SPINORS AND THE DIRAC-EINSTEIN EQUATION
J. GERACI

ABSTRACT. In an attempt to discover an equation that satisfied
Special Relativity as well as quantum mechanics, Dirac arrived at
what is now known as the Dirac Equation. It will be discussed,
semi-technically, in section (2). As a prelude we need to under-
stand a little about the objects that the Dirac operator acts on,
specifically spinors. We shall discuss these creatures in section
(1). It was then concieved that upon merging the Dirac equations
with the Einstein equation, we gain some insight into a theory of
Quantum-Gravity. In section (3) we introduce Dirac’s equation in
curved space-time. After this, one is ready to see how the Einstein
equations are combined with the Dirac Equations.

1. INTRODUCTION TO SPINORS

How difficult would it be to find an object that when rotated by
27, looks exactly as when you started? Trivial ofcourse. Now, could
you find an object that when rotated by 27, has a different orientation
then when you started? Objects that have the same orientation after
a 2m rotation are known as spin-1 objects. Being overly simplistic,
we can say that particles that do not tranform in this way are known
as spinors. As a great example of such an object look up Feynman’s
”Waiter with a platter” trick on pg. 29 of [F,W]. As something that
you can do yourself, try the following. Take a belt and loop one end
around the top of a chair. Holding the free end rotate it by 47. Your
task is to uncoil it without rotating the belt or moving the chair. You
can attempt the same thing with a 27 rotation but it will be in vain.
A little more about that later. [The way you uncoil the belt is just by
looping it over its free end.|

From the above we can begin to imagine what type of objects these
spinors are. They can be viewed as objects that are tethered to some
other structure. This forces an iterdependence on the way the object
transforms and the way the ”leash” transforms. Some mathematics
may make this clearer.

I will be brief but attempt to motivate the rigorous ideas behind
spinors. Here, we will be working on Minkowski’s light-cone V' where

it will be realized as cross sections of the Riemann sphere. To begin
1
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recall that a vector U is null if
U|=U-U=0UTg;; = (U= (U - (U*?-(U*)?=0

We imagine U as starting from the origin of the cone and extending
along the surface to some point ¢ where { = % and £,n € C. Let the
pair (£,n) be coordinates for some future-pointing null vector K. Now,
recall that the standard stereographic representation of the unit-sphere

in (z,y, z)-space is given by:

_ << _ (< _ -1
T=wr Y= wemy -

These equations written in terms of £ and n become:
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So in this way, we can define some point on the rim of the cone, i.e.
at t=1. Let P be such a point with coordinates (1, z,y, 2).

Now consider the line OP where O is the origin. We can choose
some other point R on OP with coordinates (T, X,Y, Z) where :

(4) T = &+nj
(5) X = &i+né
(6) Y = —i(én—ne)
(7) Z = & —ni.

This was obtained by just multiplying the coordinates of P by £€+nyj.
Let K = OR have the coordinates (T, X,Y,Z) as defined. We now
define a point P’ that also lies on the rim of the cone, i.e. it has
coordinates (1,2',y,2'), such that it lies very near to P. We know

that we can define a vector L defined by L = lim,_,q ?. But a vector
can be represented by a differential operator, i.e.
0 0

Theorem1 ) is a numerical multiple of n72.
Proof:
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We require A to be some expression so that after applying a linear
fractional transformation (see Ahlfors) to ¢ we have { where

x al+p
©) E= 2
and

a f
(10) v 6 =1.

So we want (*) 5\6% + /:\a% = A\gp + 5\5‘%. (Note that these linear
fractional transformations with the preceeding determinant property

defines what is known as a spin transformation.)
Now, notice that

a1 ac _ {a(vé“ +0) = v(a<+ﬁ>}
o¢ (v¢ + 6)?
_—
0 ) 5,
(12) ac = ¢+9) 28_5 = 1°7] 26—5

recalling that ¢ = % and the determinant condition above.

(13) 32y ii = An%f?i a2
¢ 9 ¢ o¢
—
(14) IS WCL VU WU L Pt
o¢ o¢ ol &
—
(15) M2 = i
And so ) is indeed a multiple of 7 2.4
To make life easy we choose A\ = —1~2 which gives
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This was all worth it as you will see in a few moments. We now
have a vector L as well as a vector perpendicular to it, namely K. You
can see this by noting that L is tangent to what we’ve been calling the
rim and that its time component is zero. K on the other hand should
be imagined as passing through P and with positive time components
and spatial components perpendicular to those of L. (For details see
section 1.4 of [P,R].)

So we are almost ready for the punchline. Consider the plane given
by mK + nL where m,n € R and n > 0. We shall call this plane II
and refer to it and K collectively as a flag. It is natural then to call K
the flag pole. Notice that II is tangent to the cone and

Theorem(2) All directions in II other than K are orthogonal to K.
Proof:

(17) K-(mK+nL) = K*(mK?+nL?)g;; = mK'K? g;; +nK'L’ g;; = 0

recalling that K is a null vector.#

So our flag now depends solely on K and L. Remembering that L
depends on 72 consider the transformation

(18) £E— X and n— A\

where )\ = re®?.

We saw that to K, we can associate the coordinates (£,n). This
means that under a transformation like (18) K will transform differntly
than L. More specifically,

(19) (18) = ™2 — r~2e™20p~2

This means that the flag will rotate by 26 (about K) but K will only
rotate by 6.

As an example consider taking 6 from 0 — 7. Clearly (§,7) —
(=&, —n) but the flag plane IT will have rotated through 27. And so
IT will haveto rotate by 47 before the flag, i.e. K and II, returns to
its original state. This object we constructed is a 2-spinor and we may
represent it as (&, 7).

As a final word we should return to the belt trick. Why is it that it
works when you twist the belt through 720 degrees but that you cannot
undo the kink if it is formed with a 360 degree twist? Any rotation
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needs to identify an axis for which the rotation is occuring around. We
can then imagine that to any rotation of § radians one can identify a
vector of length 6. So if we restrict ourselves to rotations 6 € [0, 7], we
can associate all rotations to a ball of radius m. We notice immediately
though that whether you rotate about an axis k or -k, the effect is
the same. Thus, we must associate antipodal points of this ball and
we end up with an object whose topology is quite different from the
ball. Namely, we have that any closed curve in this space can not be
contracted to a point but any even multiple of it can be. So, one full
twist cannot be contracted but two can be. This object is none other
than SO(3). Therefore, to conclude, we call these complex vectors (£, 7)
on which SO(3) acts in this double valued way 2-component spinors.

2. INTRODUCTION TO THE DIRAC EQUATION

Eventually there came a time when people were desiring to unite
quantum mechanics with Special Relativity. These people wanted to
preserve the wave mechanics of quantum theory, but wanted to in-
corporate Lorentzian covariance. So they wanted an equation whose
solution would give a wave equation, i.e. one that describes the prob-
ability of finding a particle in a particular region of space, but at the
same time they wanted the mathematics to remain faithful to Rela-
tivity. The first attempt to find such a creature has been dubbed the
Klein-Gordon equation and is given by

(20) Oy = ¢7*0;0kp = m*y

for a particle of mass m. (Recall that g;r = diag(—1,1,1,1)) Dirac
however, wanted an equation that was first order in time, like the
Schrodinger equation. But in order to preserve Lorentzian covariance,
this would mean that the whole equation would have to be first order.
The attempt to find such an equation led to the Dirac Equation and
this is the reason why it is sometimes referred to as the square-root of
the Klein-Gordon Equation or the wave operator. Some mathematics
will make this clearer.

We look for a differential operator

(21) P =70

where the 77 are some coefficients so that

(22) D = B(0¢)
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This is what we meant as the square root of the wave operator. We
should notice something about 1 and the 4’. Keeping (21) in mind we
have Dirac’s equation

(23) DY =70y = myp = Oy = P( D) = m*

So we require
O = 2 2=8)(")
. 1 . .
(24) = Y700k = S(¥7* +7"+)0;0

which means, upon remembering (20), that

(25) Pty =24,
So taking j = 1 and k = 2 we have v!92 + v24! = 0 which means

that we have y192 = —42y!. We see that the +* are not just ordinary
numbers but turn out to be matrices. They are given by

(1 )
(26) 7 = 1
\ -1
00 ;)
(27) el IR
00 )

where j = 1,2,3 and

o (1) (1) (3 2)

are known as the Pauli matrices. The 1 in (23) is a wave function
made up of a column of 4 complex functions. It is known as a Dirac
spinor and can be thought of as a two-spinor as described in the last
section where each component is itself a 2-spinor, i.e ¥ = (¢g,¥s). To
conclude this section we write the Dirac equation as
M L0 | L0

0
ol oY 20 _
8t+’y 8a:+7 8y+7 8Z—i—zmw 0

For more details refer to [F].

(29) 7’
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3. THE DIRAC EQUATION IN CURVED SPACE TIME

Recall from equation (25) that the Dirac matrices were related to
the metric. Now, consider some observer in a curved space-time. She
would look out her window and believe that, atleast locally, she was in
some flat space-time. At any point about her, the Dirac matrices would
be just like those in the previous section. This means that as functions
of position, we have Dirac matrices G’(x) = 4’ for x a position on our
space-time manifold. From equation (25) however we have

(30) ¢ = (@G + GH6)

which means that any coordinate system that satisfies this, gives
a local reference frame. This means that General Relativity can get
along with the Dirac Operator G for curved space-time given by

sy O
(31) G= zG](x)% + B(z).
B(z) is a matrix composed of spin connection coefficients. For details
on this take a look at [Fin] A transformation of the form v — UypU !
for a unitary matrix U is known as a gauge transformation as well as
A — UAU '+ U(VU ') where A is a matrix. In fact, a local change
of basis is called a gauge transformation and connections are known as
gauge fields. For mathematics to describe a real physical system we
need the property that upon a local change in basis, the equations will
remain invariant. So to summarize, one would find the spin derivative,
i.e. the spin connection, by beginning with
0 .

(32) Dj = o —iCy(x)

for the appropriate matrices C;. Then you apply a gauge transfor-
mation and obtain some form for the C;. More explicitly,

(33) D; — UD;U' = 9; —iUC;U ' +U((0;U™")

So we want C;(z) to satisfy

(34) C; — UCU Y +iUQ;U ™)

which must be expressed in terms of the G and B(z). After much
work (again see [Fin]) it can be found that B(z) = G’(z)E;(z) where

(35) E;= %p(aj ) — %Tr(amvjan)amc:n + %Tr(pGijGm)p
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and

(36) P= 1

For this paper we consider a spherically symmetric and static space-
time. We can write the metric as

L G GGG

(37) gi; = diag(T %, — A, —r? —r?sin®0)
i 1
% N 2 —2

(38) g9” = diag(T*, —A,—r T 220

and volume element as /[g] = T~1A~2r2|sin)|.
[Note that A = A(r) and T' = T'(r) are positive functions]

In order to find the Dirac operator in this metric, we need to know
B(x) explicitly. We wish to transform the Dirac matrices so that equa-
tion (30) holds. Thanks to [F,S,Y1] we have

(39) Gt = TH°
(40) G" = VA(y'cost +y?sinf cos ¢ + 7> sin fsin ¢)
1
(41) G? = Z(—~'sin@ + ~*cosf cos ¢ + 7> cos fsin ¢)
T
1

(42) G? = " (—?sin ¢ + 73 cos ¢).

Being armed with two weapons, namely Ricci’s Lemma and a good
computer we have

(43) B= %Vij

[Note that Ricci’s Lemma just states that Vgga, = 0]

It is now required to find what B looks like explicitly. We begin by
noting that since our metric is static then 9,/=¢ = 31/—g9®ga = 0.
So after simplifying we get

\/m ,(\/19IGH = 0

1 'I'l _ g_ 2’ T
1 . 1
\/m \/EG rsinf
1 1
95(V/191G?) = ——(—y*cos¢ — 7’ sin¢)
\/7

rsinf
But this means that

(—2v"'sin 0 cos § + v*(cos® § — sin’ ) cos ¢ + v*(cos> 6

— sin” §) sin
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7 1 r ’LT' r
(44) B = ;(I—A )G _ﬁfG
So finally, we have our Dirac operator
0 0 1 i T’ 0 0
— t 2 ri; 1—A2)— 6 ¢
(45) G = ZG0+G(87~+ ( 2) 2T)+G6+ZG8¢

4. THE DIRAC-EINSTEIN EQUATIONS

We first rewrite the equations and simplify things greatly. It is then
necessary to find the Energy-Momentum tensor and from there we write
the Dirac-Einstein Equations.

To begin with, we introduce some notation.

(46) o"(0,¢) = o'cosf+ o’sinfcos¢+ o°sinfsin ¢
(47) 0%(0,9) = —o'sinf+ 02 cosfcos¢ + o cosfsin ¢
1
® — A2 3
(48) a®(0, ) sinﬁ( o°sin ¢ 4 0” cos @)

To simplify further we take as the ansatz a spinor of the form

(49) U, = e—iwt ( '1:1611 >

0 U2€,

where a = 1,2 and e; = (1,0), e = (0,1). The u,(r) are complex
valued functions. This is all good because it allows us to write two
independent Dirac equations

(50)

G\I!a:K 0 %T>(iﬂ@r+£(ﬂ—1)—%T¥a)+wTvo+%(8 “)]xp

which is not obvious unless you note that
0%(0p0™) = 0%(8407) = W.

Now, let ¢, = rT_%ul and &5 = _Z.TT_%’U,Q. This allows to simplify
further the radial dependence. Write

(51)

(3 & )or= (8 3)vans (4 3 ) Eom(83)] oo
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Which can be rewritten as the ODE

r_ 0 -1 171 0\ 01
(52) \/Z@_[wT<1 0)+r 0 _1 m( 1 o ])|2
where this is arrived at by pulling out the second term in equation (51)
01
10 )
So equation (52) allows us to view the Dirac equation as a two com-
ponent equation.

and multiplying through by (

The Einstein Field Equations are given by
1
(53) Gab = Rab — §Rgab = 87TTab.
This means that in order to continue we are going to need the Energy-

Momentum tensor T,;. This tensor can be arrived at by looking at the
variation of the Dirac action given by

(54) S = / T(G — m)¥+/|g|d*z

Since the action is real we just have to pay attention to the real portion
of (54). We consider

(55) dS = /Reﬁ(i(éGj)% +6B)U+/|g|d*z

The variation of the matrix B can be shown to vanish. This leaves us
with

2
1 = 0 ik 4
(56) 88 = / 5 aE_l Re\Ifa(sz@)\PaégJ V0gld*x
and so the Energy-Momentum tensor is the matrix
2
1 . 0 ) 0
(57) T7k = 5 aEZI Re‘I’a(’lG‘jﬁ + ZGk%)‘I’a

Thanks to plenty of cancellations (please see [F,S,Y1]) we arrive to

Ti; = r2diag(2wT?|®|?, —2wT?|®|* + 4Tr '@, o+
(58) 2mT (] — ®3), =271~ ' ® Dy, —2Tr ' &1 D).
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Now, after some heavy calculating we found the G,;. Specifically,

1 A A
59 Gy = ——+—=+—
(59) 00 r? * r2 r
1 A 2AT'
60 Gy = ——+——
( ) 11 r2 + 72 rT
A AT B AT 24T B AT"

1 — - .
(61) G Gis o T 2 e T

Therefore, using equation (53) and letting @ = ®; and 8 = ®, we have
the Dirac equations, equation (52), expressed as

(62) VAd = %a — (WT +m)B

1
(63) VA = (W —m)a— ;B
and the Einstein field equations expressed as

rAd' = 1—A-16mwT?*(a® + 3%)
T 1
A= = A-1- 167wT?(a® 4+ 2) + 327 -Ta B+
r
16mmT (o® — 3%).

If you have nothing to do for a long while you can attempt to show
that equations (62) and (63) as well as the last field equations, are
equivalent to

(64)

™ AT T 2 Al T
—167Tr '®1®, = A rQT +7? AT 2r? <T>

This is exactly the Dirac-Einstein equation in a spherically symmetric
space-time. The last four equations before this are much more useful if
you are concerned with discovering the properties of solutions for (64).
This is what Finster and company do in [F,S,Y1], where they go on
to describe the stability of solutions. My work here was essentially an
attempt to understand the beginning of [F,SY1] and [F,S,Y2] as well
as several chapters of [P,R].
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