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A REVIEW ON THE COSMOLOGICAL CONSTANT 
S. H. LOUIS LEUNG 

 
 
 
0. Introduction--Homogenous and Isotropic Universe 
 
 Intuitively speaking, a universe is homogeneous if every point in space "looks 
like" any other point while a universe is isotropic if at any given point, the universe looks 
"the same" in any direction.  (Readers may refer to Wald for precise definitions.) 
 
 Suppose we have a homogeneous and isotropic universe, and let tΣ  be a space-
like (3-dimensional) hypersurface in the universe.  The (pseudo-Riemannian) spacetime 
metric gab induces a Riemannian metric hab(t) on tΣ . 

Let d
abcR)3( be the Riemann tensor constructed from hab on tΣ .  Raising the third 

index we may consider cd
abR)3(  as a linear transformation L from the vector space W of 2-

forms to itself.  Since cdababcd RR = , L is self-adjoint (with the positive-definite inner 
product defined on W by hab).  If L has distinct eigenvalues, we would be able to pick out 
a preferred two-form and consequently, a preferred vector, at a point p on tΣ , violating 
isotropy.  Therefore all eigenvalues of L are the same.  As a result we have (where K is a 
number and I is the identity operator),      
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Lowering the indices, we get 
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Homogeneity implies that K must be a constant.  A space where (0.3) is satisfied and K is 
constant is called a space of constant curvature.  If K is positive, we have a 3-sphere. If 
K=0 we have the Euclidean 3-space and if K is negative we have a 3-dimensional 
hyperboloid. 
 
1. Introducing the Cosmological Constant 
. 
1.1. Motivation 
 

Einstein's original field equation is 
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On a very large scale the universe is spatially homogeneous and isotropic to a good 
approximation.  Therefore the spatial metric takes the Robertson-Walker form 
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where dΩ2=dθ 2+sin2θ dφ 2 is the metric on a 2-sphere.  The parameter k is +1, 0 or –1 
depending on the sign of the curvature of the spatial section.  The scale factor a 
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characterizes the relative size of the spatial section as a function of time.  Here it is 
written in normalized form a(t)=R(t)/R0, where R0 is evaluated at the present time.  (Here 
R is not the scalar curvature, but a scale factor measuring the size of the spatial section.)  
The stress-energy-momentum (SEM) tensor may be modeled as a perfect fluid, with 
energy density ρ  and isotropic pressure p.  We write µνT in the following way: 

µ ννµµ ν ρ pgUUpT ++= )( ,       (1.3) 

where µU is the fluid four-velocity.  In the case of a Robertson-Walker solution, 
Einstein’s equation reduces to the Friedmann equations 
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where H≡ a&& /a is the Hubble parameter, and 
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 To account for astronomical data known at the time, Einstein was interested in 
finding static solutions (where a& =0) to his equation.  If the energy density is positive, 
from (1.4) we know that a static universe is possible if k=+1 (i.e. the spatial curvature is 
positive) with the parameters ρ  and R0 carefully adjusted.  However (1.5) suggests that if 
the isotropic pressure is nonnegative (which is true for most forms of matter), a&&  does not 
vanish.  As a result, Einstein proposed a modification to his equation: 
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where Λ  is a free parameter.  With this modification, the Friedmann equations become 
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and 
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Now with these modifications Einstein’s equation admits a static solution (with ρ , p and 
Λ  nonnegative).  This solution is called the “Einstein static universe.” 
 
 The discovery of the exapansion of the universe by Hubble eliminated the 
empirical need for a static universe.  However, (1.6) still seemed to be a legitimate 
modification to Einstein’s field equation and a priori we do not have a reason to assume 
that Λ =0.  Although the original motivation by Einstein disappeared, from particle 
theory a new motivation arises for a nonzero Λ  term. 
 
1.2. Vacuum Energy 
 
 If we have a single scalar field φ , the action S is given by 

∫ ∂−= φµ
µνggxdS
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where g is the determinant of µνg , and the corresponding SEM tensor is 
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φµµ ν ∂=
2
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T φν∂ + φρ
ρσ ∂g(
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µνµνσ φφ gVg )() −∂ .          (1.10) 

In the configuration with the lowest energy density (if one exists), there is no contribution 
from kinetic or gradient energy, which implies that 0=∂ φµ , and therefore 

µ νµ ν φ gVT )( 0−= , where 0φ minimizes V(φ ).  We have no reason to suggest that V( 0φ ) 
=0, so we can write 

µνµν ρ gT vac
vac −= ,         (1.11) 

where vacρ = V( 0φ ).  Therefore the vacuum can be thought of as a perfect fluid as in 

(1.3), with pvac=- vacρ . 
 If we let  

φµµ ν ∂=
2
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(i.e. the SEM tensor assuming V( 0φ )=0) and  
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then we can write  

=Λ+− µ νµ νµ ν gRgR
2
1 08 µνπGT .        (1.14) 

It is therefore easy to see that the effect of a nonzero energy density of the vacuum is 
equivalent to assuming zero energy density of the vaccuum and  a nonzero cosmological 
constant. 
  
 It is not necessary to introduce scalar fields in order to obtain a nonzero vacuum 
energy.  The action for general relativity with a "bare" cosmological constant 0Λ  is given 
by 
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where R is the Ricci scalar.  Extremizing this equation would yield (1.6), with Λ=Λ 0 .  
Therefore the cosmological constant can be considered as a constant term in the Lagrange 
density.  In fact (1.15) is the most general covariant action we can construct using the 
metric and its first and second derivatives, and thus a natural starting point for our theory 
of relativity. 
 
 As a result, classically the effective cosmological constant is the sum of a bare 
term 0Λ  and the minimum energy V( 0φ ), which may vary as the universe evolves. 
 
2. Cosmology 
 

From the Friedmann equation (1.4) we know that for any Hubble parameter H, 
there is a critical value of the energy density such that the spatial geometry is flat (i.e. 
k=0): 
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We often write the energy density in terms of this critical value: 

critρ
ρ

=Ω .       (2.2) 

 The energy density includes contributions from various components iρ .  It is 
often the case that individual components i satisfy the following equation: 

iii wp ρ= ,       (2.3) 
where ip 's are components of the isotropic pressure, and iw 's are constants.  Therefore 

by the energy-momentum conservation equation 0=∇ µν
µT , we get: 

in
i a −∝ρ ,      (2.4) 

where a is the scale factor we mentioned above and ni is given by: 
ni = 3(1+wi ).        (2.5) 

Therefore we can define iΩ by: 
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Examples of these components include massive particles (with negligible relative 
velocities), radiation (this includes all relativistic particles and is therefore not restricted 
to photons), and vacuum energy.  The energy density of massive particles is given by 
their number density multiplied by their rest mass, so we have 3−∝ aMρ .  The energy 
density of radiation is given by the number density multiplied by the particle energy, 
which is proportional to a-1 (redshift due to the expansion of the universe).  Therefore, we 
have 4−∝ aRρ .  Vacuum energy does not change as the universe expands, so 0a∝Λρ .  
Looking back at equation (1.4), for some purposes it is useful to pretend that the              
–ka-2R0

-2 term represents an "effective energy density" due to curvature.  If we define 
22

0 )8/3( −−≡ aGRkk πρ and divide (1.4) by H2, we get 

Ω−=Ω 1k        (2.7) 
 

We have good reasons to believe that the energy density due to radiation is much 
less than that due to matter.  Photons contribute 5105 −×≈Ωγ  to the energy density, 
mainly due to the 2.73K cosmic microwave background.  According to our current 
knowledge of the neutrinos, their contribution is approximately the same amount.  As a 
result, we can parametrize our universe only by MΩ and ΛΩ  (therefore 

ΛΩ−Ω−=Ω Mk 1 ). 
 
 A measure of the evolution of the expansion rate is the deceleration parameter 
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assuming that the universe is dominated by MΩ and ΛΩ .  Therefore a positive ΛΩ  tends 
to accelerate the expansion of the universe while a negative ΛΩ  tends to decelerate it. 
 
 By equations (1.13) and (2.6), 0=Λ if and only if 0=Ω Λ .  The dynamics of 
universes with ΛΩ+Ω=Ω M is given in Figure 1 (see Appendix), taken from Carroll's 
paper.  There are three stationary points, namely, ( MΩ , ΛΩ )=(0,0), (0,1), and (1,0). (0,0) 
corresponds to an empty universe, while (0,1) corresponds to a universe with no matter 
density and dominated by the cosmological constant, known as the de Sitter space.  (1,0), 
corresponding to a universe with cosmological constant=0, is called the Einstein –de 
Sitter solution.  It is proposed that the inflationary scenario provides a mechanism driving 
the universe to the line 1=Ω+Ω ΛM , and observations suggest that our universe lies 
somewhere near the point (0.3,0.7). 
 
3. Observational Test 
 
3.1 Type Ia Supernovae 
 

Astronomers measure distance in terms of the "distance modulus" Mm − , where 
m is the apparent magnitude and M is the absolute magnitude of the source.  The High-Z 
Supernova Team and the Supernova Cosmology Project, measuring Mm − vs z (the 
redshift), were able to estimate limits on MΩ  and ΛΩ .  Both teams' results suggested a 
positive cosmological constant and were inconsistent with an open universe with Λ = 0, 
given our current knowledge of the matter density of the universe. 
 
3.2 Cosmic Microwave Background 
 

The COBE satellite has discovered temperature anisotropies in the CMB.  
Measuring the "Doppler peak" (an increase in power due to acoustic oscillations) of the 
CMB gave us some hints on the cosmic energy density.  Measurements done in 1997 and 
1998 on the CMB, combined with those obtained from the supernovae, suggest that our 
universe lies in the vicinity of )7.0,3.0(),( =ΩΩ ΛM . 

 
4. Physics Issues:  Dark Energy 
 
 Although the cosmological constant fits well with our current data, our 
observations can instead be explained by some form of "dark energy".  We can 
parametrize a component X due to this dark energy by an effective equation of state 

XXX wp ρ= , which is similar to the one we had.  Current observations of supernovae, 
large-scale structure, gravitational lensing and the CMB already give us limits on Xw .  
The simplest physical model for a dark energy component is a "slowly-rolling" scalar 
field.  However, there are other models; for example, there is a model in which the 
masses of the dark matter particles increase as the universe expands.  The cosmological 
consequences, however, are difficult to analyze analytically. 


