
Richard Feynman thought the principle of superposition was one of the luckiest results in1

physics.  Certainly, it need not apply.
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The search for gravity waves has proven to be a daunting task for experimental physicists,

pushing the limits of current technology.  However, researchers now appear to at the frontier, and

within the next few years, gravity waves may be discovered for the first time.  There is good reason

to be excited: this discovery may expand our view of the universe many times over, and a new form

of astronomy may be born.  Many even speak of a scientific revolution.  This paper is intended to give

a whirlwind tour of both the theory and practice of gravitational wave detection.  Essentially, the first

half will be dedicated to the mathematical basis of gravitational waves, and how they are predicted

by general relativity.  The second half will l ook at the more practical issues of detector design and

noise reduction techniques.

THE NATURE OF GRAVITATIONAL WAVES

Newton’s gravitational theory works well in the weak fields encountered in our patch of the

universe (i.e. the solar system).  However, it quietly glosses over the mechanism of gravity, simply

stating “action at a distance.”  Presumably, then, if a mass were to move quickly from one region of

space to another, this change would be noted instantaneously throughout the entire universe.  But this

is in direct conflict with special relativity.  As will be shown, gravitational waves are the relativistic

response to this problem.  

Unlike mechanical or electromagnetic waves, gravity waves are non-linear, meaning (amongst

other things) that the principle of superposition  does not apply.  Fortunately for us, in areas where1

the gravitational field is weak, a first order approximation is appropriate, and linearity can be

retrieved.  In terms of general relativity, regions of spacetime with weak gravity can be considered
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“nearly”  flat.  Thus, in a linear approximation, the metric g  characterizing the space may beµ �

expressed as the flat Minkowski metric plus a perturbation term,

where �  = diag(-1,+1,+1,+1) is in canonical form.  We shall assume h   is so small that higher orderµ �            µ �

terms are negligible.  Thus:

Note that since g  and �  are both symmetric, it follows that h  (and thus h ) is also symmetric.µ �   µ �        µ � µ �

As well, it is clear that changes in g  will be the result of h   only; therefore, our ultimate goal willµ �       µ �

be to create a linearized filed equation in terms of h .  To this end, we start by calculating theµ �

Christoffel symbols:

Expanding this out, we note any partial derivative acting on �  will be zero ( �  is constant) andµ �     µ �

higher order terms of h  will be removed to maintain a first order approximation.  Consequently,µ �

The curvature tensor is given by (with the first index lowered):
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Since the Christoffel symbols are already linear in h , the double terms may be eliminated.  Againµ �
letting g  = �  + h  and linearizing (and switching the lower indices on the second Christoffelµ �   �   µ �
symbol):

Contracting over µ and 
  gives

and renaming the lower indices, 

where h = h  is the trace of h, and � h = - �  + �  + �  + �  is the D’Alembertian of flat spacetime.µ           2  2  2  2
µ          t   x   y   z

Finally, contracting R  over the last indices produces the Ricci scalar (to first order):µ �
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Our hard work finally allows us to express the Einstein tensor in terms of h :µ �

Unfortunately, our choice of the metric g  does not completely specify the coordinate system— thereµ �

exists some gauge freedom.  It is not the intent of this paper to delve into the gauge invariance of the

metric.  Rather, a gauge shall be chosen in order to make g  unique (the curious reader is directedµ �

to Carroll).  First off, the harmonic gauge is selected which leads to the restriction

which, in our weak field approximation, gives

Substituting (12) into (10) allows the Einstein equations G  = 8 � GT  to be approximated to firstµ �   µ �

order:

To simplify (13), we may define the trace-reversed perturbation as
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(note that h  = -h ), to which (13) becomesµ   µ
µ  µ

In the case of a vacuum, this simplifies even further to 

(16) should scream wave equation, suggesting oscill ating solutions of the perturbation term are

possible.  Let us see if the family of plane waves satisfies (16) where, for each component h , ��


C  is a constant and k  is a constant vector called the wave vector.  For h , this plane wave may be��
                 µ �
�

generalized to a set of plane waves:

where C  is now a constant, symmetric (0, 2)-tensor (it is symmetric because h  is symmetric).  Weµ �             µ �

now check that (18) is indeed a solution:

and since h  �  0 for the non-trivial case, so long as µ �

plane wave perturbations are acceptable.  Letting k  = �  (this is known as the frequency of the wave),0

we have k  = ( � , k , k , k ) and condition (20) becomes
�    1  2  3
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Clearly, then, without any gauge conditions, it takes thirteen parameters to define any plane wave (ten

C ’s and three k ’s).  However, the harmonic gauge condition requires that�	� i

These additional four restrictions reduce the number of independent components from ten to six.  Yet

this still does not specify the coordinate system.  With this set of six coefficients (call them C ),(old)
µ 


we still have the freedom find another set C  that refers to the same wave so that(new)
µ 


Now, if we use the above convention when selecting our coefficients, this leaves only two

independent coefficients of C  and eliminates any gauge freedom.  Consequently, selecting theµ �

harmonic gauge as well as restrictions (23) and (24) produces a unique coordinate system.  To take

an example, a wave traveling in the x  direction will have k  = ( � , 0, 0, � ), and using our gauge3    


restrictions, we have that the only nonzero components of C  are C , C , C  and C .  Howeverµ �   11  12  21  22

C  is also traceless by (24) and, as stated earlier, it is symmetric.  Thus, C  is given by:µ �                µ �
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For obvious reasons this gauge is known as the transverse traceless gauge.  A nice

consequence of this choice is that h  is traceless (since C  is); thus, looking back to (14) for theµ �     µ �

relation between h  and h , we see thatµ �   µ �

for the transverse traceless gauge. 

Having shown that Einstein’s equations predict the existence of gravitational waves wit h

planar geometry, let us now examine the effect of such waves on test particles.  Obviously, it is

insufficient to consider a single particle as gravitational waves alter the metric and affect only the

relative distances.  It seems appropriate, then, to consider the relative motion of a group of free-fall

particles through the geodesic deviation equation

where the four-velocities of the particles are indicated by the single vector field U (x) (Recall the µ

separation vector S  = 	 x / 	 s and 
  is the proper time in the particles’ inertial frame.  The notion of µ   µ

proper time makes sense because we can assume the Einstein Equivalence Principle applies in this

small region of spacetime). Assuming that our particles are moving slowly, we may take U (x) to be µ

a unit vector in the time direction plus powers of h . But because R  is already expressed to firstµ �     � �
� µ

order in h , U (x) = (1, 0, 0, 0) is a sufficient approximation.  Consequently, R  is the onlyµ �                00� µ              µ

component to be calculated for (27) (or equivalently R ):µ00�

where h  = 0 (from (23)) is used in the last equality.  As well, 
  = t to first order and our geodesicµ0
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equation simplifies to

For our wave traveling in the x  direction, (29) informs us that only S  and S  will be perturbed,3       1  2

meaning only those particles in the plane perpendicular to the propagating wave will be affected (since

our system is a perturbed flat space, it make sense to speak of such geometry).  For this wave

let us and define C  �  C  and C  �  C .  Considering C  alone (setting C  = 0), (29) gives the two+  11  ×  12    +   ×

uncoupled equations

whose solutions, to first order, are:

It is clear that the distance between particles in the x  direction will vary sinusoidally, with a similar1

motion in the x  direction.  This phenomenon is perhaps best ill ustrated by a group of particles in the2

x -x  plane initially in a circle.  As the gravitational wave passes through, the circle squashes vertically1 2

and horizontally (fig. 1).  Similar solutions occur when C  = 0 instead:+
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     Fig. 1. (Top)  Influence of C  mode on ring of particles.+

     Fig. 2. (Bottom)  Influence of C  mode on ring of particles.×

Here, the ring squashes diagonally (fig.

2) (the subscripts on C should now

make sense).  Since any wave traveling

in the x  direction can be characterized3

by the independent coefficients C  and+

C , these numbers considered separately×

determine the linear polarized normal

modes of the gravitational wave.  Note

that these modes are at 45  to each
�

other, rather than 90  as is the case for electromagnetic waves.
�

INTERFEROMETRIC GRAVITATIONAL WAVE DETECTORS

Clearly, gravitational waves alter relative distances through local perturbations in the

spacetime metric.  It stands to reason, then, that any device created to measure these waves must be

capable of detecting such changes.  In fact, all modern detectors are based upon the design of an

interferometer created by Michelson and Morely over one hundred years ago (fig. 3).  The design is

simple: laser light is split into two perpendicular paths by a beam splitter.  A mirror placed at the end
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Fig. 3.  Schematic diagram of Michelson-Morely
interferometer.

of each path reflects the light back to the

spli tter, where it is recombined, and its

intensity measured with a photodiode.  If

the mirrors are kept equidistant from the

spli tter, the two wave fronts return at the

same time and constructively interfere when

they recombine.  This results in maximum

output intensity.  Similarly, if the mirrors are

moved so that their relative distance to the

spli tter remains constant, the wave fronts

will  still recombine “in synch.”  If, however, the relative distance is changed, the waves will return

out of step, some destructive interference will occur and the measured intensity will drop.  The

dependence of power output to arm length difference is graphed in fig. 4.  It is stated without proof

that the relation between output power and arm length is 

where P  is the input power of the laser, � L is the difference in length between the arms and �  is thein
 

wavelength of laser light (this result can be found in any optics text).  An alternative formulation of

(36) involves the phase difference ���  between the two wavefronts:  P  = P cos (�
	 ).  Thus, theout  in
2

Michelson-Morely interferometer is able to translate changes in distance, within fractions of the

laser’s wavelength, to changes in light intensity.

Interferometric gravitational wave detectors work on the same principle.  In this case, the



ds2 � 0 � gµ � dx µdx
�

(37)

� ( �
µ � � hµ � )dx µdx

�

� � cdt 2 � (1 � C � e
ik� x

�
)(dx 1)2

-11-

Fig. 4. Output power vs. arm length
difference from a Michelson interferometer

mirrors are attached to large masses (usually 30-100 kg)

hung as pendulums at the end of each arm.  Gravitational

waves passing through the plane of the detector will then

cause the masses to move relative to each other. A phase

shift between the two wave fronts will occur and a change

in intensity will be recorded at the photodiode.  

Let us quantify this process using a specific case.

Suppose there exists a plane gravitational wave traveling

perpendicular to the plane of the detector.  Without loss of generality, we may orient our coordinate

system so that the arms of the detector are aligned with the x  and x  axes, the beam splitter is1  2

positioned at the origin, and the wave propagates parallel to the x  axis.  We will also assume that the3

arms are at equal distances to the splitter at x  = 0.  As noted earlier, such a plane wave is completely0

characterized by the coefficients of the normal modes, C  and C .  However, looking back to (34)+  ×

and (35), it is clear that the C  mode alters the x  and x  distances equally (provided distances are×
1  2

equal at t = 0), resulting in zero phase shift between the two beams.  We can thus neglect this

component of the wave, making h  and h  the only nonzero components of the perturbation metric.11  22

Consider light traveling to and from the beam splitter in the arm along the x  axis. The interval1

between two spacetime events linked by a light beam is given as

where h  = C exp(ik x ) as before.  Note that we have reintroduced c as the speed of light so that11  + �
�
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this physical calculation is more meaningful.  The travel time of the light in the x  arm from the splitter1

to the mirror can be found by integrating the square root of (37)

Here we have truncated the binomial expansion of the square root past first order since |h| « 1.  Recall

that k  = ( 
 , 0, 0, 
 ), making exp(ik x ) = exp[i � (x + x )]; however x  = 0 in the plane of the
�         �   0  3   3�  

detector. Thus, 

where the substitution t = x /c was made in the final line.  The integral is now easily solved:1

In a similar fashion, the equation for the return trip can be written as (using the substitution t = (2L -

x)/c)
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with �  being the time of the round trip.  After a similar analysis for the arm in the x  direction, wert
2

find that the difference in travel times between the two arms is

with �  �  2L/c and the function sinc x �  (1/ � x)sin( � x).  The phase shift can be expressed byrt0

multiplying this time difference by the angular frequency of the light, 2 � c/ �

This will register as a drop in intensity of cos (��� ).  2

Working backwards, then, this detector allows the amplitude of a gravitational wave to be

easily quantified by a change in light output (at least in principle).

GRAVITATIONAL WAVE SOURCES

Now that it is understood how gravitational waves propagate in a vacuum, it remains to

examine how these waves are generated in the first place.  Here, we cannot assume there exists a

vacuum (to the contrary, matter must be present to generate waves); thus, T  �  0 and our linearizedµ �
Einstein equations take the form of (15):

Without getting bogged down in PDEs, the general solution to (44) is, in integral form,
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where x  = t.  Note that the integration is only over the spacelike coordinates and, similar to0

electromagnetic fields, T  is evaluated at the retarded time t  = t - |x - y|.  Our goal is to solve (45)µ �        r

explicitly for the case of a distant, isolated, non-relativistic source.  We start by taking the Fourier

transform, with respect to time only, of h (x,t):µ �  

where the last line is a change of variables from t to t .  With this, note thatr

and hence,

Our approximation that the source is far away implies that from our (spatial) vantage point of x, the

object is small compared to its distance R.  Similarly, we will also assume that the object is moving

slowly compared to the speed at which the radiation is emitted.  This way, e /|x - y| can bei 	 |x - y|

approximated as e /R when integrating over the volume of the source, givingi 	 R
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Furthermore, the harmonic gauge condition (11) translates in Fourier space to 

where j = 1, 2, 3 (this was found by applying the Fourier transformation to (11)).  We may therefore

limit our attention to the spacelike components of h ( � ,x).  Doing so for (49), we manipulate theµ 	  

right side by integrating by parts in reverse:

The first term on the right is a surface integral and is zero since the source is isolated.  We can relate

the second term to T  through the Fourier space version of 
 T  = 0 (conservation of T ),  0j        µ 	      µ �
µ

which gives us

where the last equality comes from the symmetry of T .  Employing integration by parts in reverse ij

to this result and then using the conservation of T  leads to the following: µ �

Finally, by defining the quadrupole moment tensor of the source as
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Fig. 5.  Schematic of a binary star system.

h ( � ,x) becomesij 

or, using the inverse Fourier transform,

Thus, the gravitational waves produced by a distant, isolated, nonrelativistic object are proportional

in amplitude to the second time derivative of the quadrupole moment tensor evaluated at the retarded

time t  = t - R.r

But what type of sources emit

gravitational radiation?  A typical example is a

binary neutron star system (i.e. two neutron

stars that orbit each other) as seen in fig. 5.

Assume such a system exists in the Virgo

cluster (a hot spot for neutron stars) 4.5 × 10  m away.  Here, each star has a mass 3 × 10  kg and23            30

orbits in a circular fashion with a distance of 20 km to the centre of mass of the system.  Circular

motion implies a constant orbital frequency which we will take to be 800 s  (these are standard-1

numbers for such a system).  Orient the coordinate system so that the normal to the orbital plane is

in the x  direction.  Then, using (55) the components of the quadrupole moment are easily calculated3

to be



q11 � Acos2(800t)

q12 � q21 � Acos(800t)sin(800t)

q22 � Asin2(800t)

h12 � h21 � Bsin(1600tr)

� h11 � h22 � Bcos(1600tr)
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where A �  10 .  The rest of the components are zero.  Finally, the components of h  can be found33
ij

from (57) to be

Here, B �  10 .  Needless to say, with |h | on the order of 10 , the effects of such a wave are-21            -21
µ �

astonishingly small, yet these binary sources are predicted to produce some of the strongest waves

experienced from Earth.  Even orbiting black holes (a system similar to the above, only with two

black holes in their place) are estimated to perturb spacetime at most one part in 10 !20

It is questionable whether even the most sensitive interferometric detector could recognize

these small perturbations.  Provided that appropriate measures are taken to reduce noise levels,

however, most specialists feel such sensitivities are in fact possible (see Blair and Saulson).  The

following section looks at two of these noise sources and how their influence can be reduced.

NOISE REDUCTION

Photon Shot Noise

Recall  from our previous discussion that gravitational waves are detected through relative

changes in the output intensity of laser light from a Michelson-Morely interferometer.  Thus, an

equivalent question to “How small can be detected?” is “How small of a change in optical power can

be detected?” Based on the particle nature of light, we see that there is indeed a lower bound to this
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precision, the result of a phenomenon known as photon shot noise.  To explain, first note that output

power is proportional to the number of photons N arriving at the photodiode per unit time.  Because

the power output of the laser is fixed, we do expect a mean number of photons N per interval; still,

the arrival of each photon is random and independent of other photons.  Such a process of discreet,

independent events is characterized by a Poisson distribution function

When N »1, this distribution can be approximated by a Gaussian distribution with standard deviation

�  = N.  Thus by measuring the number of photons per time interval, we would discover a fractional

fluctuation in these measurements of

With this result in hand, we can now proceed to calculate fluctuations in output power.  Each photon

carries an energy of � �  = 2 	 � c/ 
 . The photon flux can therefore be written as

In order to determine the size of expected power fluctuations, we must select the mean output power

of the interferometer (i.e. adjust the arms to the desired point on fig. 4). Logically, the best position

would be P /2, as the sensitivity dP /dL to changes in arm length is at a maximum within     out

At this operating point, the mean number of photons per measurement is N = ( 
 /4 	 � c)P  and thein
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fractional photon fluctuation will be given by

However, such power fluctuations will be interpreted as relative movement � L in the arms of the

detector.  This “false motion” is given by the fractional photon fluctuation divided by the fractional

output power change per unit position difference:

Finally, if h evoked a fractional change in length of � L, we have that � L = Lh.  So these fluctuations

in brightness can be seen equivalently as noise in h,

(64) can be expressed with some typical numbers (see Saulson):

600 km is a standard optical arm length for most interferometers designed to date (using a clever

technique to be discussed later), while 0.545 µm is the wavelength of the most commonly used laser,

the green argon ion laser.   It is apparent that photon shot noise presents a serious threat to waves

that have magnitudes of 10  at best.  The only chance in the near future for reducing this noise lies-21

in increasing the power output of the argon laser.  While present argon lasers have a power output

of about 1 Watt, new versions are being designed with P  ~ 1000 Watts which could reduce � byin       h 
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Fig. 6.  Schematic of test mass suspended in gas.

another order of magnitude.

Brownian Motion

The effects of Brownian motion (the jostled

movement of matter in response to molecular

collisions) are usually considered only for

microscopic particles.  However, the precision

required by these detectors forces us to investigate

the interactions of the test masses with the

surrounding gas molecules.  Suppose, for example,

the detector contains suspended rectangular plate masses with cross-sectional area A (see fig. 6).  The

pressure of the gas surrounding the masses is given by p = nk T (where n is the number density ofB

molecules, k  is Boltzmann’s constant, and T is the absolute temperature).  Consider the case whenB

p is so low that the mean free path for the gas molecules is large compared to the dimensions of the

test mass.  Here, we can neglect intermolecular collisions and concentrate on molecule-plate

interactions.  

When at rest, the plate will receive an equal number of collisions from either side, on average.

The average rate of collisions on one side will be given by

where v is the average velocity of a gas molecule (see any introductory statistical mechanics book for

this derivation).  This collision rate involves counting discreet, independent events per unit time; thus,

any fluctuations will obey Poisson statistics. As for shot noise, the fractional fluctuation of collisions

per unit time will be
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Also note that if each molecule reflects elastically off the surface, there will be a mean force exerted

on one side equal to pA, or equivalently,

Since the force exerted should be proportional to the collision rate, we expect the fractional

fluctuation in force to be equal to the fractional fluctuation of collisions:

so that the force noise is

Naturally, any variation in force will result in changes to the test mass position.  But  (70)

demonstrates that the force noise can be lowered by reducing T, n or A and in fact, most detector

designs minimize all three.  The chamber containing the mass is invariably super-cooled so that T is

near zero, while the pressure inside is reduced to one trillionth of an atmosphere.  Similarly, spherical

test masses are used instead of plates so that the surface area to mass ratio is minimized.
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Fig. 7.  Schematic of LIGO detector.

It should be stated that the above discussion is only an emaciated survey of noise sources and

their reduction.  Other noise sources include: power output and wavelength fluctuations in the laser,

seismic noise, tidal effects of the sun and moon, and the internal vibrational modes of the test masses.

Entire volumes have been written on the subject.  The interested reader is directed to Saulson and/or

Blair.

LIGO

The next few years should be quite exciting for gravitational wave detection.  Within that

time, the first three detectors will become operational: two in the United States and one in Italy.  The

LIGO project (Laser Interferometer Gravitational-wave Observatory), lead by a Caltech/MIT

consortium, involves detectors currently being completed in Hanford, Washington and Livingston,

Louisiana.  Their (overly) simplified design (see fig. 8) is similar to the setup of fig. 3—each arm,

which spans 4 km, is kept under a high vacuum (1× 10 atm) to reduce the Brownian noise described-12 

above.  Note that 4 km is well below an arm length of 600 km mentioned earlier. To achieve this

length, the designers cleverly added an extra mirror to the beginning of each arm, effectively creating
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a Fabry-Perot cavity.  Light bounces back and forth an average of 150 times before exiting the

interferometer, changing a physical length of 4 km to an optical path length of 600 km.  The building

of two detectors is yet another noise elimination technique.  It is predicted that high-amplitude noise

will be able to find its way into the detector on occasion and two detectors will allow any signals to

be double-checked.  A true gravitational wave front would pass through both detectors nearly

simultaneously, with both systems registering the disturbance.  The chance of noise occurring at the

same time in both locations, however, is very slim.  System tests at both the Hanford and Livingston

detectors have been ongoing for the past two years, with Hanford due to go online in May 2002 and

Livingston later in 2003.

It is hoped that these two detectors, along with one in Italy (VIRGO), will not only be able

to show the existence of gravitational waves, but will also pinpoint such sources in the sky (this can

be done by measuring the time difference between each detector first receiving a signal, and then

using triangulation).  With this information, astronomers can then direct their attention to these

regions for further study.  Many speak of gravitational wave detectors as providing a turning point

in our understanding of the universe.  When one considers that electromagnetic radiation only yields

about 10% of an astronomical object’s information, it is clear how potentially biased our knowledge

is.  If successful, gravitational wave detectors might well take us to new frontiers in science.
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