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Abstract. The development of quantum mechanics is presented from a his-

torical perspective. The principles of special relativity are reviewed. Relativis-
tic quantum mechanics is developed, including the Klein-Gordon equation and

up to the Dirac equation.

1. Introduction

Near the end of the 19th century, physicists were confident in their view of
the world. Newton’s mechanics had explained the dynamics of everything from the
heavenly bodies down to rubber balls. Maxwell’s equations of electromagnetism had
successfully unified the seemingly different phenomena of electricity, magnetism,
and light. Although there remained some unresolved questions, most physicists were
confident that these would soon be solved, within the well-understood framework
of the time. They were wrong.

In the early twentieth century, the development of two new theories drastically
altered the way that physicists view the universe and everything in it. Quantum
mechanics and relativity theory changed the fundamental framework of all future
physical theories, putting the lie to previous notions of absolute velocity or length,
and precise knowledge of momentum or position.

Supported by countless experiments, and verified under widely ranging condi-
tions, special relativity (SR) and quantum mechanics (QM) have proven very useful
theories for predicting physical phenomena. Unfortunately, as it was first under-
stood, quantum mechanics was incompatible with special relativity. In this paper
I intend to summarize the development of non-relativistic QM, review the relevant
features of SR, and document two attempts to consolidate QM to the framework
of SR.

I assume the reader is comfortable with non-relativistic QM, and has been ex-
posed to the basics of SR. I hope the reader will come away with a basic under-
standing of the development of relativistic quantum mechanics, up to and including
the Dirac equation. In order to maintain the flow of the narrative, I have relegated
the proofs of certain results to Appendix A.

Throughout this article I will employ the Einstein summation convention, whereby
repeated indices in a term are summed over all their values. Greek letters (e.g. µ, ν)
are summed over µ = 0, 1, 2, 3, and Latin letters (e.g. i, j, k) are summed over
i = 1, 2, 3.
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2. Non-Relativistic Quantum Mechanics

In 1900, constrained by a classical framework, physicists had been unable to
explain the observed blackbody spectrum. Max Planck recognized that he could
do away with the problem by assuming that atoms emit radiation only in discrete
packets with specific energies. If the energy E of each packet was related to the
angular frequency of the radiation ω by

(1) E = ~ω

then the observed spectrum could be explained. Equation (1) is known as Planck’s
relation, and h = 2π~ is Planck’s constant, h ≈ 6.626× 10−34J ·s.

In 1905, Albert Einstein used Planck’s ideas to explain the puzzling photoelectric
effect, when he made the further assumption that all electromagnetic radiation
comes in packets (or “photons”), obeying the Planck relation (1). In the same
year, Einstein would revolutionize physical thinking about time and space with his
special theory of relativity, to be discussed later.

In 1923, Louis de Broglie proposed that a material particle should have some
sort of wave associated with it. Using (1) in the context of special relativity, he
derived his relation

(2) ~p = ~~k,

where ~p is the momentum of the particle and ~k is the wave vector of the associated
wave. The dual particle-wave nature of light and matter were slowly becoming clear:
Planck associated particle-like properties to light waves, and de Broglie associated
wave-like properties to matter.

Erwin Schrödinger discovered the differential equation governing de Broglie’s
“matter waves”, and laid down the framework for the extremely successful theory
of quantum mechanics. Schrödinger postulated that the state of a particle of mass
m ought to be described by a complex-valued function ψ(t, ~x), varying in time and
space.

Following de Broglie, Schrödinger considered a plane wave function,

(3) ψ(~x, t) = e−i(ωt−~k·~x).

He noted that, differentiating with respect to time,

∂ψ

∂t
= −iωe−i(ωt−~k·~x).

Upon multiplying both sides by i~ and applying Planck’s relation (1),

i~
∂ψ

∂t
= ~ωψ = Eψ.

This motivated Schrödinger to consider the energy operator on wave functions,

(4) Eop = i~
∂

∂t

whose value on a plane wave is the energy of the photon, as given by Planck.
Similarly, taking the gradient of both sides of (3), multiplying both sides by −i~,

and using the de Broglie relation (2), we have

−i~∇ψ = ~~kψ = ~pψ,
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which leads us to define the momentum operator

(5) ~Pop = −i~∇,

whose value on a plane wave is its momentum, as given by de Broglie.
The classical energy of an unconstrained particle of mass m is

(6) E =
|~p|2

2m
.

Schrödinger replaced the classical energy E and momentum ~p in (6) by the wave
operators introduced above in (4) and (5), to obtain

(7) Eop =

∣∣∣~Pop

∣∣∣2
2m

.

If we substitute the definitions of the wave operators, and apply both sides to the
matter wave function ψ, we obtain

(SE) i~
∂ψ

∂t
= − ~2

2m
∇2ψ

This is the free particle Schrödinger equation, and it is the basis of non-relativistic
quantum mechanics. Its solutions ψ(~x, t) describe the states of matter.

A plethora of experiments in many diverse contexts have validated (SE), and
much of modern technology is based on the quantum mechanical theory of which
it is the basis. However, as we will later see, Schrödinger’s formulation of QM is
inconsistent with Einstein’s special relativity, and we must seek a relativistically
covariant equation to reconcile the problem.

3. Special Relativity

In 1905, Albert Einstein proposed the theory of special relativity (SR), revo-
lutionizing the field of physics. Motivated by the observation of Michelson and
Morley in 1887 that the speed of light in vacuum c is independent of any motion of
an observer, Einstein postulated the following axiom:

Axiom 1. (Relativity Principle) All inertial observers observe the same laws of
physics. In particular, all inertial observers observe the same speed of light c, with
c ≈ 3.00× 108m/s.

Minkowski reformulated Einstein’s ideas in a geometric way, and this is the
approach that I will follow.

The set of all events is called spacetime, and is denoted M . In special relativity,
we assume that M has the manifold structure of R4. We further assume that there
exists a class of preferred observers in spacetime, called inertial observers, and
that inertial observers can label each event x ∈ M by cartesian coordinates: x =
(x0, x1, x2, x3), with the “time” component of x being t = x0/c, and the “position”
is ~x = (x1, x2, x3). Such a labelling of spacetime is called an inertial coordinate
system. The coordinate systems of different observers are related by the elements
of the 10-parameter Poincaré group, consisting of the Lorentz transformations and
the translations.
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We define the metric of spacetime η, a 2-form, by

(8) ηab = ηµν(dxµ)a(dxν)b,

where ηµν = diag(1,−1,−1,−1), and {xµ} is any inertial coordinate system. It is
a consequence of Axiom 1 that η is a tensor, i.e. is independent of the choice of
coordinates. If we write out the action of η on two vectors xa, yb ∈M , we have

η(x, y) = ηabx
ayb = x0y0 − x1y1 − x2y2 − x3y3 = x0y0 − ~x · ~y.

We can view particles in spacetime as tracing out a curve in M as time varies.
Special relativity asserts that the paths of material particles are timelike curves,
that is

(9) ηabT
aT b > 0,

where T a is the tangent vector to the curve. We can parametrize timelike curves
by the proper time τ , defined so that ηabT

aT b = c2 everywhere along the curve. τ
measures the time elapsed on a clock carried along the given curve in M .

The 4-velocity of a timelike curve, denoted Ua, is the tangent vector to the curve
when it is parametrized by proper time. In particular,

(10) ηabU
aU b = c2.

Material particles have an invariant quantity called the rest mass, m, which is the
mass of the particle as measured by an observer at rest with respect to the particle.

The 4-momentum of a particle with mass m is defined as

(11) pa = mUa,

a relativistically covariant vector. Direct substitution and (10) yields the following
relation:

(12) η(p, p) = ηabp
apb = ηab(mUa)(mU b) = m2(ηabU

aU b) = m2c2.

The energy of a particle in special relativity depends on the motion of the observer
who measures the energy. If a particle with 4-momentum pa is measured by an
observer with 4-velocity V a, the energy of the particle is defined as

(13) E = η(p, V ) = ηabp
aV b.

For a ‘static’ observer with 4-velocity V = (c, 0, 0, 0), the energy is E = η(V, p) =
cp0. Now, (12) gives

η(p, p) = (p0)2 − |~p|2 = m2c2.

Isolating cp0, we obtain

(14) E = cp0 = c(|~p|2 +m2c2)1/2,

the important equation relating relativistic momentum and energy.

4. The Klein-Gordon Equation

Now that we have some understanding of the principles of special relativity, it
is clear that the Schrödinger equation (SE) is not suitable for the new relativistic
context. Indeed, it is manifest that (SE) is not relativistically covariant; the deriv-
ative in the time coordinate is first order, while the derivatives with respect to the
spacial coordinates are all second order. In relativity, there can be no distinction
between time and space coordinates, because these are mixed together by Lorentz
transformations. It is not difficult to show that (SE) is not fixed by a general



RELATIVISTIC QUANTUM MECHANICS 5

Lorentz transformation, so a theory based upon it will certainly violate Axiom 1 of
special relativity.

Erwin Schrödinger was certainly aware of this difficulty, but he found it useful
to work with the non-relativistic equation (SE) that he discovered, which is valid
for particles with small velocities, relative to c.

The first successful attempt to find a relativistic wave equation that could de-
scribe the quantum mechanical states of matter was published by Klein and Gordon.
To derive his equation, Schrödinger had started with the non-relativistic equation
for kinetic energy, E = |~p|2 /2m, and changed the physical quantities E, ~p to wave
function operators. Klein and Gordon followed a similar procedure, but they used
as a starting point the relativistic relation between energy and momentum (14).
Upon squaring, and making the substitutions motivated earlier, (4) and (5), we get

−~2 ∂
2

∂t2
= c2(m2c2 + ~2∇2),

or

(KGE) ~2

(
1
c2
∂2ψ

∂t2
−∇2ψ

)
+m2c2ψ = 0

which is the Klein-Gordon equation. If we rewrite (KGE) with x0 = ct, we have

∂a∂bη
ab = −m

2c2

~2
,

where I have written ∂a = ∂/∂xa. When the equation is written in this form, it
is clear that (KGE) is relativistically covariant, as both sides are clearly (scalar)
tensors on M .

The Klein-Gordon equation was the first relativistic quantum mechanical wave
equation, and it had some degree of success. It is immediate that if the mass m
vanishes, as in the case of a photon, (KGE) reduces to the standard electromagnetic
wave equation

(15)
1
c2
∂2ψ

∂t2
−∇2ψ = 0,

which is usually derived from Maxwell’s equations. Further, Yukawa managed to
use (KGE) to predict the form of the strong nuclear force that holds nuclei together.

Although the Klein-Gordon equation was appealing because it fit into the SR
framework and did have some predictive power, physicists were not satisfied with
it. While the Schrödinger equation (SE) is first order in time and so the solution is
specified by the initial condition ψ0(~x) = ψ(~x, t0), (KGE) is second order in time,
and so solutions are not uniquely specified by a single initial condition; we need
both ψ0 and (∂ψ/∂t)0 to determine a solution for all time.

This suggests that (KGE) may not be fundamental, but perhaps a consequence
of some first order equation. This would parallel the case in electrodynamics, where
the EM wave equation (15), a second order system, is a consequence of the first
order Maxwell’s equations, which are the fundamental equations.
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5. The Dirac Equation

With the goal of discovering a relativistically covariant first order differential
equation governing the matter wave, we seek a linear constraint on the momentum
of the particle, of the form γ(p) = µI, where I is an identity operator of some
dimension. In addition, we have the quadratic constraint (12), η(p, p) = m2c2. We
can rescale γ so that µ = mc, and then we have γ(p)2 = m2c2I = η(p, p)I. So, to
be consistent we need

(16) γ(p)2 = η(p, p)I.

The simplest solution for γ(p) in (16) lies in the 4 × 4 matrices, but to write the
solution down in a concise form we must first consider another important set of
matrices. The Pauli spin matrices are 2 × 2 matrices that arise in considerations
of angular momentum in QM. They are:

(17) σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Notice that

(18) σjp
j = σ1p

1 + σ2p
2 + σ3p

3 =
(

p3 p1−ip2
p1+ip2 −p3

)
.

From this point forward, all matrices appear in 2× 2 block form, i.e. each entry
in a matrix is considered to be multiplied by I2×2, to form a 2× 2 block. Now we
are ready to present the solution to (16).

Theorem 1. In 2× 2 block form, the matrices

γ(p) =
(
p0 −σjp

j

σjp
j −p0

)
satisfy the equation γ(p)2 = η(p, p) for all p ∈M .

Proof. First, a direct calculation using (18) shows that (σjp
j)2 = |~p|2 I2×2. Now,

γ(p)2 =
(
p0 −σjp

j

σjp
j −p0

) (
p0 −σjp

j

σjp
j −p0

)
=

(
(p0)2 − (σjp

j)2 0
0 (p0)2 − (σjp

j)2

)
=

(
(p0)2 − |~p|2 0

0 (p0)2 − |~p|2
)

= η(p, p)
(

1 0
0 1

)
= η(p, p)I2×2

�

The matrices γ(p) are called the Dirac matrices. These solutions to (16) are
essentially unique, as any operators γ(p) depending linearly on p ∈M and satisfying
(16) are direct sums of operators equivalent to the Dirac matrices [1, page 295].

Being 4× 4 matrices, the Dirac matrices act on column vectors of four complex
numbers. The space of such column vectors is called the space of Dirac spinors.

We can gain further insight into the Dirac matrices by working in a chosen inertial
reference frame. If {eµ} is an orthonormal basis for M , then η(eµ, eν) = ηµν . We
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write γµ = γ(eµ), so that γ(p) = γµp
µ. With γ(p) the Dirac matrices, direct

substitutions for µ = 0, 1, 2, 3 show

γ0 =
(

1 0
0 −1

)
, γj =

(
0 −σj

σj 0

)
.

If we raise the indices on the γµ, we have γ0 = ηµ0γµ = γ0, but γj = −γj .
So we have identified the essentially unique linear operators satisfying (16): the

Dirac matrices. The constraint equation we have been seeking is thus expressed by
γ(p) = mcI, or γµp

µ = mcI in coordinates. If we again use the operator forms (4)
and (5) for the energy and momentum, together with (14), we obtain

γµp
µ = γ0E − γjpj → γ0Eop − ~γ · ~Pop = i~γµ∂µ,

leading to the differential equation for the Dirac spinor-valued wave function ψ,

(DE) i~γµ∂µψ = mcψ

which is the free Dirac equation.
It is not difficult to show that the free Dirac equation is relativistically covariant.

Moreover, it is clear that (DE) is first order in time, and so solutions ψ(~x, t) are
specified by a single initial condition ψ0(~x), as desired. The free Dirac equation is
the realization of our goal to bring quantum mechanics into the special relativity
framework. Indeed, physicists currently believe that the free Dirac equation is the
correct equation to describe elementary particles with spin 1

2 , such as the electron,
the muon, and the tau particle.

Before concluding, I will give a brief sketch of one of the implications of the free
Dirac equation (DE). Given the block form of the γ matrices, and hence of the Dirac
equation, it appears useful to split each Dirac spinor into a pair of two-component
vectors

ψ(x) =
(
ψ+

ψ−

)
.

We can interpret the two functions ψ+ and ψ− as representing electron-like solutions
with positive and negative energies, respectively.

The presence of negative energy solutions was a great worry to Dirac, and he felt
that it was a “great blemish” on his theory. However, not long after Dirac published
his equation, Carl Anderson experimentally discovered a positively charged particle,
identical to the electron except for conjugation of charge. This particle, called the
positron, is the antiparticle to the electron, and it is thought that each elementary
particle has an antiparticle. That Dirac’s equation predicted the existence of the
positron before its experimental discovery is quite remarkable, and is a triumph for
the theory.

6. Concluding Remarks

The development of the theories of quantum mechanics and special relativity
profoundly altered the basic way that we view the universe and the objects in it.
These theories extend the knowledge of physics into the realm of the very small
and the very fast, and so they are surely among the greatest achievements that
humankind has accomplished in our history.
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Appendix A. Proof of the de Broglie relation

Theorem 2. (de Broglie law) If the Planck relation E = ~ω is true for one observer
observing a plane wave, then the de Broglie relation

~p = ~~k
holds.

Proof. Consider a plane wave, ψ(t, ~x) = exp[−i(ωt − ~k · ~x)]. We introduce the
frequency 4-vector κ = (ω, c~k). Then we can write the plane wave in relativistic
form, ψ(x) = exp (−i[η(κ, x)/c]). It is now clear that the Planck and de Broglie
relations are the temporal and spacial components of the equation cp = ~κ. If the
Planck relation holds for one observer, i.e. η(V, p) = ~η(V, κ)/c, then the corre-
sponding identity must be true for all inertial observers. That is, for any 4-velocity
W, η(W,p) = ~η(W,κ)/c, which implies η(W, cp−~κ) = 0, for any W . This implies
that cp− ~κ = 0, the spacial component of which is de Broglie’s law. �
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