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1 Introduction

1.1 Why Study the Kerr Black Hole

1.1.1 Overview of Black Holes

One consequence of the theory of General Relativity is that sufficiently massive,
cold, spherical fluid bodies cannot exist in hydrostatic equilibrium and thus un-
dergo complete gravitational collapse. The resulting geometry of the spacetime
embodies a singularity. Intuitively, a spacetime singularity is where the curva-
ture blows up. However, one encounters difficulties with such a definition. We
shall return to this issue when we study the singularity of the Kerr black hole.
The nature of a black hole is due to the singularity within, as is implied by the
physical formulation of the Cosmic Sensor Conjecture (Penrose, 1979):

All physically reasonable spacetimes are globally hyperbolic, i.e., apart from a
possible initial singularity (such as the ”big bang” singularity) no singularity is

ever visibly to any observer.

In other words, the spacetime curvatures is so large that not even light can
escape. Hence the term black hole.

1.1.2 The Universality of the Kerr Black Hole

The Kerr black hole provides the only known stationary vacuum black hole
solution to Einstein’s equation. However, a remarkable result follows from theo-
rems by Israel, Carter, Hawking and Robinson (1967-75), namely that the Kerr
black hole is the only possible stationary vacuum black hole. Thus, consider
a body which undergoes a gravitational collapse and under the Cosmic Sensor
Conjecture forms a black hole. One expects that after a sufficient period of time
the spacetime geometry would settle to a stationary final state and in addition
that all matter present would be swallowed up leaving a vacuum, except possi-
bly for electrostatic fields. If the Cosmic Sensor Conjecture is correct, then the
end product must be a Kerr black hole determined only by the total mass and
total angular momentum, irrespective of the original composition, shape and
structure.
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1.1.3 The Generality of the Kerr Black Hole

The Kerr black hole was proposed by Kerr in 1963. It describes a stationary
axisymmetric vacuum solution to Einstein’s equations. It introduces rotation
into the static spherically symmetric solution proposed by Schwarzschild in 1916.
The Kerr black hole was later generalized in 1965 by Newman et. al. to include
charge, following a recipe by Reissner (1916) and Nordstrom (1918). This is
believed to be the most general form of the stationary axisymmetric vacuum
solution, and so, as suggested in the previous section, the charged Kerr black
hole encompasses all the known stationary black hole solutions. The charged
Kerr metric admits three parameters: e, a and m. The parameter e encodes the
charge, the parameter a encodes the angular momentum per unit mass and the
parameter m encodes the mass of the charged Kerr black hole. When e = 0,
the spacetime metric reduces to the vacuum Kerr family of solutions. When
a = 0, the spacetime metric reduces to the Reissner-Nordstrom solutions and
when a = e = 0, the Schwarzschild metric is recovered. It appears that in any
astrophysically reasonable situation e ¿ m and so we can neglect the effects
on the electromagnetic fields on the geometry and focus on the Kerr family of
solutions.

1.2 Why Use Maple

General Relativity by its nature is both symbolically involved and computa-
tionally intensive. Maple packages offer tools to assist in computations related
to General Relativity. It allows the user to explore some of the known results
of General Relativity, and also explore new domains by tensor definitions. For
this paper, all Maple work was done with Maple V Release 4. Of course, later
versions of Maple may be used as well. We briefly describe here three of the
main packages for General Relativity computations with Maple. For a more
detailed description, please refer to Appendix I.

1.2.1 The Tensor Package

The Tensor package is built into Maple V. It is an extensive package that con-
tains commands for computing basic quantities such as the Christoffel symbols,
the Riemann tensor and the curvatures, as well as some more advanced com-
mands for handling Killing’s equation and the Euler-Lagrange equations for the
geodesic curves.

1.2.2 The Riemann Package

The Riemann package is an add-on package for Maple. In addition to commands
for basic computations in General Relativity, it provides a good facility for the
symbolic manipulation of tensors.
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1.2.3 The GRTensorII Version 5 Package

The GRTensorII is an add-on package for Maple. In addition to commands
for basic computations in General Relativity, it contains built in libraries for a
number of known solutions to Einstein’s equations, including the Schwarzschild
solution and the Kerr solution. All of the computations for this paper where
done with this package.

1.3 About this Paper

This paper set to investigate some of the main known results about the Kerr
black hole with the aid of Maple. First, the basic properties of the Kerr metric
are explored and then some of the characteristics black whole are studied. All
computations for this paper are done in Boyer-Lindquist coordinates. These are
the familiar t, r, θ and φ coordinates. However, the Kerr metric can also be
explored in Maple via the Newman-Penrose (NP) tetrad formalism, especially
using the GRTensorII package.

2 The Basic Properties of the Kerr Metric

In this section we study some of the basic properties of the Kerr metric in Boyer-
Lindquist coordinates. We begin by clearing the workspace using ’restart’,
setting an interface parameter using ’interface’ and invoking the GRTensorII
Version 5 package using ’grtw()’.

> restart: interface(labelling=false): grtw();

GRTensorII Version 1 .70 (R4 )

31 May 1998

Developed by Peter Musgrave, Denis Pollney and Kayll Lake

Copyright 1994 − 1998 by the authors.

Latest version available from : http : //astro.queensu.ca/˜grtensor/

c : /GR/Grtii(4 )/Metrics

Next, we load the built-in library for the Kerr metric in Boyer-Lindquist
coordinates.

> qload(kerr);

Default spacetime = kerr

For the kerr spacetime :

Coordinates
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x(up)

x a = [r, θ, φ, t]

Line element

ds2 =
(r2 + a2 cos(θ)2) d r2

r2 − 2 mr + a2
+ (r2 + a2 cos(θ)2) d θ2

+ sin(θ)2 (r2 + a2 + 2
mr a2 sin(θ)2

r2 + a2 cos(θ)2
) d φ2 − 4

ma r sin(θ)2 d φ d t

r2 + a2 cos(θ)2

+ (−1 + 2
mr

r2 + a2 cos(θ)2
) d t2

Kerr metric in Boyer − Lindquist coordinates.

2.1 Confirming the Kerr Metric is a Vacuum Solution

We wish to show that the Kerr metric is indeed a vacuum solution of Einstein’s
equations. We begin by computing the Ricci tensor with both coordinate indices
in covariant form. In order to do so, we invoke the ’grcalc’ command with
parameter ’R(dn,dn)’. The tensor name ’R’ is reserved by GRTensorII for both
the Ricci and the Riemann tensors, as is the case in the literature. If ’R’ takes
two parameters, then it is interpreted as the Ricci tensor, and if it takes four
parameters, then it is interpreted as the Riemann tensor. The ’dn’ indicates
that we wish for the coordinate index to be represented in covariant form (with
the contravariant form indicated by ’up’).

> grcalc(R(dn,dn));

CPU Time = .234

Next, we simplify the expression. We use the command ’gralter’, passing ’ ’
as a parameter where the expression to be simplified is to be entered, indicating
that the tensor just computed, namely ’R(dn,dn)’, is to be simplified. The type
of simplification - ’trig’ indicates a trigonometric simplification.

> gralter(_,trig);

Component simplification of a GRTensorII object:

Applying routine ‘simplify[trig]‘ to object R(dn,dn)

CPU Time = .250

We can now display the Ricci tensor.

> grdisplay(_);

For the kerr spacetime :
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Covariant Ricci

R(dn, dn)

R a b = All components are zero

Indeed, this confirms that the Kerr metric is a vacuum solution to Einstein’s
equations. This agrees with the requirement stated in the introduction that in
a black hole all matter present would be swallowed up leaving a vacuum except
possibly for electrostatic fields.

2.2 The Case m = 0

We now wish to show that when the parameter m, interpreted as the mass of
the Kerr black hole is zero, then we are naturally left with flat spacetime. This
is accomplished by computing the Riemann tensor, substituting m = 0 and
showing that the resulting tensor is equivalently zero.

First compute the Riemann tensor.

> grcalc(R(dn,dn,dn,dn));

CPU Time = .265

Next, perform the substitution.

> grmap(_,subs,m=0,‘x‘);

Applying routine subs to R(dn,dn,dn,dn)

Now simplify the expression.

> gralter(_,trig);

Component simplification of a GRTensorII object:

Applying routine ‘simplify[trig]‘ to object R(dn,dn,dn,dn)

CPU Time = .016

Display the result.

> grdisplay(_);

For the kerr spacetime :

Covariant Riemann

R(dn, dn, dn, dn) = All components are zero

Indeed, we see that the Riemann tensor is equivalently zero. This confirms
that the Kerr metric is flat in the limit m = 0.
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2.3 The Symmetries of the Kerr Metric

GRTensorII has a utility for finding out the Killing vectors associated with a
metric.

> KillingCoords():

Testing Killing coordinates for kerr
Created definition for coord1(dn)
Created a definition for coord1(dn,cdn)
Created a definition for coord1(up,cdn)
Created definition for coord2(dn)
Created a definition for coord2(dn,cdn)
Created a definition for coord2(up,cdn)
Created a definition for coord3(up,cdn)
Created definition for coord3(dn)
Created a definition for coord3(dn,cdn)
Created definition for coord4(dn)
Created a definition for coord4(dn,cdn)
Created a definition for coord4(up,cdn)

CPU Time = .657

Killing Coordinate Test Results

Coordinate vector = [r, θ, φ, t]

coord1(up) = [1, 0, 0, 0], not a Killing vector .

coord2(up) = [0, 1, 0, 0], not a Killing vector .

coord3(up) = [0, 0, 1, 0], a Killing vector .

coord4(up) = [0, 0, 0, 1], a Killing vector .

Since the coordinates t and φ do not appear in the metric, the coordinate
vector fields ∂t and ∂φ are killing vector fields. The flow ∂t consists of the
coordinate translation that sends t to t+∆t leaving the other coordinates fixed.
These isometries express the time-invariance of the model. For ∂φ, the flow
consists of coordinate rotations that send φ to φ+∆φ. These isometries express
the axial symmetry of the model.

2.4 Asymptotic Flatness

The Kerr black hole is said to be asymptotically flat. This can be seen crudely by
taking the limit as r →∞ of the metric. The resulting metric is the Minkowski
metric in spherical coordinates. In general, however, the notion of asymptotic
flatness is non-trivial and a more rigorous justification is given by Ashtekar and
Hansen (1978). Asymptotic flatness expresses the natural idea that far from the
black hole its gravitational field is weak.
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3 The Characteristics of the Kerr Black Hole

3.1 Singularity of the Kerr Black Hole

As mentioned in the introduction, determining the singularity of spacetime is
by no means a trivial business. Following the intuitive notion that a singularity
occurs at a place where the curvature blows up may lead to difficulties since,
often a particular choice of a coordinate basis may cause the components of the
Riemann tensor to behave badly even though a singularity may not be present at
all. It turns out that a good way to determine the singularity of the Kerr black
hole is to examine the Kretschmann scalar RabcdR

abcd. In order to do that, we
first need to perform a coordinate transformation u = acos(θ). GRTensorII has
a built-in library for that, so we load it first.

> qload(newkerr);

Default spacetime = newkerr

For the newkerr spacetime :

Coordinates

x(up)

x a = [r, u, φ, t]

Line element

ds2 =
(r2 + u2) d r2

r2 − 2 mr + a2
+

(r2 + u2) d u2

a2 − u2
+

(a2 − u2) (r2 + a2 + 2
(a2 − u2)mr

r2 + u2
) d φ2

a2

− 4
(a2 − u2)mr d φ d t

a (r2 + u2)
+ (−1 + 2

mr

r2 + u2
) d t2

The Kerr metric in Boyer − Lindquist type coordinates (u = acos(θ)).

Now we calculate the Kretschmann scalar, referred to as RiemSq.

> grcalc(RiemSq);

Created definition for R(dn,dn,up,up)

CPU Time = .234

We simplify the expression.

> gralter(_,6,7);

Component simplification of a GRTensorII object:

Applying routine expand to object RiemSq
Applying routine factor to object RiemSq

7



CPU Time = .172

Now we can substitute back for u.

> grmap(_,subs,u=a*cos(theta),‘x‘);

Applying routine subs to RiemSq

The resulting scalar is:

> grdisplay(_);

For the newkerr spacetime :

Full Contraction of Riemann

K = −48m2 (−r + a cos(θ)) (r + a cos(θ)) (r2 − 4 a cos(θ) r + a2 cos(θ)2)

(r2 + 4 a cos(θ) r + a2 cos(θ)2)
/

(r2 + a2 cos(θ)2)6

The scalar blows up at r2 + a2cos(θ)2 = 0. If the mass m is non-zero, this
indicates a true singularity at r = 0 and θ = π/2. Of course, this result only
seems puzzling if we naively interpret the coordinate system to imply that our
manifold structure is R4. We get insight into the true nature of the singularity
by studying the case m = 0 and a 6= 0. In this case, the Kerr metric is the
Minkowski metric in spheroidal coordinates with a coordinate singularity on a
ring of radius a in the plane z = 0. This suggests we define the Kerr metrics on
a manifold in the neighborhood of the singularity having a topology R4 \S1×R
(that is, take away a ring cross ”time”).

4 Concluding Remarks

4.1 Further Insight into the Kerr Black Hole

Current research into the Kerr black hole is plentiful. One of the more intriguing
areas is that of energy extraction from the Kerr black hole. By definition, a black
hole allows nothing to escape. And yet, by making a Kerr black hole absorbs
a particle with negative total energy, positive energy may be extracted (Wald,
325-30).

Another fascinating area of research is that of black holes and thermody-
namics. It seems there exists a striking parallelism between black hole dynamics
and thermodynamics. Perhaps the most obvious similarity is between the sec-
ond law of thermodynamics - the entropy of a thermally isolated system tends
to increase, and the law of area increase of a black hole (Wald, 330-9).

4.2 General Relativity with Maple

I shall try to give here an overview of my impression of performing basic General
Relativity computations with Maple.
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4.2.1 The Strengths

• Lots of different packages to choose from

• Friendly interface for most packages

• Built-in libraries for some known solutions to Einstein’s equations

• Flexibility in defining new tensors

4.2.2 The Weaknesses

• Would have been nice to have one well-coordinated package

• Limited flexibility in modifying the built-in libraries

• Limited accessability to internal data structures both for reading and writ-
ing data

• Limited help facility

4.2.3 Overall Assessment (based on the packages Tensor, Riemann
and GRTensorII)

It seems like Maple is perfect for basic computations such as the Christoffel
symbols, the Riemann tensor, the Ricci tensor and the curvatures, and it appears
as a powerful tool at that. However, substantial effort need be put into getting
results for some of the more fancy formulations such as computing the geodesic
equations.

5 Appendix I - General Relativity with Maple

This appendix provides a listing of some of the Maple packages for General
Relativity.

5.1 Tensor

• Description: ”The Tensor package contains routines that deal with tensors,
their operations, and their use in General Relativity both in the natural
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basis and in a moving frame. Some utilities to help manipulate tensors
are also provided.”

• Author: NA

• Source: built into Maple V Release 4.

5.2 Riemann

• Description: ”Tools to manipulate tensor components, applications to
General Relativity Theory, some symbolic manipulation tools.”

• Author: Renalto Portugal

• Source: http://www.astro.queensu.ca/˜portogal/Riemann.html

5.3 GRTensorII

• Description: ”GRTensorII is a computer algebra package for performing
calculations in the general area of differential geometry. Its purpose is the
calculation of tensor components on curved spacetimes specified in terms
of a metric or set of basis vectors. The package contains a library of stan-
dard definitions of a large number of commonly used curvature tensors, as
well as the Newman-Penrose formalism. The standard object libraries are
easily expandable by a facility for defining new tensors. Calculations can
be carried out in spaces of arbitrary dimension, and in multiple spacetimes
simultaneously. Though originally designed for use in the field of general
relativity, GRTensorII is useful in many other fields.”

• Author: NA

• Source: http://grtensor.phys.queensu.ca

5.4 Riegeom

• Description: Abstract tensor manipulation

• Author: Renalto Portugal

• Source: http://www.astro.queensu.ca/˜portogal/Riegeom.html
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5.5 NPTools

• Description: A package for tetrad formalism in General Relativity

• Authors: Sasha Cyganowski, John Carminati

• Source: http://www.cm.deakin.edu.au

5.6 Manifold

• Description: A package for integrating over manifolds

• Author: NA

• Source: http://sunsite.informatik.rwth-aachen.de/maple/frame02.htm
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