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1 Klein-Gordon

The notion of Hawking Radiation was originally presented in a 1975 paper, published in the
journal Communications in Mathematical Physics [2]. The essence of it is that particles are
created by black holes, and that the distribution , corresponds to the distribution of energy as
a function of frequency of a black body. The physical phenomenon is difficult to understand,
but the the idea can be clearly expressed mathematically. This paper presents a step by
step mathematical derivation of the Hawking Radiation equation. It is an elaboration of the
paper by LH Ford [1].

First, we have to lay the foundation. We are considering an asymptotically flat space.
This means that there is an interaction region, outside of which, the metric approximates
Minkowski space. Specifically, we are considering the asymptotically flat Schwarzschild met-
ric:

g=—(1—2M/r)dt* +dr*/(1 — 2M/r) + r* (d6* + sin*6 d¢?) (1)

Note that the spatial part is written in spherical coordinates. One can verify that it is indeed
asymptotically flat, by noting that, as r approaches infinity, the metric looks like Minkowski
space;

g = —dt’ + dz? + dy? + d2? (2)

where the differences stem from the fact that the Schwarzschild metric is described in spher-
ical coordinates.

Calculating the g- matrix is straightforward: g is a (0,4) tensor (the four covectors w®...w?*

are {dt,dr,df,d¢} The metric g is g;; is giw' @ w’
The off diagonal elements are zero and the diagonal elements are these:
goo = —(1=2M/r), gn =1/(1—=2M/r), go =1%, gs3 = r’sin’0 (3)

The second ingredient we need, is the Klein Gordon Equation and some accompanying
definitions. The Klein Gordon equation defines a scalar field. That is, a function that
at each point on the manifold, gives a number. The Klein Gordon equation is found by
determining the the stationary points of the Action Integral. The Action Integral, for its
part, comes from the Lagrangian density which has to be determined. Here is the Lagrangian
for our model.

L =1/2(0,00% — m’¢* — ERP*) (4)
Of course, 0 is just g®?dg. Setting
dA
o 0 (5)

as was done in class, we find that

O¢ + m’¢ + ERG = 0 6)



R is the scalar curvature. £ is the coupling constant which indicates the strength of the last
term relative to the rest of the equation. The box is the D’Alembertian operator,

V. V* = V,0"*V,. (7)

Finally, note that in class, what we called V (¢) = —m?¢*—£ R¢?. So this is the Klein Gordon
Equation for a massive field (i.e. m nonzero). Happily, we are considering a massless field
so m=0, which simplifies things a bit.

Now, any solution of this KG eqn. can be written as a linear combination of a set of basis
solutions. Given two solutions to KG eqn., (fi, fo) we define the KG inner product

< o fo Shg= / (f30uf1 — 10, f3dS" (8)

where * denotes the complex conjugate. Note then, that a constant ¢ will come out of the
first slot as ¢, but out of the second, as cx. In the above definition, d¥ is the volume element
on a spacelike hypersurface and d¥* = n*d> where n* is a unit normal to the spacelike
hypersurface. In case you forgot, a spacelike hypersurface is one in which every tangent
vector is spacelike. This in turn means that g(vector,vector) > 0. Or conceptually, one
cannot get from one point on the surface to another without travelling faster than the speed
of light. See LH Ford [1] who shows that the inner product is independent of the choice of
spacelike-hypersurface.

2  Quantum Mechanics

To properly understand Hawkings Radiation, we also need a basic understanding of quantum
mechanics. In quantum, there are no particles, just probability distributions. The probability
of a particle being in a given set B, at a time t, is given by the integral

/ [Y(z,y, 2,t)|*dzdydz (9)
B

1 here, is not a number. It is a function, called the state. It represents a particular probability
distribution. As such, we require that the integral of 1, over all of R? is 1. At a particular
(x,t) 1(x,t) is a complex number. To understand what comes next, an analogy will be
helpful. Imagine a coin. It might be fair it might not be. In fact, there are an infinite
number of potential probability structures. Given a particular structure, that is a particular
probability distribution function, all sorts of quantities can be calculated; expected values,
variances, probabilities of particular outcomes etc. The 9’s are analogous to the possible
probability structures for the coin. There are a whole bunch of them. Given a particular
one, we can also make all sorts of calculations. However, because this is quantum theory,
the calculations are not as straightforward. Here is what we do:

First, define the Hermitian Product of two wave functions v as follows.

< ity >= / b1 (2, 8)* (2, ) (10)



In general, any observable random variable is characterized by taking a Hermitian operator
T. That is, we associate a linear Hermitian operator with whatever it is we want to measure.
A Hermitian operator is an operator T, such

that,
<Ta,b>=<a,Tb>. (11)

In finite dimensions, the linear operator T is a matrix, and T* is its transpose and complex
conjugate. As an example, consider the operator T which measures the position of the first
coordinate of the particle on which v operates.

T (Y)(z,t) = 2'1p(x,t) where z = (2!, 9", 2%) (12)

It is the combination of the Hermitian operator and Hermitian product that allow us to
make our calculations. In particular, given a state 1, we can determine the expected value
and variance of an operator 7T as follows

The expected value e is
e = <, T[) > (13)
= [ 6.0 TW e s (14)
and the variance is given by
v o= <9, (T—eD)(y) > (15)

where
(T —el)* = (T —el)o (T —el) (16)

is the composition of the operator with itself. We shall illustrate this, by developing the
earlier example, in which 7] is

the Hermitian operator corresponding to measuring the position of the first coordinate of
the particle. We found that

T(¥)(z,1) = 2')(a,1) (17)

The expected value of the first coordinate is calculated as follows.
<uTiw)> = [l v o) (18)
— [ @it 0Pds

because

W)(.T,t)|2 = 1/)(x,t)¢(a:,t)* (19)
Now, it is important to realize that the only time you can get a consistent number out of
this Hermitian operator is when ) is an eigenstate. That is, when

T(4) = A(¥). (20)



Why? Because when this condition is satisfied the expected value of 1 is a number with
zero variance:

<Y, T(M)> = <,z > (21)
.\ / 1 (22)
— A (23)

and the variance, as promised is,

vo= <, (T—M)>@W) > (24)
= <1,0> (25)
= 0 (26)

So we can measure using the linear operator to get out a number. But, again, for this

to work, v must be an eigenstate of the operator. As it turns out, position operators do
not have eigenvalues. This is sad because if they did, the variance of the position operator
would be zero, meaning the location of a particle could be found with precision. But you
can’t have it all.

Before we proceed any further, some notational issues should be highlited. What mathemati-
cians call < 91, T(1)9) >, physicists write as < 11 |T'|1ps >. < 1)y is called the Bra-Vector and
corresponds to covectors. 1y > is the ket vector and corresponds to vectors. Anyway, so far
we have dealt with a single particle. Now, consider n particles. The probability of particle
1 with coordinates z; = (z',y',2') in A, and particle 2 with coordinates zo = (z?%,4?, %) in
B is given by

[ [ 1ot o) Py at 27)

As in the one particle case, the v is called a state and represents a probability distribution.
The thing is, that this n particle wave function ¢ can be expressed as a tensor product. In
other words, it can be formed by a linear combination of orthonormal one particle states.

=c" iy @ Yy, @ Yy, (28)

In this equation 1, means 1, (z1,t) where z; is a three space coordinate vector. If there
were only a finite number S of states potentially this tensor could have S™ coefficients but
physicists find that this structure is too general. In fact, wave functions fall into one of two
subspaces. They are either symmetric or antisymmetric functions.

A symmetric wave function is of the form

Y(x1, ey Tn) = V(To(1)s - To(n)) (29)

where o is a permutation of the entries. So for example in dealing with two particles

V(21 12) = Y1(21)02(22) + Vo (21) Y1 (22) (30)



This symmetry has very clear consequences. Ordinarily, a tensor b does not equal b tensor
a. So ordinarily this linear combination of tensor products would require specific knowledge
of each term. However when the functions are symmetric you wind up summing all the
permutations, a tensor b and b tensor a. So the order is unimportant. Once you know you
have to use all the permutations the only information you need is that ¢ and b are present.
Similarly, once we know the wave function is symmetric all we need to characterize it, are
the number of particles in each state. Particles with symmetric wave functions are called
Bosons, and it is with Bosons that we will be dealing in this paper.

3 Occupation Numbers, Creation and Annihilation Op-
erators

We are dealing with symmetric wave functions. We saw this meant that to characterize a
basis for the symmetric wave functions we need only know the number of particles in each 1
particle state. We can create a vector space containing precisely this information. Construct
the Occupation Number Space by defining an orthonormal basis, each element of which, is
characterized by a sequence of integers greater than or equal to 0.

(n1,ng,...) (31)

Where, for instance, no represents the number of particles in the 2nd state. Each wave
function has an infinite number of potential states and each state may contain more than
one particle. Thus, with n particles, there are at most n nonzero states. Following this
notation, » .~ n; is the total number of particles present. Of course it is possible that no
particles are present at all, in any states. This arrangement is called the vacuum state.

We need a little more background before we can competently discuss Hawking Radiation.
Define the annihilation operator a as follows. a,, removes one particle from the mth state if
there is one there. If it

is empty it returns the zero vector. a,, also introduces a scale factor of ,/n,,. That is, the
square root of the number of particles in the mth state. e.g.

as(0,0,2) = v/2(0,0,1) (32)

Similarly, define the creation operator a/ as follows. af adds 1 particle to the mth state. It
introduces a scale factor equal to \ﬂnm +1)eg

al (0,0,2) = (0,0,3)vnm +1 = v3(0,0,3) (33)

The reason that the scale factors have been introduced, is most clearly explained by an

example.
(alay)(1,2,2) = 2(1,2,2) (34)



So the composition of the creation and annihilation operators on the same state pulls out
the number of particles in that state. This number is an eigenvalue. So the composition
operator measures the number of particles in the mth state. The scale factors are constructed
to produce this effect.

4 It all comes together

Now we are going to start putting these concepts together. Recall, that we have this Klein
Gordon equation describing action. The Klein Gordon equation is a partial differential
equation. Its solutions are functions which give complex numbers at a particular point.
Consider a solution f to the KG equation eqn(6). Using the Klein Gordon inner product,
defined in equation (8), we say that f is a positive norm solution if the KG inner product
< f, [ >k¢> 0 Otherwise, it is negative.

If f; is a complete set of positive solutions, ( f;) is a complete set of negative solutions.
Together, they make up a complete set of solutions to the wave equation. They are a basis.

An arbitrary solution ¢ can then be written

$=> a;fi+alf (35)
J

Think of f;, 7 as vectors for the moment, and the a; and a;. as constants. This is a familiar
form from linear algebra. But here, because of the Quantum Physics, there are some modi-
fications when we quantize the equation. ¢(z,t) isn’t a number but an operator. Its a field
operator which we expand in terms of the operators a; and a} instead of numbers.

This expansion can be done uniquely only in Minkowski Space, or equivalently, in asymp-
totically flat space, but not in curved spacetime.

Fortunately for us, we are considering space time which is flat in both the past and the
future so we can use this expansion. Now to develop this a little further, let f; be the set of
positive solutions in the past (inmodes), and F; be the set of positive solutions in the future
(outmodes). We can also expand ¢ in terms of these outmodes.

= bpfe+alfi (36)
k

The b’s here are the annihilation and creation operators in the future. Before proceeding



further, we place the following restrictions to ensure the basis solutions are orthonormal.

<fjafj’ kg = 53',]"
<Fj,Fy > = 64
<[ fi >k = =05y
<FLF > = —0;
< fisfj>kg = 0
<Fj,Fj>, = 0

(37
(38
(39
(4

(41
(42
(43

)
— N N N N N

We have constructed two bases for ¢. The first, in terms of the past and the second, in terms
of the future modes. Since both sets are a basis for all solutions, we can also expand the

in-modes in terms of the out-modes.

fi = (auFi + B Fy)

k

(44)

Again, the f’s are functions on the manifold, which give a complex number when evaluated at
a particular point. The alpha and beta are complex number constants. We can also expand

the outmodes in terms of the inmodes.
Fe = (cinfi+ djxf;)
J
But the coefficients ¢ and d can be expressed in terms of « and f.

ar = < Fi, fi >k
= < FkaZ(alpr =+ ﬁlpF;) >

p
= ) o, < Fy, F, > 4B}, < Fy, Fy >
p

= Z a0y using the orthonormal properties
p
= oy

Similarly
dyp = —<Fy fI>
= —<F, Z(a;;,F; + B Fp) >

p

= _Zﬁlp<Fkan>
p

= — Z Bipdkp using the orthonormal properties
p

= —PBu

(45)



So what we have is this.

Fp =) (e fi— Binl}) (56)

J

This leads to a very important result.

< Fk’Fk’ > == 51€,k’ (57)
= Y o — BBy (58)
J
When k=Fk'
<Fk,Fkl >:Z|(l/jk|2— |Bjk‘2:5kk: 1 (59)
J
Building upon this, we can derive some other important results.
<fily >kg = <Y (B Biky), Y (aynFr + By FY) >k (60)
k r
= Y > apd), < Fi, Fy > +BufBy, < Fi, Fi > (61)
T k
= The cross terms are zero because the solutions are orthogonal (62)
= Z Z ik Qr Ok + Bk Bjr (—Okr) (63)
r k
= Z O{jka;/k — ﬁjkﬁ;’k (64)
k
= 0jj (65)

The cross terms omitted in (61) are zero because the solutions are orthogonal. Also, in (63)
remember, constants come out of the second slot of the KG inner product as their complex
conjugate.

Substituting 44 into 39 and following a similar argument we find
D ey, — BikByk =0 (66)
k

The only difference is that we use f; so the constants that come out as complex conjugates are
complex conjugates to begin with, so there are no complex conjugates in the final equation.

So we have found three equations relating the alphas and betas.

We can also express one set of annihilation and creation operators in terms of the other set.
First, as explained earlier, the field operator can be expressed in terms of either the past or
the future solutions. Following, 35

¢= afi+alfi = b;F;+blF; (67)
j j



10

Now we probably should have mentioned this earlier, but a quantum field assigns to each
point of the manifold a linear operator defined on a vector space with an inner product on
that space. We shall call the vector space W, and denote the inner product on the space
with the subscript W. The annihilation and creation operators, as part of our quantized
expression for ¢ are of course defined for this space W. So, take vectors wq, ws € W, where
a; (’U)Q) ew

Consider a function on the manifold which takes p to K(p) =< wy, ¢(p)ws >

< wy, p(p)wr >p=< w1, ajws >y fi(p)+ < wy, a;r-wz Zw f;(P) (68)
Let
n; = < Wy, ajWe >y (69)
n;r = < wi,ajtwy >y (70)
Nj = < wl,bng >w (71)
]\[]Jr = < wl,bj’er >w (72)
So
K(p) = Y nifi(p) +nlfi(p) (73)
J
K(p) = Y NF(p)+NF(p) (74)
1

Clearly both K and f; are solutions to the Klein Gordon equation. We can therefore make
use of the KG inner product. To find an expression for the n;s

n;, = < K, fj kg (75)
= <Y NF+ N (anFi+ BinFr) >k (76)
I k
= Z ZNla;kfslk — N Bixbu (77)
Ik
- Y Moy N5 (9
I
= D <wi,biwy >y afj— < wy, biwy >y B (79)
!

we bring the summation inside the inner product and use the fact that (80)

it is linear in the second term. (81)

= <w, [ZOJ b, — lB]lb Wy >y (82)

But
n; =< Wi, GjWe >y (83)
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And, because w; and w, are arbitrary
a; = Z a;lbl - 5}319} (84)
!

Similarly,
by = Z Q;kaj + 5;,1961; (85)
J

OK. Here is the point of all this. Consider the future creation and annihilation operators by,
and tbg, Suppose we are dealing with the vacuum state defined earlier. Using 85,

be[0)in = br(invacuum)
= 3 (tjk a;]0)in + B} a})[0)in Using 85

But the term involving alpha is zero because a is an annihilation operator and we are
operating on the vacuum state so there are no particles to annihilate.

(86)

Now recall from before, that the creation operator composed with the annihilation vector
pulls out the average number of particles in a particular state. Therefore, if we wish to
determine the number of particles in the kth mode of the instate we proceed as follows.

< Oin,s b};bkom > = < kam, kain >
<Y, Bkt 0iny 32y B 0] Oin >
Zj ﬁ;,k Zl ﬁl,k < a;r()magom > (87)
> Brk 221 Bk < Oig, ajajom >
Zj B;,kﬁj,k

= 218l
The last step is legitimate because the product of a number and its complex conjugate is the
same as the square of its absolute value, by the definition of the absolute value of a complex
number. So what have we done? We have found the average number of particles in the kth
mode in terms of the betas. This is crucial because we could not determine that number
using the regular method. The reason is this, The instate vacuum is not an eigenstate of the
out number operator and as explained we cannot get any eigenvalues out of it. But wait!
Didnt I say earlier that the v/'s are eigenstates of the number operator and that is the whole
point of the thing? Yes, but that was for the instates. What we are doing now is expressing
the instate vacuum as a linear combination of outs each of which is an eigenstate of the out
state number operator and which therefore has an explicit number of particles. However,
the linear combination of them is no longer an eigenstate of the outstate number operator.
The reason being that the eigenvalue of each term of the combination is potentially different,
and thus it is impossible to find an eigenvalue for the linear combination of them.

5 Particle Creation

We have now come to the heart of the matter. As we have stated repeatedly, the f’s are
solutions to the KG equation. At a particular point they give a complex number. It is
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generally known that these solutions take the following form.

Vim(0,¢) 1
ir Ve

Yim (0, ¢) (Le—iwg(v)
Wi Ve

The f’s are a function of frequency -w and direction -im.

fotm = (—=)e ™" (88)

Foim = (89)

We still need to understand the terms v and u in the above expression. To this end, let us
retreat from the mathematics for a moment to some physical explanation. A black hole is
formed by a collapsing star. However to simplify the proof we follow Ford [1] and model the
phenomenon of a collapsing shell. We assume no particles were present prior to the collapse
so the quantum state ) is the in-vacuum.

So here is whats happening. Rays of light enter the black hole bounce around and then exit.
The entering rays are said to come from past null infinity /-. They then exit into positive
null infinity 7. However, not all the rays make it out. Some are trapped by the black hole.
See figure 1. The line r=0 exterior represents the region of no return. Light rays which
hit that line do not bounce out. From the diagram, we see that rays w > vy will become
trapped. We will consider only rays which do escape (ie v < vg]. As regards these rays, we
want to know the relationship between the incoming ray parameterized by v and that same
ray when it exits parameterized by wu.

To do this we say the following. The region outside the black hole is described by the
Schwarzschild metric, but the area of the black hole is approximated by Minkowski space.
A light ray v enters the black hole from the past null infinity, and is then called V. As this
ray enters the middle of the black hole and starts its journey out, we parameterize it by U.
When it finally exits into the future null infinity, it shall be parametrized by u. So we have
four stages in the journey and three transition stages. Assuring continuity at these transition
points will establish the light rays path. First let us review the metrics we will use.

Schwarzschild:
g=—(1—=2M/r)(dt®) + dr?*/(1 — 2M/r) + r*(d6* + sin*6 d¢?) (90)

Minkowski:
g = —(dT?) + dr? + r*(d6® + sin0 d¢?) (91)

Now take another look at figure 1. It is called a Penrose diagram. It shows the path of a
lightray in and out of a black hole. Actually, it isn’t a direct representation of R and t. The
Penrose diagram is a one-to-one transformation on the variables R and t with the angular
coordinates supressed. Notice that the limiting value for an incoming ray (ie the last value
for which the ray escapes) is vg. The radius at this limiting value is denoted R; and the time
T. Now turn back to the Minkowski metric, and rememeber that the angular portion can
be disregarded. The definition of a light ray is that g(light ray) is zero. Setting the left side
equal to 0 we find this condition to be that dT?=dr? that is, T+r=V or T-r=U. In other
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words the light rays travel in straight lines at 45 degree angles. In fact all that is needed
to characterize their path, are the intercepts U and V. This is for Minkowski space, inside
the collapsing shell. Outside, where the Schwarzschild metric reigns supreme, the equivalent
condition is that 7'+ r* = v or T' — r* = u. where r* turns out to be

r—2M
t = 2M
rt=r+ ln( i ) (92)

So now we can begin tracing the lightray’s path. First the ray enters the shell.
We want to develop the relationship between the ray as it enters (v) and the ray

once it is inside (V). The light ray goes from a region described by the Schwarzschild metric
into Minkowski space. The continuity condition here on the surface of the black hole is this.

14 (3—?)2 _ _(1-2M/R) (%)2 +(1—2M/R)" (%)2 (93)

The thinking behind this is as follows. Parameterize a point on the shell as follows and
evaluate the tangent vector using the Minkowski metric.

V(T) = (T,R(T))
v = (18/8(T) + R 8/or)
g(’y’,yl) (—dT®dT+dr®dr)('y/,’y')

—1+ (R)?

94
95
96
97

(
(
(
(

~— —— — N

So we have the left side of 93. When we apply the Schwarzschild metric to the same vector
we get the right side. This is the matching condition. This leads us to the relationship
between v and V. As r approaches Ry, dR/dT is approximately constant. So when we solve
for dt/dT we find it is a constant. Integrating,

t = ¢T+s (98)
T = at+d (99)
but we saw earlier that (100)
v o= t4rt (101)
T = alv—r")+d (102)
but at this point 7* ~ r ~ R1 a constant (103)
T = av+ f (104)
but we also sawV =T + r. (105)
We substitute for T. (106)
V = av+ f+r where r ~ Ry (107)
V = av+b. (108)

Now we proceed to the next transition point. At the center of the star V becomes U. The
matching condition here is easy because at the center r=0. So U=T-r=T+r=V.
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Last we consider the ray as it exits the black hole. Again we consider the case near the
limiting condition. That is where ¢ = T;. We use a Taylor expansion of the function R
which is the collapsing radius.

R(T)=2M+A(Ty - T) (109)
where A is some constant. Now insert this into (93) to find that
2 -2 2 2
—2M 2M
diNT_ (B2 (AR (110)
dT 2M dT T —-T)

Integrating it emerges that

Ty, —T
~ —2M 111
t ln( 5B ) (111)

Now see 92. As r approaches 2M the second term of the right side becomes huge relative to
the first term so we can disregard the r term. We can also substitute for » — 2M using 109:

% r—2M T()—T
r NQMZn( Wi >~2Mln<A Wi ) (112)

Now that we have expressions for t and r* we can use them in our expression for the param-
eterization of the light ray once it has left the Black Hole U. We saw earlier that u =t —r*.

u=t—r*~—4M In (TO; T) (113)

The term F in the denominator is a constant made up of the terms M,B and A.

We also saw earlier that U=T-R(T). Using 109 for R(T) yields
U=T-R(T) ~ (1+ AT — 2M — AT, (114)

We can manipulate this to isolate 1Ty — 7.

To—-U-2M
Substituting this into 113 it is clear that
Ty —-U—-2M
= —AMiIn| ————— 116
! ”( (1+AF ) (116)
N TO—[LLU+b]—2M
= —AM In ( (1T A)F ) (117)
(To—b—2M)/a—v
= —4AM 11
"( 1+ A)F/a (118)

(119)
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Now, since u — 00 as v — vy
’UO:(T()—b—QM)/CL (120)

So we can conclude that

9(v) = —4M In (UOC_ U) (121)

M is the parameter for the mass of the star and vy is the limiting value of v for rays which
pass through the black hole as has been explained. So using this expression for g(v) in 89
one gets

Yim (0,¢) 1 AMiwin(*557)
lem={ vee e s (122

rv/4w
0 if v > vy

Again F takes on the value zero when v > vy because the ray does not escape the black hole.
It has no representation in the future. It has no future! Using equation 56 as a guide we can

r=0 exterior w# U0

Future Null Infinity

vO?

V*

Past Null Infinity

r=0
interior

Figure 1: Penrose diagram
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rewrite F} as follows.

lem = / duw'’ (aZJ’lm wlmfw’lm - Bw’lm wlTI'Lf:;’lm) (123)
0
(124)

We have changed the sum to an integral. The subscript & is now wilm while j is w'lm. We
also have an expression for f from eqn122 which we can use here. 124then becomes,

* Y (0, 1 Yim(0,0)" 1
lem = / dw,(aZJ’lm wlm l ( (b) l ( ¢) (
0 rAr VW' rv/4m NA
Now two things should be apparent. One, equation 125 is in the form of a Fourier transform,

where F,;,, is H(v). Two, since there are two terms in the integral we can break up our
definition of h(w').

)e v (125)

i
)6 W — 5w’lm wlm

(126)

We can thus rewrite eqn. 64 as follows.
Hv) = / h(w')e= 'V du (127)

The point of this little maneuver is that now we can now take advantage of the
inverse Fourier transform. .
h(w') = —/H(v)eiwlvdv (128)
2r
Specifically, consider the two cases of positive and negative w'. If w’ > 0

. Yim(0,9) ( 1 ) L[ Yim(0,0) 1,
o =

w'lm wim r /_47'(' /—w, or SR ’_47'( \/(E
Cancelling and moving the w' to the right we have

Orim wim = T ERQPLR (130)
wim wim

21w J_ o
Similarly, we can isolate the beta’s but it’s a little more tricky. We will assume w' is positive
and take —w’. Watch out.

nm(e,qs)*( 1 ) U [ Yim(0,0), 1 i)
—Mwlm wim = — (—=e I wed 131
oman=" 7 \VZ) = ) v el e (181

fiwg(v)eiw’vd,u (129)

(132)

The trouble, of course, is that we have Yim(08)" o0 the left, but Yin(0:9) 1y the right. Who
rv4m rv/4n

says that these cancel? However, for reasons that will soon become apparent we actually are
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only interested in the absolute value of these quantities. The absolute value of a complex
number |a + bi| = va? + b? = |a — bi|. Thus the complex conjugate in the Y}, term does not
pose a problem.

Cancelling like terms, and moving the minus sign and the w’ to the right we have

Ym L V' 0 —iwg(v) ,—iw'v
_ﬂw’lmwlm = Yf* % \/L_L) (& 9( )6 dv (133)
Im

—00

OK, now here is what we are going to do. We want to find the relationship between |y im wim|
and |Buim wim|- Remember, that the absolute value of a number and the absolute value of
its complex conjugate are the same. So, |a| = |a*|. Also, recall that the absolute value of
both e~™ and €® is 1.

" 1 A /wl 0 » o,
|aw'lm wlm| = % \/a ‘/ € zwg(v)ezw Ydv (134)
—00
1 V' Vo ) -
|/8w’lm wlm| = 2— Tw ‘/ e*Zw!}(U)e*Zw Ud’l) (135)
™ w — o0

Notice that the terms of integration are negative infinity to vg. The rationale is this. As
explained earlier, at values of v > vy the light becomes trapped in the black hole and is lost.
Now, we need to tinker with these equations a bit. First, the terms outside the integrals in
134 and 135cancel each other.Second, we make the following substitution:

v'o= vy —w (136)
dv' = —dv (137)
This accomplishes three things. It alters the terms of integration. It allows us to absorb the

negative sign by switching the upper and lower bounds of the integration. And it allows us
to bring the terms involving vy in the exponent of e outside the integral. Thus we have

vo vo vg—v
/ T Iy = / M e v dy (138)
—00 —00
ez‘w’vo/ o'V SidMuw ln(%’)dvl (139)
0
vo vo vg—v
/ e—iwg(v)e—iw’vdv — / eiMw ln(—oc—)e—z'w’vdv (140)
—0o0 —0o0 © I
— efiw'vo / eiw'v’ei4Mw ln(%)dvl (141)
0

So find the relationship between the alphas and betas, it suffices to find the relationship
between these two integrals. This can be done using closed contour integration. The result
is this. ~ , - ,
/ e—iw’v’ ei4Mw ln(%)dvl — _647er / eiw’v’ ei47rMu1 ln(%)dvl (142)
0 0
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The relationship then between the alphas and betas is this.

47er|Bw’lm wlm| (143)

‘aw’lm wlm| =e€

But by 59, letting j=j’, we conclude that:

1 = Z |05w’lmwlm|2 - |,Bw’lm wlm|2 (144)
wl

= Z(e8ﬂMw - 1)|6w’lm wlml2 (145)

w!

Now buckle your seatbelt. If we divide by the constant term we have solved for the betas
in terms of known quantitites of mass and frequency. We have found the average number of
particles created by a Black Hole.

1
Z’ ‘ﬂw’lm wlm|2 = 687TM°" 1 (146)
w
Let us relate this expression to the main term in the equation for black body radiation:
1
hv. 3 (147)
physical
e —1

hv, ;
The =22 corresponds to our 87 Mw.

One final point. This last expression is fine mathematically. However, it has been simplified.
The speed of light is 1 and all sorts of other constants have been adjusted to equal 1. If
you want to actually calculate something some alterations are in order. The conversions are
these

2y (148)
v = Vphysical/c (149)
M = GMynysica/ (150)
% GM, 2
87 Mw = 87 ( pi;ysical) T Vphysical (151)
C Cc

The creation of these particles corresponds to the frequency distribution of a black body at
temperature T satisfying

thhysical GMphysical 271—Vphysical
—— =38 152
kT m c? c (152)
When we solve for T, the vs cancel. So we have
Tphysical = hc3/(167r2kGMphysical) (153)

;LCg/(SWkGMphysical) (154)
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G 6.673 * 107 cm?®/gm sec? (155)
k = 1.3805% 107" ergs/(degrees kelvin) (156)
h = h/2m =1.055% 10"*" gm cm?/sec (157)
c = 3%10'" em/sec (158)

We have done the calculation for a black hole with the same mass as the sun. 1.989x10*gm:

T = 6.18 x 1078 degrees kelvin (159)
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