C∗-algebras with *-homomorphisms. In a famous paper [9] that
has become a cornerstone of noncommutative geometry, Gelfand and Naimark in
1943 characterized the involutive algebras of operators by just dropping commuta-
tivity from the most natural axiomatization for the algebra of continuous functions
on a locally compact Hausdorff space. Thus, a noncommutative C∗-algebra will
be viewed as the algebra of continuous functions on some ’virtual noncommutative
space. The algebra-topology duality can be neatly summed up with the following
dictionary, from [15],
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TOPOLOGY ALGEBRA
Locally compact space C∗-algebra

Compact space Unital C∗-algebra
Compactification Unitization

Continuous proper map ∗-homomorphism
Homeomorphism Automorphism

Open subset Ideal
Closed subset Quotient algebra

Second countable Separable
Measure Positive functional

In order to go further however, particularly with regard to physical examples, we
need to move beyond this noncommutative topology, and into some sort of dif-
ferential structure. This will be the focus of this paper. This new calculus can
be described simply in the following dictionary. For an involutive algebra A, we
construct a spectral triple (A,H, D), where H is the Hilbert space on which A is
realized, and D is a selfadjoint unitary on H. The dictionary then will be [4],

CLASSICAL NONCOMMUTATIVE
Complex function Operator on H

Real function Selfadjoint operator on H
Infinitesimal Compact operator

Differential df Commutator da = [D, a]
Integral Dixmier trace trω

The first section of this paper will be devoted to developing this noncommuta-
tive differential geometry. In the second section, we will apply these new tools to
construct a gravity model through noncommutative geometry.

1. The Spectral Calculus

In this section we will introduce the basic notions of the noncommutative gen-
eralization of the usual calculus on manifolds.

1.1. Infinitesimals. Recall that for any T ∈ K(H), we have the polar decomposi-
tion T= U |T |, where |T |= (T ∗T )1/2. Then, the eigenvalues of |T |, with multiplic-
ity, are called the characteristic values of T . These characteristic values, denoted by
{µn(T )}n∈N, are enumerated in decreasing order. So, µ0(T ) = ‖T‖, the operator
norm of T , and µn(T ) → 0 as n →∞.

Because compact operators are, in a sense, ‘small’, they play the role of infinites-
imals in Connes’ theory. The rate of decay of {µn(T )} as n → ∞ tells us the size
of the infinitesimal T ∈ K(H), as set out below:

Definition 1.1.1. For any α ∈ R+, the infinitesimals of order α are all T ∈ K(H)
such that

(1.1.1) µn(T ) = O(n−α), as n →∞

(1.1.2) ie. ∃ C < ∞ such that µn(T ) ≤ Cn−α,∀ n ≥ 1
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Now, for any two compact operators T1 and T2, we have the submultiplicative
property[13],

(1.1.3) µn+m(T1T2) ≤ µn(T1)µm(T2),

implying that the orders of infinitesimals are well-behaved,

(1.1.4) Ti of order αi ⇒ T1T2 of order α1 + α2

And lastly, infinitesimals of order α form a (two-sided) ideal in B(H), since for any
B ∈ B(H) and T ∈ K(H) [13],

(1.1.5) µn(TB), µn(BT ) ≤ ‖B‖µn(T )

1.2. The Dixmier Trace. In the noncommutative approach, as in the ordinary
calculus, one looks for an ‘integral’ neglecting infinitesimals of order > 1. The
Dixmier trace, constructed below, will be exactly what we are looking for.
For a positive compact operator T , we have

(1.2.1) tr T =
∞∑
0

µn(T )

Now, in general, infinitesimals of order 1 are not trace class, since the only bound
we have on the characteristic values is µn ≤ C 1

n , for some positive constant C. But,
from this we see that the usual trace (1.2.1), is at most logarithmically divergent
for (positive infinitesimals order 1:

(1.2.2)
N−1∑

0

µn(T ) ≤ C logN

We wil use the Dixmier trace as a way to simply extract this coefficient C of
logarithmic divergence. It is rather interesting that this coefficient behaves like a
trace[8].

The ideal of compact operators which are infinitesimals of order 1 will be denoted
by L(1,∞). For any positive T ∈ L(1,∞), the natural thing to do is take the limit of
the cut-off sums,

(1.2.3) lim
N→∞

1
logN

N−1∑
0

µn(T )

However, problems with linearity and convergence arise in this definition. Now for
any T ∈ K(H) consider the sums,

(1.2.4) σN (T ) =
N−1∑

0

µn(T ) , γN (T ) =
σN (T )
logN

Then, we have[4],

(1.2.5) σN (T1 + T2) ≤ σN (T1) + σN (T2), ∀ T1, T2,

(1.2.6) σ2N (T1 + T2) ≥ σN (T1) + σN (T2), ∀ T1, T2 > 0
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As a result, for any two positive operators T1 and T2,

(1.2.7) γN (T1 + T2) ≤ γN (T1) + γN (T2) ≤ γ2N (T1 + T2)(1 +
log2
logN

)

Thus, convergence would imply linearity, but the sequence {γN} (though bounded)
does not, in general, converge. However in most examples of physical interest, {γN}
is, in fact, convergent. So, (1.2.3) certainly yields a positive linear functional, since
L(1,∞) is generated by its positive elements. Thus, we will define the Dixmier trace,
trω, by

(1.2.8) trω(T ) = lim
N→∞

1
logN

N−1∑
0

µn(T )

Also, from (1.1.5), for any T ∈ L(1,∞),

(1.2.9) trω(BT ) = trω(TB), ∀B ∈ B(H)

And, any infinitesimal T of order greater than 1 satisfies

(1.2.10) µn(T ) = o(
1
n

), i.e. nµn(T ) → 0 as n → ∞
So the corresponding sequence γN (T ) converges to zero, showing that the Dixmier
trace vanishes on infinitesimals of order > 1. Thus, the Dixmier trace is, in fact, a
trace whose domain is L(1,∞), and neglects all infinitesimals of order > 1.

1.3. Spectral Triples. Here we will introduce the main concept used by Connes
to develop the analogue of differential calculus for noncommutative algebras.

Definition 1.3.1. A spectral triple (A,H, D) is given by an involutive algebra A
of bounded operators on the Hilbert space H, together with a self-adjoint operator
D on H (called the Dirac operator) satisfying:

• The resolvent (D − λ)−1, λ ∈ C\R, is a compact operator on H ;
• The commutator [D, a] = Da− aD ∈ B(H), ∀ a ∈ A

These conditions imply that the collection {λn} of eigenvalues of D forms a
discrete subset of R [4]. In addition, (D − λ)−1 being compact has characteristic
values µn((D − λ)−1) → 0, and thus |λn| = µn(|D|) → ∞.

Also, consider the derivation δ on B(H) defined by

(1.3.1) δ(T ) = [|D|, T ].

Given this derivation δ, the subalgebra Ak ⊂ A, with k ≥ 2, consists os all elements
a ∈ A such that both a, and [D, a] are in the domain of δk−1. The elements of⋂Ak are said to be of class C∞.

Now consider a closed n-dimensional Riemannian spin manifold (M, g). The
corresponding spectral triple (A,H, D) is called the canonical triple over M . In
this example we have,

• A = F(M), the algebra of smooth, complex-valued functions on M .
• H = L2(M, S), the space of square integrable sections of the irreducible

spinor bundle over M , with the natural scalar product.
• D is the Dirac operator associated with the Levi-Cevita connection of the

metric g.
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Recall that taking the norm closure of an involutive algebra A, yields a C∗-
algebra A. Leaving the details to [10], we state the following proposition without
proof.

Proposition 1.3.2. For the canonical triple (A,H, D), we have
• M is the structure space of the C∗-algebra A of continuous functions on M

(This, of course, is simply the Gelfand-Naimark theorem).
• The geodesic distance between any two points p, q ∈ M is given by

(1.3.2) d(p, q) = sup
f∈A

{|f(p)− f(q)|; ‖[D, f ]‖ ≤ 1}, ∀p, q ∈ M.

• The Riemannian measure on M is given by

(1.3.3)
∫

M

f = C trω(f |D|−n), ∀ f ∈ A,

Where C = 2(n−[n/2]−1)πn/2nΓ(n/2).

In accordance with this proposition we can define noncommutative analogues of
(1.3.2), and (1.3.3). The distance function on the state space S(A) is given by

(1.3.4) d(φ, ξ) = sup
a∈A

{|φ(a)− xi(a)|; ‖[D, a]‖ ≤ 1}, ∀φ, ξ ∈ S(A).

To define the analogue of the measure integral, we first need the notion of the
dimension of a spectral triple.

Definition 1.3.3. A spectral triple (A,H, D) is of dimension n > 0 if |D|−n is an
infinitesimal of order 1.

Now, given an n-dimensional spectral triple, for any a ∈ A its integral is defined
by

(1.3.5)
∫

a =
1
V

trωa|D|−n,

where the constant V is determined by the characteristic values of |D|−n. More
precisely, µj(|D|−n) ≤ V

j for j →∞.

1.4. Universal Differential Forms. For a unital involutive algebra A over C,
the universal differential algebra of forms ΩA =

⊕
p ΩpA is a graded algebra which

we will construct below. In degree 0, we have Ω0A = A. The space of one-forms,
Ω1A, is generated as a left A-module by symbols of degree δa, for a ∈ A, satisfying
the relations

(1.4.1) δ(ab) = (δa)b + aδb

(1.4.2) δ(αa + βb) = αδa + βδb

The Leibniz rule (1.4.1) automatically gives

δ1 = δ(1 · 1) = (δ1) · 1 + 1 · (δ1) = 2(δ1) =⇒ δ1 = 0 =⇒ δC = 0.

So, a generic ω ∈ Ω1A is just a finite linear combination

(1.4.3) ω =
∑

finite

aiδbi, for some ai, bi ∈ A
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We can also give Ω1A a right A-module structure by setting

(1.4.4)
( ∑

aiδbi

)
c =

∑
ai(δbi)c =

∑
aiδ(bic)−

∑
aibiδc

where we have used the Leibniz rule to obtain the final equality.
The map

δ : A → Ω1A
can be considered a derivation of A with values in the bimodule Ω1A. Then, the
pair (δ,Ω1A) is characterized by the universal property[4].

In higher degrees, the space ΩpA is given by

(1.4.5) ΩpA = Ω1AΩ1A · · ·Ω1A︸ ︷︷ ︸
p−times

where the product of any two one-forms is defined simply by ‘juxtaposition’,

(1.4.6) (a0δa1)(b0δb1) = a0(δa1)b0δb1) = a0δ(a1b0)δb1 − a0a1δb0δb1, ∀ai, bi ∈ A.

Thus, ΩpA consists of finite linear combinations of monomials of the form

(1.4.7) ω = a0δa1δa2 · · · δap, ai ∈ A.

So, the product of a p-form and a q-form yields a (p + q)-form which is, again,
defined by juxtaposition, and rearranging the result using the Leibniz rule,

(a0δa1 · · · δap)(ap+1δap+2 · · · δap+q)

= a0δa1 · · · (δap)ap+1δap+2 · · · δap+q

= (−1)pa0a1δa2 · · · δap+q

(1.4.8) +
p∑

i=1

(−1)p−ia0δa1 · · · δai−1δ(aiai+1)δai+2 · · · δap+q

As with Ω1A, ΩpA is a left A-module by construction. It can also be endowed with
a right A-module structure in the same manner, using the Liebniz rule,

(a0δa1 · · · δap)b = a0δa1 · · · (δap)b

= (−1)pa0a1δa2 · · · δapδb

+
p∑

i=1

(−1)p−ia0δa1 · · · δai−1δ(aiai+1)δai+2 · · · δapδb

(1.4.9) +a0δa1 · · · δap−1(δapb), ∀ai, b ∈ A
Now extending δ so that for any p we have a map

δ : Ωp → Ωp+1

defined by the equation

(1.4.10) δ(a0δa1 · · · δap) = δa0δa1 · · · δap.

Then we have the relations
• δ2 = 0,
• δ(ω1ω2) = δ(ω1)ω2 + (−1)pω1δω2, ∀ω1 ∈ ΩpA, ω2 ∈ ΩA.
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And lastly, we define an involution on ΩA by

(1.4.11) (δa)∗ = −δa∗, ∀a ∈ A

(a0δa1 · · · δap)∗ = (δap)∗ · · · (δa1)∗a∗0

= a∗pδa
∗
p−1 · · · δa∗0

(1.4.12) +
p−1∑

i=0

(−1)p+iδa∗p · · · δ(a∗i+1a
∗
i ) · · · δa∗0.

Thus, (ΩA, δ) is a graded differential involutive algebra, once again characterized
by the universal property[4].

1.5. Connes’ Differential Forms. Given a spectral triple (A,H, D), using a rep-
resentation of the universal algebra ΩA on B(H), we will construct the exterior
algebra of forms. The map π : ΩA → B(H) defined by

(1.5.1) π(a0δa1 · · · δap) = a0[D, a1] · · · [D, ap], ai ∈ A
is clearly a homomorphism, since both δ and [d, ·] are derivations on A. Also, it is
a *-homomorphism, because [D, a]∗ = −[D, a∗].

The natural thing do next would be to define π(Ω) as the space of forms. In
general, however, π(Ω) = 0 does not imply π(δω) = 0. In order to proceed in
constructing a true differential algebra, we will need to dispose of these so called
junk forms.

Proposition 1.5.1. Let J0 = ⊕pJ
p
0 be the graded (two-sided) ideal of ΩA given by

(1.5.2) Jp
0 = {ω ∈ ΩpA, π(ω) = 0}.

Then, J = J0 + δJ0 is a graded (two-sided) ideal of ΩA.

Proof. J is obviously graded, and the property δ2 = 0 implies it is differential. Let
ω ∈ J . Then, ω = ω1+δω2, for some ω1 ∈ J p

0 and ω2 ∈ Jp−1
0 . Then for any η ∈ ΩA,

we have ωη = ω1η + δ(ω2η) + (−1)pω2δη =
(
ω1η + (−1)pω2δη

)
+ δ(ω2η) ∈ J . In a

similar way, we find ηω ∈ J . ¤

Definition 1.5.2. The graded differential algebra of Connes’ forms over A is de-
fined by

(1.5.3) ΩDA = ΩA/J ' π(ΩA)/π(δJ0),

with the space of p-forms given by

(1.5.4) Ωp
DA = ΩpA/Jp.

Now, since J is a differential ideal, the exterior differential δ defines a differential
on ΩDA, d : Ωp

DA → Ωp+1
D , defined by

(1.5.5) d[ω] = [δω] ' [π(δω]

with ω ∈ ΩpA and [ω] the corresponding equivalence class in Ωp
DA.
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1.6. Scalar Product of Forms. While we showed that the Dixmier trace was
indeed a trace state on A, we need to extend the result to all of π(ΩA). This is
not possible, in general, and some conditions need be imposed on the algebra A.
Recall that the subalgebra A2 ⊂ A is generated by all elements a ∈ A such that
both a and [D, a] are in the domain of the derivation δ defined in (1.3.1). It has
been shown in [3] that provided A2 = A (or A2 is a sufficiently large subalgebra),
the Dixmier trace is indeed a trace state on π(ΩA). As a result, the following three
traces coincide, and will be taken as the definition of an inner product on π(ΩpA),

〈T1, T2〉p = trω(T ∗1 T2|D|−n)

= trω(T ∗1 |D|−nT2)

(1.6.1) = trω(T2|D|−nT ∗1 ), ∀T1, T2 ∈ π(ΩpA).

And forms of different degrees are defined to be orthogonal.
Denote the completion of π(ΩpA) by H̃p. Let Pp be the orthogonal projection of

H̃p, with respect to the inner product (1.6.1), which projects onto the orthogonal
complement of π(δ(J0 ∩ Ωp−1A)).

1.7. Universal Connections on Modules. In this section, we will develop the
notion of a connection on a (finite projective), with respect to the universal calculus
ΩA. Since ΩA is the prototype for any calculus on A, by a connection we really
mean a universal connection, but this adjective will be dropped when there is no
confusion.

Definition 1.7.1. A (universal) connection on the right A-module E is a complex-
linear map

(1.7.1) ∇ : E ⊗A ΩpA → E ⊗A Ωp+1A,

defined for any p ≥ 0, satisfying the Leibniz rule

(1.7.2) ∇(ωρ) = (∇ω)ρ + (−1)pωδρ, ∀ω ∈ E ⊗A ΩpA, ρ ∈ ΩA.

Thus, a connection is completely determined by its restriction∇ : E → E⊗AΩ1A,
which satisfies

(1.7.3) ∇(ηa) = (∇ω)a + η ⊗A δa, a ∈ A,

and then extends by using the Leibniz rule (1.7.2).

Proposition 1.7.2. The map

(1.7.4) ∇2 = ∇ ◦∇ : E ⊗A ΩpA → E ⊗A Ωp+2A,

is ΩA-linear.

Proof. From the Leibniz rule 1.7.2, we have

∇2(ωρ) = ∇
(
(∇ω)ρ + (−1)pωδρ

)

= (∇2ω)ρ + (−1)p+1(∇ω)δρ + (−1)p(∇ω)δρ + ωδ2ρ

(1.7.5) = (∇2ω)ρ

¤
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Definition 1.7.3. The restriction θ, of ∇2 to E ,

(1.7.6) θ : E → E ⊗A Ω2A,

is the curvature of the connection.

The curvature is A-linear and satisfies

(1.7.7) ∇2(η ⊗A ρ) = θ(η)ρ, ∀η ∈ E , ρ ∈ ΩA.

Proposition 1.7.4. The curvature θ satisfies the Bianchi identity,

(1.7.8) [∇, θ] = 0.

Proof. Since θ : E → Ω2A, the map [∇, θ] makes sense. And,

(1.7.9) [∇, θ] = ∇ ◦∇2 −∇2 ◦ ∇ = ∇3 −∇3 = 0.

¤

The next proposition, for which the proof can be found in [7], takes care of any
concerns over the existence of connections.

Proposition 1.7.5. There exists a connection on a right module if and only if it
is projective.

And, of course, we will only be considering finite projective modules in physical
examples.

2. Gravity Models

While there have been a number of different approaches to constructing gravity
models in noncommutative geometry (see, for instance [5], [11, 12]), we will fol-
low the approach developed in [1, 2] for which our discussion of connections leads
directly into.

2.1. Connections Revisited. Given a spectral triple (A,H, D) with the associ-
ated differential calculus (ΩDA, d), then by Serre-Swan [14], the space Ω1

DA is the
noncommutative analogue of the space of sections of the cotangent bundle. It is
naturally a right A-module, and we will assume it is projective of finite type, as
well. In order to develop ‘noncommutative Riemannian geometry’ here, we will
need an analogue of a metric on Ω1

DA. There is a canonical Hermitian structure
on Ω1

DA which is uniquely determined by the triple (A,H, D) given by,

(2.1.1) 〈α, β〉D = P0(α∗β) ∈ A, α, β ∈ Ω1
DA,

where P0 is the orthogonal projector ont A determined by the scalar product (1.6.1.
We will also assume that if (Ω1

DA)′ is the dual module, the Riemannian structure
defines a right-module isomorphism,

(2.1.2) Ω1
DA → (Ω1

DA)′, α 7→ 〈α, ·〉.
We can now define a linear connection which is formally the same as that in the

remarks surrounding (1.7.3), taking E = Ω1
DA.
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Definition 2.1.1. A linear connection on Ω1
DA is a complex-linear map

(2.1.3) ∇ : Ω1
D → Ω1

D ⊗A Ω1
DA,

satisfying the Leibniz rule

(2.1.4) ∇(αa) = (∇α)a + αda, ∀α ∈ Ω1
DA, a ∈ A

Definition 2.1.2. The Riemannian curvature of ∇ is the A-linear map R∇,

(2.1.5) R∇ = ∇2 : Ω1
D → Ω1

DA⊕A Ω1
DA.

We call the connection∇metric if it is compatible with the Riemannian structure
〈·, ·〉D:

(2.1.6) −〈∇α, β〉D + 〈α,∇β〉D = d〈α, β〉D, ∀α, β ∈ Ω1
DA.

Definition 2.1.3. The torsion of the connection ∇ is the map

T∇ : Ω1
DA → Ω2

DA,

(2.1.7) T∇ = d−m ◦ ∇,

where m is just the multiplication operator, m(α⊗A β) = αβ.

It is easy to check that T∇ is a tensor, and for an ordinary manifold with a
linear connection, the above definition gives the cotangent (dual) space version of
the usual definition of torsion.

Definition 2.1.4. A connection ∇ on Ω1
DA is a Levi-Cevita connection if it is

metric, and its torsion vanishes.

Unlike in ordinary differential geoemtry, Levi-Cevita connections do not neces-
sarily exist, or may not be unique for a given spectral triple. Now, for simplicity
we will take Ω1

DA to be a free module with orthonormal basis {EA, A = 1, · · · , N}
with respect to the Riemannian structure 〈·, ·〉D,

(2.1.8) 〈EA, EB〉D = ηAB = diag(δAB , · · · , δAB), A,B = 1, · · · , N

As we noted earlier, a connection ∇ on Ω1
DA is completely determined by its

action on 1-forms ΩB
A ∈ Ω1

DA defined by,

(2.1.9) ∇EA = EB ⊗A ΩA
B , A = 1, · · · , N

Then the components of torsion TA ∈ Ω2
DA and the curvature RB

A ∈ Ω2
DA are

given by
T∇(EA) = TA

(2.1.10) R∇(EA) = EB ⊗A RB
A , A = 1, · · · , N

Then, by using (2.1.5), and (2.1.7) we obtain the Cartan structure equations,

TA = dEA − EBΩA
B , A = 1, · · · , N

(2.1.11) RB
A = dΩB

A + ΩC
AΩB

C , A,B = 1, · · · , N.

Now, the metric condition reads,

(2.1.12) −ΩA∗
C ηAB + ηACΩB

C = 0.
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Since metricity and vanishing torsion don’t necessarily fix the connection uniquely,
sometimes additional constraints are imposed by requiring that the connection is
Hermitian on 1-forms,

(2.1.13) ΩB
A = ΩB∗

A

The components of torsion and curvature transform in the expected way under
a change orthonormal basis. For another orthonormal basis {ẼA, A = 1, · · · , N} of
Ω1

DA, the relationship between the two bases is given by,

(2.1.14) ẼA = EB(M−1)A
B , EA = ẼBMA

B

with

(2.1.15) MC
A (M−1)B

C = (M−1)C
AMB

C = δAB

ie. the matrix M = (MB
A ) is invertible with inverse M−1 = ((M−1)B

A). The
requirement that the new basis be orthonormal gives,

ηAB = 〈EA, EB〉D
= 〈ẼCMA

C , ẼDMB
D 〉D

= (MA
C )∗〈ẼC , ẼD〉DMB

D

(2.1.16) = (MA
C )∗ηCDMB

D .

And so we get,

(2.1.17) (M−1)B
A = ηAD(MD

C )ηCB ,

that is, M−1 = M∗, and thus M is unitary.
It is easy to then find the components of curvature and torsion after an orthonormal
change of basis,

Ω̃A
B

= MC
A ΩD

C (M−1)B
D + MC

A d(M−1)B
C ,

R̃B
A = MC

A RD
C (M−1)B

D,

(2.1.18) T̃A = TB(M−1)A
B .

Now, let {εA, A = 1, · · · , N} be the dual basis of {EA}. That is, εA ∈ (Ω1
D)′, and

(2.1.19) εA(EB) = δAB

Then, by the isomorphism (2.1.2), for each εA, there is an ε̂A ∈ Ω1
DA given by,

(2.1.20) εA = 〈ε̂A, α〉D, ∀α ∈ Ω1
DA, A = 1, · · · , N

And thus,

(2.1.21) ε̂A = EBηAB , A = 1, · · · , N.

So, under an orthonormal change of basis, they transform as

(2.1.22) ˜̂εA = ε̂B(MB
A )∗, A = 1, · · · , N.

Now, we are equipped to define the final noncommutative analogues needed for
differential geometry.

Definition 2.1.5. The Ricci 1-forms, R∇A of a connection ∇ are given by

(2.1.23) R∇A = P1(RB
A(ε̂B)∗) ∈ Ω1

DA
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Definition 2.1.6. The scalar curvature, r∇, of a connection ∇ is defined by

(2.1.24) r∇ = P0(EAP1(RB
A ε̂B)∗)

where, again, the projectors P0 and P1 are those determined from the scalar product
of forms (1.6.1).

One can easily check that the scalar curvature does not depend on the choice of
orthonormal basis.

At long last, we have developed all the tools necessary for a noncommutative
differential geometry upon which gravity may based. The culmination of this work
is the noncommutative analogue of the Einstein-Hilbert action, defined by [2]

(2.1.25) IHE(∇) = trωr∇|D|−n.

Conclusion

In this paper we have developed a noncommutative analogue of Riemannian
geometry. For a manifold M , with its canonical spectral triple, the classical and
noncommutative geometries agree. While this is interesting in and of its own right,
there are far greater implications. In [6], Connes and Lott modelled space-time
by the so-called Connes-Lott space M × Y , the product of a four-dimensional spin
manifold M with a discrete internal space Y consisting of two points. Using the
simply the noncommutative geometry of M × Y , Connes and Lott derived a La-
grangian reproducing the Standard Model. Applying the techniques developed in
this paper to the Connes-Lott space, as in [2], gives us an exciting, alternative
method for bringing about the unification of gravity with quantum mechanics.
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[1] A.H. Chamseddine, J. Fröhlich, Some Elements of Connes’ Non-Commutative Geometry,
And Space-Time Geometry, hep-th/9307012.
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