The seach for gravity waves has proven to be adaunting task for experimental physicists,
pushing the limits of current technology. However, reseachers now appea to at the frontier, and
within the next few yeas, gravity waves may be discovered for the first time. Thereis good reason
to be excited: this discovery may expand our view of the universe many times over, and a new form
of astronomy may be born. Many even sped of a scientific revolution. This paper is intended to give
awhirlwind tour of both the theory and pradice of gravitational wave detedion. Essentialy, the first
half will be dedicated to the mathematicd basis of gravitational waves, and how they are predicted
by general relativity. The second half will | ook at the more pradicd isaues of detedor design and
noise reduction techniques.

THE NATURE OF GRAVITATIONAL WAVES

Newton's gravitationd theory works well in the we fields encountered in our patch of the
universe (i.e. the solar system). However, it quietly glosses over the mecdhanism of gravity, smply
stating “adion at adistance” Presumably, then, if a masswere to move quickly from one region of
spaceto another, this change would be noted instantaneoudly throughout the entire universe. But this
isindired conflict with speaal relativity. Aswill be shown, gravitational waves are the relativistic
response to this problem.

Unlike medhanicd or eledromagnetic waves, gravity waves are non-linea, meaning (amongst
other things) that the principle of superposition® does not apply. Fortunately for us, in areas where
the gravitational field is wedk, a first order approximation is appropriate, and lineaity can be

retrieved. In terms of general relativity, regions of spaceime with week gravity can be considered

!Richard Feynman thought the principle of superposition was one of the luckiest resultsin
physics. Certainly, it need not apply.
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“nealy” flat. Thus, in alinea approximation, the metric g,, charaderizing the space may be

expresed as the flat Minkowski metric plus a perturbation term,

Gov = My * My lhy,l«1 D

where 7, = diag(-1,+1,+1,+1) isin canonice form. We shall assumeh,,. is 9 small that higher order

terms are negligible. Thus:

gy = — hi, 2

Note that sinceg,, and 7, are both symmetric, it follows that h,, (and thus h"*) is also symmetric.
Aswell, it isclear that changesin g, will be the result of h,,. only; therefore, our ultimate goal will
be to creae alineaized filed equation in terms of h,,. To this end, we start by caculating the

Christoffel symbols:

™ -

v g pk(au Ot av gku B aA guv)

NP N-

(" -h*H[3, (M., +h,,) +8,(, +hy ) -6, (n, +hy )] )

Expanding this out, we note any partial derivative ating on 7, will be ze&o (7, is constant) and

higher order terms of h,, will be removed to maintain afirst order approximation. Consequently,

1
Fppv - ?npk(ap h\;k + av h}mp B ak hpv)' (4)
The arvature tensor is given by (with the first index lowered):

Ruvpo - gu}mR}‘vpu - guk (ap]‘—‘}mov 760]‘—‘}‘0\; +F}L Iy 7]‘—‘}‘ r« )

pe ov g pv



Sincethe Christoffel symbols are drealy linea in h,,, the double terms may be diminated. Again

letting g,, = n, + h,, and lineaizing (and switching the lower indices on the second Christoffel

symbol):

_ Y A
vapu N npkapr vo npkaur vp

1
= ?(apav h +3,6,h,,~3,6,h,,-6,3,h,,) (6)
Contrading over 1 and p gives
Rzu - gHP vpo
= (n He _h up) vapu
_ nuprpu
_ %(auav h¥ +3,8,h", -6,8,h* ~5,3,h,,) @)
and renaming the lower indices,
J‘ (o) (o)
Ry = ?(auavh W +0,0,h% -6,0,h-Ch ), G)

whereh = W, isthetraceof h,andCh=- 67 + 82 + 3 + J,7 is the D’ Alembertian of flat spacdime.

Finally, contrading R, over the last indices produces the Ricd scdar (to first order):

R=g" R
- (@M -hMR,
l o o
- 5(@,6,h*15,8,h*"-0,3,h-Ch,,)

= auav h H I:‘h (9)
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Our hard work finally alows us to expressthe Einstein tensor interms of h,,:

1
Guv - R]JviéguvR

1
= R|JV 7?(1’]“\; +hu\;)R

l (o) (o) [V
- 2(6,8,h°,+2,6,h°,~8,8,h-Lh a,8,h* +n, Ch)  (10)

v " My

Unfortunately, our choiceof the metric g, does not completely spedfy the wordinate system— there
exists me gauge freedom. It isnot the intent of this paper to delve into the gauge invariance of the
metric. Rather, agauge shall be chosen in order to make g,,, unique (the airious reader is direaed

to Carroll). First off, the harmonic gauge is €leded which leads to the restriction

grI®, =0 (12)

which, in our we& field approximation, gives

1

> ﬂwﬂ}”p(ap h; +d,hy, —d,hy) =0

1
= a,h¥, - Eakh =0 (12)

Substituting (12) into (10) allows the Einstein equations G, = 87GT,,, to be gproximated to first

order:

1
Dhuv - ?%Dh = 716nGTuV. (13

To smplify (13), we may define the trace-reveased perturbation as

T _ 1
= huv—E

Ny h (19
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(note that h", = -h*), to which (13) becomes

Ch,, - ~161GT,.. (15

w

In the cae of avaauum, this smplifies even further to

v

(16) should scream wave ajuation, suggesting oscill ating solutions of the perturbation term are

possble. Let us eeif the family of plane waves sttisfies (16) where, for ead component h,,

—_ ikgxc
hy=Cue ™ (17)

C,sisa ongtant and k’ isa mnstant vedor cdled the wave vetor. For h,,, this plane wave may be

generalized to a set of plane waves:

-c,e"* (19)

where C,, isnow a onstant, symmetric (0, 2)-tensor (it is symmetric because h,, is ymmetric). We

now chedk that (18) isindeed a solution:

0-Ch,, =n*d,8,h,, 1”3, (ik,h,) =nik,a,h, = n*k kh, = kkoh (19
and sinceh,, = O for the non-trivial case, so long as
k,k® =0, (20)

plane wave perturbations are accptable. Letting k° =  (thisis known as the frequency of the wave),
we have k = (o, Kk, K3, k%) and condition (20) becomes
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w? = 8,k 'k (21)

Clealy, then, without any gauge @nditions, it takes thirteen parameters to define aly plane wave (ten

C. sand threek’s). However, the harmonic gauge ndition requires that
=\ v kXS v ikx?
0=g,p" =g,(C"e™")=iCHk,e

- k,CH =0 (22

These aldtional four restrictions reducethe number of independent components fromtento six. Yet
this gill does not spedfy the mordinate system. With this =t of six coefficients (cal them C ©9 ),

we still have the freedom find another set C™ | that refersto the same wave so that

cte -0 (29

clro, =0 (24

Now, if we use the a&ove mnvention when seleding our coefficients, this leaves only two
independent coefficients of C,, and eliminates any gauge freedom. Consequently, seleding the
harmonic gauge awell as restrictions (23) and (24) produces a unique ordinate system. To take
an example, a wave traveling in the x* diredion will have k’ = (w, 0, 0, ®), and using our gauge
restrictions, we have that the only nonzero components of C,, are C,;, C,,, C,; and C,,. However

C,. isalso tracdessby (24) and, as dated ealier, it is symmetric. Thus, C,, isgiven by:
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For obvious reasons this gauge is known as the transverse tracdess gauge. A nice
consequence of this choiceis that h,, is tracdess(since C,, is); thus, looking bad to (14) for the

relation between h,, and h,,, we seethat

e

b = Ny (26)

for the transverse tracdessgauge.

Having shown that Einstein’s equations predict the existence of gravitational waves with
planar geometry, let us now examine the dfed of such waves on test particles. Obvioudly, it is
insufficient to consider a single particle & gravitational waves dter the metric and affed only the
relative distances. It seams appropriate, then, to consider the relative motion of a group of freefall

particles through the geodesic deviation equation

D2 1l VI|IP QO
?:RV‘)UUUS (27)

where the four-velocities of the particles are indicated by the single vedor field U"(x) (Recdl the
separation vedor SY = x*/dsand risthe proper time in the particles inertial frame. The notion of
proper time makes sense becaise we can assume the Einstein Equivalence Principle gpliesin this
small region of spaceime). Asaiming that our particles are moving slowly, we may take U ¥(x) to be

aunit vedor in the time diredion plus powers of h,,. But because R" ,, is already expressed to first

vpo

order inh,,, U%X) = (1, 0, 0, 0) is a sufficient approximation. Consequently, R*,, is the only

e

component to be caculated for (27) (or equivalently R ,):

1

1
RuOOo = 56060 huu +0,0, Noo ~ 4 9o huO ~0,,0 hyo = 56060 huo (29

whereho = 0 (from (23)) is used in the last equality. Aswell, 7= t to first order and our geodesic
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equation smplifiesto

& 1qo &2

O guo=2ge Y9 pu 2

ot? 2 a2 ° (29
For our wave traveling in the X* diredion, (29) informs us that only S*and S?will be perturbed,
meaning only those particles in the plane perpendicular to the propagating wave will be dfeded (since

our system is a perturbed flat space it make sense to speek of such geometry). For thiswave

let usand define C, =C,; and C, = C,,. Considering C, alone (setting C, = 0), (29) givesthe two

uncoupled equations
S 3SC) (30
pea S (31
whose solutions, to first order, are:
S2-(1- %Qe”‘vx“)sz(O) 32)
St-(1+ %Qe“‘cx'”) s0) 33

Itisclea that the distance between particles in the x* diredion will vary sinusoidally, with a similar
motion in the X2 diredion. This phenomenon is perhaps best ill ustrated by a group of particlesin the
x-¢ planeinitialy in a drcle. Asthe gravitationa wave pases through, the drcle squashes verticaly

and horizontaly (fig. 1). Similar solutions occur when C, = 0 instea:



S'-sYo)+ %cxe”‘cxcsz(O) (34)

S2- S%0)+ %cxeik-vxcsl(O) (35

Here, the ring squashes diagonally (fig.
2) (the subscripts on C should now
make sense). Since any wave traveling
in the X¢ diredion can be charadterized
by the independent coefficients C, and
C,, these numbers considered separately
determine the linea polarized normal

modes of the gravitational wave. Note
Fig. 1. (Top) Influenceof C, mode onring d particles.

Fig. 2. (Bottom) Influenceof C, mode onring d particles. that these modes are a 45 to ead

other, rather than 90 asisthe cae for eledromagnetic waves.

INTERFEROMETRIC GRAVITATIONAL WAVE DETECTORS

Clealy, gravitational waves alter relative distances through locd perturbations in the
spacdime metric. It gandsto reason, then, that any device aeaed to measure these waves must be
capable of deteding such changes. In fad, al modern detedors are based upon the design of an
interferometer creaed by Michelson and Morely over one hundred yeas ago (fig. 3). Thedesignis

smple: laser light is glit into two perpendicular paths by a beam splitter. A mirror placed at the end



of ead path refleds the light bad to the
splitter, where it is recombined, and its
intensity measured with a photodiode. If
the mirrors are kept equidistant from the
splitter, the two wave fronts return at the
sametime and congructively interfere when
they recombine. This results in maximum
output intengty. Similarly, if the mirrors are

moved so that their relative distanceto the
Fig. 3. Schematic diagram of Michelson-Morely

interferometer. splitter remains constant, the wave fronts

will till recombine “in synch.” If, however, the relative distanceis changed, the waves will return
out of step, some destructive interference will occur and the measured intensity will drop. The
dependence of power output to arm length differenceis graphed infig. 4. It is sated without proof

that the relation between output power and arm length is

2nAL
Pout = P o0s’ = (36)

where P,, isthe input power of thelaser, AL isthe differencein length between the amsand A isthe
wavelength of laser light (this result can be found in any opticstext). An aternative formulation of
(36) involves the phase difference A between the two wavefronts. P, = P,,cos((4¢). Thus, the
Michelson-Morely interferometer is able to trandate changes in distance, within fradions of the
laser's wavelength, to changesin light intensity.

Interferometric gravitational wave detedors work on the same principle. In this case, the
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mirrors are dtadhed to large masses (usualy 30-100 kg
hung as pendulums at the end of ead arm. Gravitational
waves passng through the plane of the detedor will then
cause the masses to move relative to ead other. A phase
shift between the two wave fronts will occur and a change
inintensity will be recorded at the photodiode.

Let us quantify this processusing a spedfic case.
Fig. 4. Output power vs. armlength

Suppose there eists a plane gravitational wave traveling difference from a Michelson interferometer

perpendicular to the plane of the detecor. Without lossof generality, we may orient our coordinate
system so that the ams of the detedor are digned with the x* and X* axes, the beam splitter is
positioned at the origin, and the wave propagates parald to the x* axis. We will also assume that the
amsare d equa distancesto the splitter at X’ = 0. Asnoted ealier, such a plane wave is completely
charaderized by the wefficients of the normal modes, C, and C,. However, looking badk to (34)
and (35), it is clea that the C, mode dters the x* and X distances equally (provided distances are
equal at t = 0), resulting in zero phase shift between the two beams. We can thus negled this
component of the wave, making h,; and h,, the only nonzero components of the perturbation metric.

Consider light traveling to and from the beam splitter inthe am along the x* axis. The interval
between two spacdime events linked by alight beam is given as

ds?- 0 - g, dx*dx"

= (n,, +h,)dx dx?
- —cdt?+ (1+C,e") (o (37)

where hy; = C,exp(ik x’) as before. Note that we have reintroduced ¢ as the speed of light so that
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this physical calculation is more meaningful. Thetravel time of the light in the X" arm from the splitter

to the mirror can be found by integrating the square root of (37)

Tout L L
1 ik x° 1 1 ik x©
dt == Ce™ dxl~= =C e™ )dx?
{ C{\/l++ C{(1+2+ )

(39)

Here we have truncated the binomia expansion of the square root past first order since |h| « 1. Recall

that k? = (w, 0, 0, w), making exp(ik, x°) = exp[ia(X’+ X°)]; however X* = 0 in the plane of the

detector. Thus,

ik x°
a

L L

1 1 1 1 ToXO

Zf@a+=Ce™~ )dxl=={(1+=C ey dx?

G L 5Ce
lL 1 iu)x_l
-={(1+=C.e ©°)dx?!
Sfazce ™

where the substitution t = x'/c was made in the final line. Theintegral is now easily solved:

I(A)L

Tout L C+
Q/dt:==+ e °-1]
A c 2w

(39)

(40)

In asimilar fashion, the equation for the return trip can be written as (using the substitution t = (2L -

x)/c)

Trt

[t %}(h%cﬁ”‘axc)
L

Tout
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2.(JL)L .
+—e °‘[l-e 9] (41

with z,, being the time of the round trip. After asimilar analysis for the am in the X diredion, we

find that the differencein travel times between the two armsis

|(1)‘Eno

At =C 1€ 2 sinc(wt,,,/2) (42

with 7, = 2L/c and the function sinc x = (I/zx)sin(7x). The phase shift can be expressed by

multiplying this time difference by the angular frequency of the light, 2c/A

2nc X
Ad - C;no%snc(wrnolh)e 21 43

Thiswill register as adrop in intensity of cos’(4¢).

Working badkwards, then, this detedor allows the anplitude of a gravitational wave to be
easlly quantified by a change in light output (at least in principle).

GRAVITATIONAL WAVE SOURCES

Now that it is understood how gravitational waves propagate in a vaauum, it remains to
examine how these waves are generated in the first place Here, we cainot assume there exists a
vaauum (to the entrary, matter must be present to generate waves); thus, T, = 0 and our lineaized

Einstein equations take the form of (15):

Dhuv = 716nGTuV (44)

Without getting bogged down in PDES, the general solution to (44) is, in integral form,
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= 1
h, (X =4G[——T (t-x-y|y)d%
" fleyl .

(45

where xX° = t. Note that the integration is only over the spacdike mordinates and, similar to

eledromagnetic fields, T, is evaluated at the retarded timet, = t - [x- y|. Our goal isto solve (45)

explicitly for the cae of a distant, isolated, non-relativistic source We start by taking the Fourier

transform, with resped to time only, of h,, (x,t):

— 1 -
h, (w,x) = —— [dte''h (t,X)
3 \/2=ch W

T (=X,
_ ifdtdsyem)[ pv( | yl y)
/2 X-vi

_ 4G (g gy e g T ()
[ o
J2n y

wherethe last lineis a change of variables fromt to t,. With this, note that
1 it
T (@y) =——/[dt.e T _(t.y)
W ,—an W

and hence,

iw |x—y| Tu\; (O‘)!y)

ﬁuv(w,x):4Gfd3ye v

(46)

(47)

(43

Our approximation that the sourceis far away implies that from our (spatial) vantage point of x, the

objed is gnall compared to itsdistance R. Similarly, we will also assume that the objed is moving

slowly compared to the speed at which the radiation is emitted. This way, €°* Y/|x - y| can be

approximated as €“%/R when integrating over the volume of the source, giving
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_ ioR
Py (@) = 4G = [dY T, (@) (49

Furthermore, the harmonic gauge condition (11) trandates in Fourier spaceto

Y wiv
h™=2an (50)

d
w
wherej = 1, 2, 3 (thiswas found by applying the Fourier transformation to (11)). We may therefore

limit our attention to the spacdike cmponents of h,,(w,X). Doing so for (49), we manipulate the

right side by integrating by partsin reverse:

[dyTI@, )= [a T dY - [y' @ dY. (5

Thefirgt term on the right isa surfaceintegral and is zero sincethe sourceisisolated. We canrelate

the second term to T% through the Fourier spaceversion of d,T" =0 (conservation of T"),

—aka“ =T, (52)
which gives us
[ayTiwy) - i [y TId%y - 12 [y T3y 1T 0%y (53

where the last equality comes from the symmetry of T'. Employing integration by partsin reverse

to this result and then using the cnservation of TH* leads to the following:
[y TN - [0y T -y 'y @TdY -2 fylyT0dYy, (54

Finally, by defining the quadrupole moment tensor of the source &
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q;() =3 [y'y' T®(ty) d (59

h; (w,X) becomes

_ 2 HiwR
hy @ = 220 g, @) (56)

or, using the inverse Fourier transform,

2
26 d” 4 (1) 57)

Thus, the gravitational waves produced by a distant, isolated, nonrelativistic objed are proportional

in amplitude to the send time derivative of the quadrupole moment tensor evaluated at the retarded
timet, =t-R

But what type of sources emit

gravitational radiation? A typicd exampleisa

binary neutron star system (i.e. two neutron

stars that orbit ead other) as e in fig. 5.

Fig. 5. Schematic of a binary star system. Asaime such a system exists in the Virgo

cluster (ahot spot for neutron stars) 4.5 x 10°7* m away. Here, ead star hasamass3 x 10°° kg and

orbits in a drcular fashion with a distance of 20 km to the centre of massof the system. Circular

motion implies a cnstant orbital frequency which we will take to be 800 s (these ae standard

numbers for such a system). Orient the cordinate system so that the normal to the orbital planeis

inthe x® diredion. Then, using (55) the cmponents of the quadrupole moment are eaily caculated

to be
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O, = AsSin%(800t)
d,; = Acos(800t)
0,, = d,; = Acos(800t)sin(800t)

where A =~ 10®. The rest of the cmponents are zeo. Finally, the mmponents of h; can be found

from (57) to be

~h,, - h,, - Bcos(1600Qt,)

h,, = hy, - Bsin(1600t,)

Here, B = 10*. Nedallessto say, with |h,| on the order of 10%, the dfeds of such awave ae
astonishingly small, yet these binary sources are predicted to produce some of the strongest waves
experienced from Earth. Even orbiting black holes (a system similar to the &ove, only with two
black holesin their place are estimated to perturb spacdime & most one part in 10°!

It is questionable whether even the most sengitive interferometric detedor could recognize
these small perturbations. Provided that appropriate measures are taken to reduce noise levels,
however, most spedadlists fed such sengitivities are in fad possble (seeBlair and Saulson). The
following sedion looks at two of these noise sources and how their influence can be reduced.

NOISE REDUCTION

Photon Shot Noise

Recdl from our previous discusson that gravitational waves are deteded through relative
changes in the output intensity of laser light from a Michelson-Morely interferometer. Thus, an
equivalent question to “How small can ke deteded?’ is “How small of a change in opticd power can
be deteaded?’ Based on the particle nature of light, we seethat there isindeed a lower bound to this
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precison, the result of a phenomenon known as photon shot noise. To explain, first note that output
power is proportiond to the number of photons N arriving at the photodiode per unit time. Because
the power output of the laser is fixed, we do expect a mean number of photons N per interval; till,
the arrival of each photon is random and independent of other photons. Such a process of discreet,

independent events is characterized by a Poisson distribution function

NVeN

p(N) = NT

(58)

When N »1, this distribution can be approximated by a Gaussian distribution with standard deviation
o =N. Thus by measuring the number of photons per time interval, we would discover a fractional

fluctuation in these measurements of

(59)

With thisresult in hand, we can now proceed to calculate fluctuations in output power. Each photon

carries an energy of hw = 2mhc/A. The photon flux can therefore be written as

A
2THe

N-

(60)

out

In order to determine the size of expected power fluctuations, we must select the mean output power
of theinterferometer (i.e. adjust the arms to the desired point on fig. 4). Logically, the best position

would be P, /2, as the sensitivity dP,,,/dL to changesin arm length is at a maximum with

dPout 21 P. (61)

a. A

At this operating point, the mean number of photons per measurement is N = (A/4nhc)P,, and the
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fradiona photon fluctuation will be given by

(62)

However, such power fluctuations will be interpreted as relative movement L in the ams of the
detedor. This‘false motion” is given hy the fradional photon fluctuation divided by the fradional

output power change per unit position difference
N, 1 dP )
0, - 0=N/ out _ | hC (63
N P, d. 4P

Findly, if h evoked afradional change in length of JL, we have that 6L = Lh. So these fluctuations

in brightnesscan be seen equivaently as noisein h,

o:i HCA 64
LN 4np (64)

(64) can be expressed with some typica numbers (see Saulson):

0,-37x1022000km | A [ IW 65
L\ 0545m\ P

600 km is a standard opticd arm length for most interferometers designed to date (using a dever
technique to be discussed later), while 0.545um is the wavelength of the most commonly used laser,
the green argon ion laser. It is apparent that photon shot noise presents a serious threa to waves
that have magnitudes of 102" at best. The only chancein the nea future for reducing this noise lies
inincreasing the power output of the agon laser. While present argon lasers have apower output
of about 1 Watt, new versions are being designed with P,, ~ 1000Watts which could reduce o, by
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another order of magnitude.

Brownian Motion

The effects of Brownian motion (the jostled
movement of matter in response to molecular
collisions) are usualy consdered only for
microscopic particles. However, the precision
required by these detectors forces usto investigate
the interactions of the test masses with the
surrounding gas molecules. Suppose, for example, Fi9- 6. Schematic of test mass suspended in gas.
the detector contains suspended rectangular plate masses with cross-sectional area A (seefig. 6). The
pressure of the gas surrounding the masses is given by p = nkgT (where n is the number density of
molecules, kg is Boltzmann's constant, and T is the absolute temperature). Consider the case when
p isso low that the mean free path for the gas moleculesis large compared to the dimensions of the
test mass. Here, we can neglect intermolecular collisons and concentrate on molecule-plate
interactions.

When at rest, the plate will receive an equa number of collisions from either side, on average.

The average rate of collisions on one side will be given by

N==nvA (66)

NI

where v isthe average velocity of a gas molecule (see any introductory statistical mechanics book for
thisderivation). Thiscollison rate involves counting discreet, independent events per unit time; thus,
any fluctuations will obey Poisson gatistics. As for shot noise, the fractional fluctuation of collisions
per unit time will be
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zl| 2
Il

=2~

(67)

Also note that if each molecule reflects elastically off the surface, there will be a mean force exerted

on one side equal to pA, or equivalently,

F. = nk.TA. (68)

+ B

Since the force exerted should be proportiona to the collision rate, we expect the fractional

fluctuation in force to be equal to the fractional fluctuation of collisions:

9% % _ 1 (69)
F N ﬁ
s0 that the force noiseis
E
OE = ==
JN
A
-2k, T |2 (70)

Naturally, any variation in force will result in changes to the test mass postion. But (70)
demonstrates that the force noise can be lowered by reducing T, n or A and in fact, most detector
designs minimize al three. The chamber containing the mass is invariably super-cooled so that T is
near zero, while the pressure insde is reduced to one trillionth of an atmosphere. Similarly, spherical
test masses are used instead of plates so that the surface areato mass ratio is minimized.
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It should be stated that the dove discusson is only an emadated survey of noise sources and
their reduction. Other noise sources include: power output and wavelength fluctuations in the laser,
seismic noise, tidal effeds of the sun and moon, and the internal vibrational modes of the test masses.
Entire volumes have been written on the subjed. The interested realer is direded to Saulson and/or
Blair.

LIGO

Fig. 7. Schematic of LIGO detector.

The next few yeas $ould be quite exciting for gravitational wave detedion. Within that
time, thefirst threedetedors will becme operationa: two in the United States and onein Italy. The
LIGO projed (Laser Interferometer Gravitational-wave Observatory), lead by a Calted/MIT
consortium, involves detedors currently being completed in Hanford, Washington and Livingston,
Louisiana. Their (overly) smplified design (seefig. 8) is smilar to the setup of fig. 3—ead arm,
which spans 4 km, is kept under ahigh vaauum (1x 10*2atm) to reduce the Brownian noise described
above. Note that 4 km iswell below an arm length of 600 kn mentioned ealier. To achieve this
length, the designers cleverly added an extra mirror to the beginning of ead arm, effedively creding
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a Fabry-Perot cavity. Light bounces back and forth an average of 150 times before exiting the
interferometer, changing aphysical length of 4 km to an optical path length of 600 km. The building
of two detectorsis yet another noise elimination technique. It is predicted that high-amplitude noise
will be ableto find its way into the detector on occasion and two detectors will allow any signals to
be double-checked. A true gravitational wave front would pass through both detectors nearly
simultaneoudy, with both systems registering the disturbance. The chance of noise occurring at the
sametime in both locations, however, is very slim. System tests at both the Hanford and Livingston
detectors have been ongoing for the past two years, with Hanford due to go online in May 2002 and
Livingston later in 2003.

It is hoped that these two detectors, along with one in Italy (VIRGO), will not only be able
to show the existence of gravitational waves, but will also pinpoint such sourcesin the sky (this can
be done by measuring the time difference between each detector first receiving a signal, and then
using triangulation). With this information, astronomers can then direct their attention to these
regions for further study. Many speak of gravitational wave detectors as providing a turning point
in our understanding of the universe. When one considers that electromagnetic radiation only yields
about 10% of an astronomical object’s information, it is clear how potentially biased our knowledge

is. If successful, gravitational wave detectors might well take us to new frontiersin science.

-23-



SOURCES

Blair, David G. The Detection of Gravitational Waves. Cambridge University Press. Cambridge,
1991.

Carroll, Sean M. “Lecture Notes on General Relativity.” Lecture Notes. Compiled 1997.

Saulson, Peter R. Fundamentals of Interferometric Gravitational Wave Detectors. World Scientific.
New Jersey, 1994.

Thorne, Kip. Black Holes and Time Warps. W. W. Norton and Company. New Y ork, 1994.

No author. “About LIGO.” Web document. www.ligo.caltech.edu/LIGO_web /about/. Last updated
2 October 2001.

-24-



