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Abstract. This paper is written for the course apm426S, taught by James Colliander in Spring 2002,
University of Toronto. It gives an introduction to cosmology, concentrating on the effects of the cos-
mological constant Λ in the context of isotropic and homogeneous universe. Solutions to the Einstein’s

equation with and without Λ are carefully derived, analyzed and compared. Some current problems
with Λ are briefly mentioned at the end.
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1. Introduction

Reader beware. This paper is neither a comprehensive introduction to cosmology nor to the problem
of cosmological constant. It should be looked at as a reading guide to the first half of Wald’s chapter
on cosmology, quickly diverging to the discussion of cosmological constant once it is encountered. The
author chose to explain all the necessary topics required for thorough appreciation of the effect of the
cosmological constant that were not covered during lectures. That was done at the expense of not
mentioning theoretical problems with having small Λ. In the opinion of the author it is not a great loss
since a person who knows enough to appreciate those problems would not benefit form this paper anyway.
Those readers are referred start to Weinberg’s publication.

2. Framework

Before starting to solve the Einstein equation and trying to determine the fate of the universe, we
should pause and try to think of some basic properties of the world we live in. This section contains some
simplifying assumptions about the universe, their definitions and consequences. The reader should keep
in mind that the ideas presented below are only one of the many possible ways to view the world we live
in. So take every assumption with a grain of salt.

2.1. Homogeneity and Isotropy. From the time of Copernicus people accepted the idea that there is
nothing special about our position in the universe. There also does not seem to be a “preferred direction”
to look at when one is staring at the sky. What about the sun, the moon and other heavenly bodies
that look so pretty? On the grand scheme of things, they don’t really matter. To say something about
the whole universe, we need to think big. Therefore, in this paper we shall not pay attention to objects
smaller than a galaxy.

Since this is (supposed to be) a rigorous mathematical paper, let us name the observations above
by fancy names and give them rigorous definitions. The property of space being the same everywhere
will be called homogeneity. Wald defines a spacetime to be (spatially) homogeneous if there exists a
one-parameter family of spacelike hypersurfaces Σt foliating the spacetime such that for each t and for
any points p, q ∈ Σt, there exists an isometry of the spacetime metric which takes p into q.

Formalizing the idea that space looks the same in all directions is a little bit more tricky. The problem
is that now we need to define how one should “look” at the space. For example, to a person sitting in
a closed room, the air in the room might seem the same in all directions. However, a bullet passing
through the same room will encounter much larger air density in the direction of its travel than in any
other orthogonal direction. Therefore, we cannot demand our universe to look the same in all directions
to all observers. The most we can ask for is existence of one observer that sees the universe the same
(A little more thought will reveal that such an observer must be unique but this fact is not necessary for
this paper).

Shamelessly copying from Wald again, we say that a spacetime looks the same in all directions, or,
is spatially isotropic at each point, if there exist a congruence of timelike curves (i.e. observers), with
tangent vectors denoted ua, filling the spacetime and satisfying the following property: given any point
p and any two unit “spatial” tangent vectors sa

1 , s
a
2 ∈ Vp (i.e. sa

i ⊥ ua), there exists an isometry of
spacetime metric gab which leaves p and ua fixed but rotates sa

1 into sa
2 . A slightly more intuitive way

to think about isotropy is that it is impossible to construct a geometrically preferred tangent vector
orthogonal to ua.

Even though there are homogeneous surfaces which are nowhere isotropic and surfaces isotropic at one
point but not homogeneous, the two concepts are related. It is not hard to prove that a homogeneous
surface which is isotropic at one point is isotropic everywhere. Galaxy counts and measurements of
background radiation show that the universe is highly isotropic in our neighbourhood. And a little
Copernican humility will convince us of homogeneity of space. Therefore, we can assume our universe to
be isotropic and homogeneous everywhere.

A small clarification is in order before we proceed. The notions of isotropy and homogeneity only
apply to the space part of spacetime. We do not assume that the universe looks the same in the past as
it does to the right.

2.2. Derivation of Robertson-Walker Metric. The assumptions of isotropy and homogeneity seem
to be reasonable ones but as we will see shortly, they are quite severe in restricting the possibilities
for the spacetime metric. The crucial fact to notice is that the tangent vectors ua to observers in the
definition of isotropy must be orthogonal to the surfaces of homogeneity Σt (if not, then we can construct
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a preferred direction on Σt using the non-orthogonal component of ua, which would violate isotropy
of Σt). Therefore, we can construct a metric of spacetime, gab, in terms of one-dimensional metric on
worldlines of isotropic observers and a three-dimensional metric hab of Σt’s:

(1) gab = −uaub + hab .

If we parametrize the world lines by proper time τ of the observers, the choice of minus sign in front of
uaub becomes clear.

Now let us try to find the metric hab. We will do it in an indirect way. Consider the Riemann curvature
tensor (3)Rab

cd on the surface of homogeneity Σt (sidescript 3 will remind us that we are working on
a three dimensional manifold, not the whole spacetime). Given a (0,2)-tensor, (3)Rab

cd returns a map
from (2,0)-tensors into R. But this map can be identified with a (0,2)-tensor. Furthermore, (3)Rab

cd is
symmetric. Therefore, we can view (3)Rab

cd as a linear map from the space W of two-forms into W .
Symmetry of (3)Rab

cd and some theorem of linear algebra imply that there must exist an orthonormal
basis consisting of eigenvectors of (3)Rab

cd. Isotropy of Σt makes the corresponding eigenvalues equal
(otherwise can construct a preferred direction on Σt). Therefore, (3)Rab

cd is a multiple of the identity
map on W :

(2) (3)Rab
cd = K δa

b ∧ δc
d = K δa

[bδ
c
d] .

Homogeneity implies that K must be constant. By twice contracting (3)Rab
cd we can show that Σt must

be a surface of constant curvature:

(3)Rσν =
∑

β

(3)Rσβν
β =

∑
β

( ∑
α

hαν
(3)Rσβ

αβ

)
= K

∑
α,β

hανδ
σ

[βδ
α

β] .

Setting α = β and using the fact that δσ
[βδ

β
β] = δσ

β , get

(3)Rσν = K
∑

β

hβνδ
σ

β = Khβν .

Therefore, the Ricci scalar is
(3)R =

∑
σ

(3)Rσ
σ =

∑
σ

hσσ (3)Rσσ = K
∑

σ

hσσhσσ = 3K .

We have just showed that the Ricci curvature is the same at every of Σt. Therefore, we have only three
choices, up to an isomorphism, for Σt: S3,R3, and hyperboloid. In suitable coordinates, we can express
the metric for all these surfaces as follows:

(3) (3)ds2 = dψ2 + (dθ2 + sin2 θ dφ2) ·


sin2 ψ if (3)R > 0
ψ2 if (3)R = 0
sinh2 ψ if (3)R < 0

This can be put into a more convenient form

(4) (3)ds2 =
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2) .

Here we can assume k = +1, 0, or −1. Using previous arguments, we can lift the metric of Σt into the
metric of spacetime:

(5) ds2 = −dτ2 + a(τ) ·
(

dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

)
.

The expression above is called the Robertson-Walker metric. Using innocent-looking assumptions of
isotropy and homogeneity we were able to reduce the question of metric determination to the problem of
finding time evolution of the homogeneous surfaces and sign of their curvature (i.e. finding a(τ) and k).

2.3. Perfect Fluid. This is the last preparatory concept we need to understand. A perfect fluid can
be defined as a fluid which looks isotropic in its rest frame. The concept of a fluid can be stretched a
little by thinking of stars, fields, and even the whole universe as a fluid. Of course, we already started
viewing the universe as a perfect fluid when we put the homogeneity and isotropy constrains on it. So it
might seem as if this section is extraneous. However, remember that the Einstein’s equation involves a
connection between space curvature and energy-matter density. And nothing was said of energy-matter
density yet.



4 DMITRY DENISENKO

Sean Carroll, in his Lecture Notes on General Relativity pp28–29, does an excellent job in deriving
the energy-momentum tensor Tµν of a perfect fluid:

(6) Tab = (ρ+ p)uaub + p ηab ,

where ρ is fluid density, p is pressure and ηab is the flat Minkowski metric with −+++ signature. We
will not duplicate Carroll’s explanation here but will merely note that the formula above is the covariant
generalization of 

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 = (ρ+ p)


1
0
0
0

 (1 0 0 0) + p ηa
b .

3. Cosmology without Λ

We are finally ready to dive into the Einstein’s equation and discover the fate of (spatially isotropic
and homogeneous) universe.

(7) Gab = Rab −
1
2
Rgab = 8πTab

First, we need to compute Gab for the Robertson-Walker metric. Doing so for the flat case is not too
hard. The general case, however, is quite formidable. So the author let a machine do the calculations.
From the printout of Mathematica session (given as an appendix) we just take the Einstein tensor1

(8) Gττ = 3
(
k

a2
+
ȧ2

a2

)
and G∗∗ = −2

ä

a
− ȧ2

a2
− k

a2
,

where G∗∗ are the “spatial” components of Gab . Equating them with 8πTab , get

(9) 3
(
k

a2
+
ȧ2

a2

)
= 8πρ and − 2

ä

a
− ȧ2

a2
− k

a2
= 8πp .

Using the first equation to reduce the second, and rearranging the first, get

(10) 3
ä

a
= −4π(ρ+ 3p) ,

(11) 3
ȧ2

a2
= 8πρ− 3

k

a2
.

From these equations we can determine qualitative properties of a(τ) (we can also solve these equations
explicitly but it is actually easier just working with these equations).

Note that if ρ > 0 and p > 0, (10) implies that ä < 0! This means that a universe satisfying (7)
cannot be static. It must always be either expanding or contracting (except one instant when ȧ = 0,
which would represent the switch from expansion to contraction).

Another thing to notice is that if ȧ > 0, i.e. if the universe is expanding, then as we go backwards in
time, it must be expanding at a faster and faster rate. Therefore, less than a

ȧ = H−1 “units of time” ago,
a = 0 (H is the Hubble constant, by the way). This is the good old BigBang.

For the next prediction we have to work harder. To begin with, let us change (11):

3ȧ2 = 8πρa2 − 3k

differentiating with respect to τ ,
6ȧä = 8πρ̇a2 + 2 · 8πρaȧ .

Using (10),

(12) ρ̇a2 + 3aȧ(ρ+ p) = 0 .

As was mentioned previously, a perfect fluid can be used to model a wide variety of substances. The type
depends on the relationship between ρ and p. Ordinary matter on galactic scale is modelled by ρ > 0
and p = 0 2 Another common “fluid” is radiation. It is given by the relationship p = ρ/3.

1If the reader actually looks at the computations, he will notice that the Einstein’s tensor is not the same as below: the

spatial components of G must be multiplied by the inverse of the metric to get the answer below. Wald does it without any
explanation and the author could not come up with a good reason to do that. Since G’s spatial components must be the

same, Wald is right, and that is why the corrected version has been presented in the paper.
2This means that the particle in the fluid, or galaxies in the universe, are at rest with respect to each other. How well

this model describes the universe is up to the reader to decide.
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Therefore, assuming that the universe is matter-dominated, equation (12) becomes

0 = ρ̇a2 + 3aȧρ

multiplying by a get

0 = ρ̇a3 + 3a2ȧρ =
d
dτ

(ρa3)

Therefore, ρa3= constant. A similar calculation for radiation shows that ρa4= constant. The first re-
lationship is just conservation of mass. The latter one shows that radiation energy decays faster than
universe expansion (extra power of a is attributed to the red-shift effect).

Now let us take a fresh look at (11). If k > 0 and the universe is expanding, then the first term
on the right side is going to 0 faster than the second one (for both matter-filled and radiation-filled
models). Therefore, there must be a time when the universe reaches its maximum size. And since no
static solutions are allowed, it must start recontracting right away!

4. Cosmology with Λ

4.1. Patching Einstein’s Equation. The first observation we made from (10) was the simplest and
the most profound one. After 80 years of Hubble’s discovery of expanding universe, it hardly seems
surprising to us. However, the theory of relativity and, in particular (10), were created before Hubble.
The discovery of a dynamic universe could have been made years earlier if Einstein was slightly more
open-minded (although who are we to judge Einstein?). Instead, Einstein tried to fix his original equation
(7) by introducing a new term containing metric times a constant:

(13) Rab −
1
2
Rgab + Λgab = 8πTab .

He called Λ the cosmological constant. Before going into calculations to show how this “fixes” the problem
of a dynamic universe, let us try to understand why the correction is not unreasonable.

Recall that equation (7) was the simplest covariant generalization of the Poisson’s formula for the
Newton potential

(14) ∆Φ = 4πGρ .

Right side generalized nicely to Tab but there was some fuss on what to do with the left side. The
generalization had to have zero divergence (to satisfy energy conservation) and be constructed using only
first two derivatives of the metric. Rab − 1

2Rgab turned out to be the simplest answer. In a very long and
probably unenlightening calculation, Lovelock showed that

(15) Rab −
1
2
Rgab + Λgab

is the most general four-dimensional (0,2)-tensor that is divergence free and is constructed out of only
first two derivatives of gab . So Einstein’s patch to the equation actually made sense.

It should be noted that the Newtonian limit of (13) is not the Poisson’s formula. It is instead

(16) ∆Φ = 4πGρ+ Λ .

So the value of Λ better be small.

4.2. Static Universe. Now let us see how the Λ-term affected the dynamics of an evolving universe.
Since equation (13) can be re-written as

(17) Rab −
1
2
Rgab = 8πTab − Λgab ,

there is no need to recalculate Gab . Using (8), we get

(18) 3
ȧ2

a2
= 8πρ− 3

k

a2
+ Λ

(19) −2
ä

a
− ȧ2

a2
= 8πp+

k

a2
− Λ

(Note that we may assume gab = diag(−1, 1, 1, 1) locally, by the Principle of Equivalence). Using some
algebra, we get equations corresponding to (10) and (11),

(20)
ä

a
= −4π

3
(3p+ ρ) +

Λ
3
,
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(21)
ȧ2

a2
=

8π
3
ρ− k

a2
+

Λ
3
.

If we want our universe to be static, we should let ä = ȧ = 0. This gives

(22)
4π
3

(3p+ ρ) =
Λ
3
,

(23)
k

a2
=

8π
3
ρ+

Λ
3
.

Since ρ > 0 and p > 0, equation (22) implies that Λ > 0. But (23) then implies k > 0, so k = +1 since
we assume curvature to be normalized.

If the universe is assumed to be matter-dominated, we may set p = 0. Then (22) becomes

(24) Λ = 4πρ .

Plugging this into (23) with k = 1 get

(25)
1
a2

=
8π
3
ρ+

4π
3
ρ = 4πρ .

This gives a relationship between density and “radius” of the universe:

(26) a(ρ) =
1√
4πρ

.

For radiation dominated case, get a similar formula:

(27) a(ρ) =
√

3√
16πρ

.

Einstein’s static solution is known to be unstable. Let us verify this fact. Assume the density changes
by a small amount: ρ′ = ρ+ ∆. Then the corresponding change in a can be found using Taylor formula:

(28) a′ − a = ∆ · d
dρ
a(ρ) = −1

2
4π∆ · (4πρ)−3/2 = −2π∆ · a3 .

This means that if the density is, say, decreases then the size will increase. Furthermore, the a3 term
not only magnifies the size of change but does so at an increasing rate! Even if the universe is static at
some point in time, slightest perturbation of its density will either lead to a fast collapse or an infinite
expansion.

Of course, the question arises of how the density of the universe might be perturbed, even if slightly.
The universe is supposed to be an all-encompassing, and therefore, a perfectly isolated system. So it
seems that there is nothing to that might throw it off balance. But this question should be left to the
experts in quantum mechanics and theology, not relativity.

5. Λ as Vacuum Density

Depending on which side of (7) you put Λgab , there is a different way to interpret it. On the left
side, it is a correction to the curvature tensor. On the right , it is a correction to the energy-momentum
tensor with the “usual” curvature tensor. In the latter case, we get spacetime curvature even if there is
no matter present in any form! But Λgab should still be interpreted as an energy-momentum tensor of
something. So, what inhabits the universe when the universe is empty? Darkness, or vacuum, depending
how scientific you want the answer to be.

Just by moving the Λ-term to the right side we discovered that vacuum might have some energy. Let
us dig a little deeper. Vacuum is another example of a perfect fluid. Therefore, its energy-momentum
tensor should be given by (6). I.e.,

−Λgab = (ρ+ p)uaub + p gab .

This shows that for vacuum, p = −rho = −Λ/8π. If we now go back to the static solution, we recall
that Λ > 0. This means that vacuum must have a positive density and negative pressure. A pressure
is a force of nearby particles of a fluid on each other. Therefore, in a static model, we have a universal
repulsive force that counterbalances gravity and keeps the universe in a sensitive equilibrium (to better
appreciate this idea, it is helpful to blaspheme by thinking of gravity as a mere force rather than curvature
of spacetime).
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5.1. deSitter Model. By now, we have made so much progress studying vacuum that we might as well
see how an empty universe evolves. To do that, we just substitute p = −ρ = −Λ/8π into (20) and (21),
and see what comes out:

(29)
ä

a
= −4π

3
(−2ρ) +

8π
3
ρ =

16π
3
ρ ,

(30)
ȧ2

a2
=

8π
3
ρ− k

a2
+

8π
3
ρ =

16π
3
ρ− k

a2
.

Substituting former into latter, get

(31)
ȧ2

a2
=
ä

a
− k

a2

or

(32) k = aä− ȧ2 .

This equation can be solved right away. I will do only one case, k = −1. The guessing method works
wonderfully,

(33) a(τ) = A sin(Bτ) or a(τ) = A sinh(Bτ) .

In the first case,

(34) ȧ(τ) = AB cos(Bτ) and ä(τ) = −AB2 sin(Bτ) .

Therefore,

(35) aä− ȧ2 = −(A2B2 sin2(Bτ) +A2B2 cos2(Bτ)) = −1 ,

which gives AB = ±1. Now put a(τ) into (29):

(36) −B2 =
ä

a
=

16π
3
ρ =

2Λ
3

.

This shows that Λ < 0 and B = ±
√
− 2Λ

3 . So the first solution to (32) is

(37) a(τ) =

√
− 3

2Λ
sin

(√
−2Λ

3
τ

)
.

The coefficients for the second one are obtained similarly, yielding Λ > 0 and

(38) a(τ) =

√
3

2Λ
sinh

(√
2Λ
3
τ

)
.

So a negatively curved space with negative vacuum density will recollapse but the one with positive
density will expand forever. This confirms out idea of viewing positive vacuum energy as a repulsive
force. The second solution, and the solutions to the cases k = 0,+1 , are called the De Sitter model
(They are supposed to be isomorphic and maximally symmetric, i.e. empty universe does look the same
to the past as it does to the right. But of course, there is nobody to appreciate the view.) The first one
is anti-de Sitter model.

6. Issues with Λ

If Λ was introduced to produce static solutions to (7) and we know that our universe is not static,
why worry about Λ? Because it is a valid term in the Einstein’s equation and it may actually contribute
to the evolution of our universe. The only way to get rid of Λ is to measure both sides of (7) and show
that Λ is negligible. Numerous measurements have been done, primarily using red-shift effect. And the
answer is indeed small, although still far from 0. The problem is that when people try to calculate Λ using
other theories of physics, primarily quantum mechanics, they must explain how a number of seemingly
independent quantities thirty orders larger in magnitude cancel each other out just right as to yield a
very small value of Λ. Furthermore, Λ seems to be a quick fix for other cosmological problems that looks
more and more appealing with every year. As a matter of fact, the current ideas about our universe need
a significant contribution from Λ to explain the way things are now. So Einstein may not have blundered
after all when he introduced the cosmological constant.
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