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0. Intr oduction 

 

What is the nature of the universe?  Don’t feel bad, I don’ t know either and I don’ t think 

anyone will ever know.  However, if we ask ourselves the less ambitious question:  

“What is the structure of the universe on a cosmological scale?”  then Einstein’s theory of 

General Relativity (GR) can be used to explore its answer.  Can it be used to answer it 

definitely?  No.  At present, our inability to accurately measure certain cosmological 

parameters prevents us from knowing exactly what type of universe we live in.  Also, GR 

predicts that there are so-called dark matter regions of the universe.  Dark matter is 

simply matter that emits almost nothing, like a black hole, so it is difficult to directly 

observe such regions.   It is still possible to detect some types of dark matter, for example 

by observing the bending of light rays or Hawking radiation, but we cannot detect all of 

it.  It will turn out that our theory is sensitive to the amount of matter in the present 

universe, so the problem of undetectable matter again prevents us from knowing for sure 

what possible universe we live in.  However, there is one thing our theory predicts almost 

certainly occurred: an initial singularity, the Big Bang. 

 

Despite these difficulties, with a single philosophically motivated and observationally 

verified assumption, GR can be used to set up possible models of the universe that agree 

closely with the currently observed universe.  These models explain two observed 

mysteries: the 3K cosmic microwave background and apparent over abundance of 2H.  

The explanation of these phenomena are two of the great successes of the theory.  In 

return, observation of these two phenomena indicate that a big bang must have occurred, 

even if our model is not quite correct.  We will now make it our task to come up with a 

model of the universe, i.e. a solution to the field equations, and explore its properties. 

 

 

1. The Coper nican Pr inciple 

 

In the earliest days man placed himself at the centre of the universe.  Copernicus changed 

this view.  Since then we have come to believe that Earth is just a regular planet orbiting 
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an average start in an average galaxy that is part of an average cluster, etc.  This view is 

known as the Copernican principle, and shall be our only assumption.  This leads to the 

ideas of spatial homogeneity and isotropy.  Spatial homogeneity means that all points in 

the universe are equivalent, i.e. there is no preferred location in the universe.  Isotropy 

means that at any point the universe looks the same in all directions, i.e. there is no 

preferred direction.  These two ideas can be made mathematically rigorous.  Obviously a 

space-time is isotropic if and only if it is spherically symmetric about every point.  The 

idea of spatial homogeneity is somewhat more technical (we follow the conventions of 

Hawking and Ellis).  At first we might think a space-time is spatially homogeneous if and 

only if we can transform any point into any other, i.e. if and only if there is a group of 

isometries such that for any two points we can find an isometry that maps the first point 

into the second (this is equivalent to what Carroll calls maximally symmetric spaces).  

This is not quite right.  Spatial homogeneity refers only to the spatial part of space-time.  

Thus we say a space-time is spatially homogeneous if and only if it admits a group of 

isometries whose surfaces of transitivity are space-like three-surfaces.  This means that 

for any two points on the same space-like three-surface we can always find an isometry 

that maps the first point into the second. 

 

It is hard to experimentally verify the extent to which the universe is homogeneous.   This 

is due to the difficulty of measuring the separation between distant objects and ourselves.  

We can, however, easily measure the isotropy about us.  We simply make extragalactic 

observations in many directions and see if they are all the same.  We can also measure the 

isotropy of the cosmic microwave background.  Both of these observations lead to the 

conclusion that the universe is highly isotropic about us (according to Carroll the cosmic 

microwave background deviates from regularity on the order of 10-5 or less). 

 

We will accept the Copernican principle, i.e. we assume the universe is homogeneous.  

Of course the universe is not exactly homogeneous, the universe inside a black hole 

presumably does not resemble the universe we observe here on Earth in any way.  We 

only assume it holds on the very largest scales.  Combining this with the fact that the 
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universe seems to be isotropic about us, we conclude that the universe is isotropic about 

every point. 

 

 

2. Rober tson-Walker  Spaces 

 

As you might expect, it can be shown that isotropy about every point implies 

homogeneity (the converse however, is not true, for example a homogeneous vacuum 

with a constant electric field).  Thus it is enough to assume isotropy at each point.  When 

we look at distant galaxies we see that they are moving away from us, thus we only 

conclude that the universe is isotropic (and hence homogeneous) in space but not in time.   

It can be shown (first by Walker in 1944) that such a space-time admits a six-parameter 

group of isometries whose surfaces of transitivity are space-like three-surfaces of 

constant curvature.  Spaces with this property are called Robertson-Walker spaces.  

(Minkowski, de Sitter and anti-de Sitter space are all examples of the more generic R-W 

space, and R-W space is an example of the more generic spatially homogeneous space.)  

All of this is quite technical.  We will now make these abstract notions concrete by 

introducing the space-time manifold and the metric (following section 8 of Carroll’ s 

notes). 

 

What we have discussed above implies that space-time has the structure of Σ×R  where 

R(the real line) represents the time direction and Σ is a homogeneous and isotropic 

three-dimensional manifold.  The metric can be written 

ji
ij duduutadtds )()(222 γ+−=      (2.1)  

where t  is the time-like coordinate, ),,( 321 uuu  are coordinates on Σ , and ijγ is the 

homogeneous and isotropic metric on Σ .  The function )(ta  is called the scale factor.  

Physically it tells us how big the space-like slice Σ  is at the time t .  These coordinates 

are an example of a type of coordinate system known as comoving coordinates.  A 

comoving coordinate system is one where the metric has no cross terms between the 

time-like and space-like coordinates and the space-like components are all proportional to 
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a single function of t .  An observer with constant iu  is called a “comoving observer” .  

Only comoving observers think the universe is isotropic.  Physically we think of galaxies 

as comoving.  Earth is not quite comoving due to its orbit around our galaxy.  We can, in 

fact, detect a small dipole anisotropy in the cosmic microwave background due to the 

conventional Doppler effect.  As was mentioned above, it is observed that galaxies are 

moving away from our own.  It is also observed that galaxies are moving away from each 

other.  In our model this corresponds to a “ lengthening of the metric”  due to the scale 

factor.  This is why we say the universe is “expanding”.  Galaxies are not “ flying”  away 

from each other, the space between them is expanding due to the scale factor.  It is this 

lengthening of the metric that is also responsible for the redshift, i.e. the drop in 

frequency of a photon between emission and absorption, not the Doppler effect. 

 

We now try to find an explicit formula for the metric.  For that we will need to choose a 

specific coordinate system.  Before we do that we can write down some properties that 

any maximally symmetric metric has.  Let ijjklR  be the curvature tensor associated with 

the three-metric ijγ .  Then it can be shown that the maximal symmetry of ijγ  implies 

)( jkiljlijijkl kR γγγγ −= ,     (2.2) 

where k  is some real constant (see Wald p.93-94 for the sickening details).  After a 

simple calculation the associated Ricci tensor is then found to be 

jljl kR γ2= .     (2.3) 

Since Σ  is isotropic it is spherically symmetric about every point.  Thus we can choose 

any point and set up spherical polar coordinates around it and use a metric that is 

spherically symmetric about it, i.e. we can use the Schwarzchild metric centred at the 

chosen point.  Following calculations similar to the ones we did in class we can put the 

metric into the following form: 

)sin( 22222)(2 φθθγ β ddrdredudu rji
ij ++= .     (2.4) 

Setting the coefficients of the Ricci tensor obtained from (2.4) equal to those given by 

(2.3) allows us to solve for )(rβ .  We get 

)1ln(
2

1
)( 2krr −−=β .     (2.5) 
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This gives us the following metric on the total space-time 

��
���� ++

−
+−= )sin(

1
)( 2222

2

2
222 φθθ ddr

kr

dr
tadtds .     (2.6) 

This is the famous Robertson-Walker metric.  It is the metric associated with R-W spaces.  

Notice that the metric is invariant under the simultaneous substitution 

.
||

||

||

k

a
a

rkr

k

k
k

�
�

�
     (2.7) 

Thus the only important parameter is ||/ kk , so we may assume 1=k , 0=k , or 1−=k . 

 

When 0=k  Σ  is flat.  The metric on Σ  can then be written as 

222222 dzdydxdrdr ++=Ω+      (2.8) 

which is just the metric on Euclidean three-space.  When 1=k  Σ  is a surface of constant 

positive curvature.  It looks as though the metric is singular at 1±=r .  This is obviously 

due to our choice of coordinates.  If we let χsin=r  then the metric on Σ  can be written 

as 

222 sin Ω+ dd χχ      (2.9) 

which is just the metric of a three-sphere.  When 1−=k  Σ  is a surface of constant 

negative curvature.  If we let ψsinh=r  then the metric on Σ  can be written as 

222 sinh Ω+ dd ψψ      (2.10) 

which is the metric of a three-hyperboloid. 

 

We see that topologically there are two cases.  The case of a three-sphere is the most 

interesting.  It is compact and hence represents a universe that is finite but has no 

boundary.  For this reason we say it is closed.  The other two cases are called open since 

there are infinite.   Actually, by making certain topological identifications the two open 

cases can be made closed but the identifications seem to be unnatural.  So an interesting 

question is whether or not our universe is open or closed. 
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Since we have the metric (2.6) we can easily compute the Christoffel symbols, the 

curvature and Ricci tensors, the Ricci scalar, as well as the Einstein tensor.  The results 

are summarized on p.220 of Carroll’ s notes, equations (8.12)-(8.14) and p.97 of Wald, 

equations (5.2.3)-(5.2.12). 

 

 

3. Cosmic Dust 

 

In order to explore the dynamical behaviour of the universe we will need its stress-

energy-momentum tensor µνT .  This is obviously an extremely complicated object.  It 

depends on space and time and takes into account every movement of every particle and 

the change in every field in the universe; it is even affected by your movements!  There is 

no way we could ever write down such an entity.  It is time to make some more 

approximations.  Contrary to what some people believe, on the cosmological scale 

nothing we do affects the universe.  In fact on such a large scale our planet, solar system, 

and galaxy play no important role in the dynamics of the universe.  This is due the 

vastness of our universe.  Ignoring our galaxy would be like ignoring an atom that is part 

of the ocean.  One may then think that nothing affects the dynamics of the universe and 

hence we may assume the universe is empty.  This leads to the vacuum equations, which 

would give a static universe.  As was mentioned earlier, it is observed that the universe is 

in fact not static, it appears to be expanding.  It is believed that most of the mass and 

energy of the universe is concentrated in ordinary matter in galaxies, but this is not 

certain.  Thus we make the following first approximation.  We will the model the 

contents of the universe as a perfect fluid.  A perfect fluid is defined as one that is 

isotropic in its rest frame.  In the present epoch of the universe we could even model the 

contents of the universe as dust (a perfect fluid with no pressure) where the particles of 

dust are galaxies.  Other forms of energy, such as the cosmic microwave background, 

seem to be negligible.  However, we will find that these other forms of energy will make 

a significant contribution in earlier eras so we shall not make this further assumption. 
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The stress-energy-momentum tensor for a perfect fluid is 

µννµµν ρ gUUpT ++= )( ,     (3.1) 

where ρ  is the energy (mass) density and p  is the pressure, both measured in the fluid’s 

rest frame, and µU  is the fluid’s four-velocity.  You may wonder why this is the correct 

tensor, as I did.  Chapter 4 of Schutz gives a clear and thorough discussion; I will only 

summarize its properties and hopefully this convinces you that it really is the correct 

tensor.  It can be shown that the time-time component gives the energy density (i.e. ρ ), 

the space-time components give the energy fluxes, and the space-space components give 

the momentum fluxes.  It can also be shown that the conservation law, i.e. the vanishing 

of the divergence, agrees with the conventional mass-energy conservation laws as well as 

with the laws of thermodynamics.  In fact, it can be shown that this is the most general 

rank-2 tensor that is homogeneous and istropic that only depends on the energy and 

pressure, so no harm is done by this assumption.  Since the fluid is isotropic in its rest 

frame this must coincide with the comoving frame, so the fluid is at rest in comoving 

coordinates.  Its four-velocity in this frame is then 

)0,0,0,1(=µU .     (3.2) 

Raising one index on µνT  gives 

),,,( pppdiagT ρν
µ −= ,     (3.3) 

with trace 

pTT 3+−== ρµ
µ .     (3.4) 

 

Now that we have a complete model of the universe we can investigate its dynamics, as 

governed by Einstein’s theory of general relativity.  First we will look at the first 

component of the energy conservation law.  After some calculations we get: 

)(30 00 p
a

a
T +−−∂=∇= ρρµ

µ

�

.     (3.5) 

(The a  and a
�

 are introduced through the Christoffel symbols.)  To go further we need to 

choose a relationship between ρ  and p .  For our discussion we need two.  If 0=p  then 

the fluid is called dust.  As mentioned, the dust is ordinary matter, concentrated in 
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galaxies.  We call a universe whose energy is mostly due to dust matter-dominated.  In 

this case we can integrate (3.5) and obtain 

3−∝ aρ .     (3.6) 

This has a simple physical interpretation.  As the universe expands (or contracts) the 

number of dust particles, i.e. the amount of energy-mass, is conserved, hence the energy 

density decreases (or increases).  If 3/ρ=p  then the fluid is called radiation.  It may 

describe actual EM radiation or relativistic particles that behave as radiation.  We say a 

universe in which most of the energy is in this form is radiation-dominated.  This relation 

comes from matching the expression for µνT in terms of the field strength µνF  of the 

radiation with that given by (3.1) (see p.224-225 of Carroll’ s notes).  In this case, 

integrating (3.5) gives 

4−∝ aρ .     (3.7) 

Again we have the same simple physical interpretation except this time the energy 

density falls off faster.  It turns out this additional loss is due to the energy lost by 

photons when they redshift.  It is believed that currently the universe is matter-

dominated, with 610/ ≈radmat ρρ , but this is uncertain due to the unknown amount of 

dark matter in the universe.  In the past when the universe was much smaller it would 

have been radiation-dominated. 

 

 

4. Fr iedmann-Rober tson-Walker  Cosmology 

 

So far we have not made use of Einstein’s equations.  These will tell us the behaviour of 

the scale factor )(ta , i.e. they control the dynamics of the universe.  It is more convenient 

for us to write the field equations in the following equivalent form 

��
����

−= TgTGR µνµνµν π
2

1
8 .     (4.1) 

We use this form since the trace T  is much simpler than R .  After a messy calculation  
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we find that for the R-W metric (2.6) 

a

a
R

��
300 −= .     (4.2) 

Equating this with the left side of (4.1) we find 

)3(
3

4
p

G

a

a +−= ρπ��
.     (4.3) 

By similar (even messier) means we find the space-space equations all give the following 

result (this is due to isotropy): 

)(422 2

2

pG
a

k

a

a

a

a −=+
��

����
+ ρπ

���
.     (4.4) 

Since µνR  and µνT  are diagonal the time-space equations tell us 00 = , hopefully 

something we already knew.  Combining (4.3) and (4.4) allows us to eliminate the second 

derivative and obtain the following result: 

2

2

3

8

a

kG

a

a −=
	


��
�
ρπ�

.     (4.5) 

Together (4.3) and (4.5) are known as the Friedmann equations.  Any R-W space whose 

metric obeys the Friedmann equations is known as a Friedmann-Robertson-Walker 

universe.  (Friedmann was the first to investigate the dust filled closed universe in 1922.) 

 

We will now define some cosmological parameters to help us interpret physically what 

the Friedmann equations imply.  The Hubble parameter is defined as 

a

a
H

�
= .     (4.6) 

Physically it tells us the rate of the expansion of the universe (we need to divide by a  to 

get a physically measurable quantity).  The current value of H , denoted 0H , is known as 

the Hubble constant (after Hubble who, along with Slipher, were the first to observe that 

galaxies are moving away from each other).  The deceleration parameter is defined as 

2a

aa
q �

��
−= .     (4.7) 

It measures the rate of change of the rate of expansion.  The density parameter is defined  
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as 

critH

G

ρ
ρρπ ==Ω

23

8
     (4.8) 

where 

G

H
crit π

ρ
8
3 2

=      (4.9) 

is the critical density.  Note that in general all these quantities change in time.  With these 

definitions the Friedmann equation (4.5) can be written 

221
aH

k=−Ω .     (4.10) 

Thus we can determine the sign of k be measuring Ω : 

.11

01

11

closedk

flatk

openk

crit

crit

crit

↔=↔>Ω↔>
↔=↔=Ω↔=
↔−=↔<Ω↔<

ρρ
ρρ
ρρ

 

So the density parameter tells us which of the three universes we live in.  Measuring it 

experimentally is currently a major area of research. 

 

 

5. The Big Bang 

 

Rather than solve the Friedmann equations exactly we will investigate their general 

qualitative behaviours.  We will assume the universe is filled with a perfect fluid with 

positive energy ( 0>ρ ) and nonnegative pressure ( 0≥p ).  By (4.3) we have 0<a�� .  

Since we know the universe is expanding this means the expansion is “decelerating” .  

Intuitively, it is the gravitational attraction of the matter in the universe that is slowing 

this expansion.  Since under this assumption the universe has always been decelerating, it 

must have been expanding even faster in the past.  If we go back far enough we always 

reach an initial singularity ( 0=a ).  Note that if 0=a��  then )(ta is a straight line and 1
0
−H  

would be the age of the universe.  Since the universe has been decelerating its actual age 

is less than this.   
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The singularity 0=a  is the Big Bang.  It can be shown that all world-lines intersect at 

this point and the energy density becomes infinite.  It is much worse than this, space-time 

itself is singular at this point, hence no known physical laws could possibly hold at this 

time.  It does not represent the explosion of matter into an empty universe; it is the 

creation of the universe from a singular point.  Because the density and curvature were so 

large near the big bang it is not expected that classical general relativity gives an accurate 

description of this era.  The effects of quantum mechanics and perhaps some other 

unknown laws are expected to make significant contributions at this time.  No current 

physical theory can reliably describe this era and a large amount of current research is 

dedicated to finding quantum theories of gravity that will hopefully help us understand it.  

It is safe to say that currently we know almost nothing about it. 

 

One may think that the fact that the universe is not perfectly homogeneous and isotropic 

would allow us to avoid this singularity.  This is not the case.  We could first drop 

isotropy and only require homogeneity.  It can be shown (see Hawking and Ellis §5.4) 

that spatially homogeneous cosmologies with 0>ρ  and 0≥p  necessarily have 

singularities.  By thinking of the Big Bang as the time reverse of a gravitational collapse, 

the singularity theorems of Hawking and Ellis can be used to show that our universe 

almost certainly had singularities in its past, although the nature of these singularities 

cannot be explained by these theorems.  So, although we know almost nothing about the 

Big Bang we can say theoretically it is almost certain that this is how the universe began. 

 

Experimentally what can we say?  The observed redshift of distant galaxies is strong 

evidence that the universe is currently expanding.  There is also the mysterious cosmic 

microwave background and over abundance of 2H.  It seems the only explanation of both 

of these is that at some point in the past the universe was very hot and dense.  Thus we 

can conclude that even if there was no Big Bang the universe did contract to a small size 

in its past, whether or not quantum effects were able to prevent the initial singularity is 

still an open question. 

 

 



The Big Bang 

 

12

5. L ife after  a Big Bang 

 

Using the Friedmann equation (4.5) we can find the behavior of )(ta  for the different 

cases 1,0,1 −+=k .  If 0,1−=k  then we have 

||
3

8 22 ka
G

a += ρπ�
.     (5.1) 

We are assuming 0>ρ  so the right hand side is strictly positive.  Hence a
�
 is never zero 

and so must be always positive or always negative.  Since we know that it is currently 

positive it must have always been and continue to be so.  We see that open and flat 

universes expand forever; they are temporally as well as spatially open.  However, if we 

assume a negative or zero energy then it is possible to have open universes that are not 

temporally open.  Recall that in a matter-dominated universe the quantity 3aρ  is 

constant.  In general we have (using energy conservation (3.5)): 

apa
a

a
aa

dt

d ��� 233 33)( −=
��

����
+= ρρρ .     (5.2) 

The right hand side is zero or negative (as long as 0≥p ).   This implies that 2aρ  goes to 

zero.  Looking back at (5.1) we see that this means 

||2 ka →	
.     (5.3) 

Thus, if 1−=k  then the rate of expansion approaches the limiting value 1.  If 0=k  then 

the universe continues to expand but at a slower and slower rate. 

 

For 1+=k  we have 

1
3

8 22 −= a
G

a ρπ

.     (5.4) 

If we still had ∞→a  then 02 →aρ  would imply the right hand side of (5.4) is negative 

which cannot happen.  Thus in this case the universe reaches a maximum size maxa  and 

then starts decreasing.  Since 0<a��  we must have 0=a  again for some time in our 

future, this is known as the Big Crunch.  Thus spatially closed universes are also closed 

in time (assuming a positive energy and nonnegative pressure). 
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Our results can be summarized in the following picture: 

 
 
 

)(ta               1−=k  
 
              0=k  
 
 
 
 
 
 
               1+=k  
 
 
 
                    t  

  bang   now          crunch 
      1

0
−H  

 
The exact solutions for matter filled and radiation filled universes are discussed on p.226-

227 of Carroll’ s notes and summarized in table 5.1, p.98, of Wald. 

 

 

7. The Cosmological Constant 

 

As we just saw all of our models of the universe are dynamic.  Before the observed 

expansion of the universe in 1929 it was believed that the universe was static.  Einstein 

subsequently proposed a modification to the field equations: 

µνµνµν πGTgG 8=Λ+      (7.1) 

where Λ  is a new fundamental constant of nature, the cosmological constant.  It can be 

shown that the new left hand side is in fact the most general two index, symmetric, 

divergence free tensor that can be constructed solely from the metric and its first two 

derivatives, so it is natural to add it and try to experimentally determine its value.  The 

new Friedman equations admit a static solution in which ρ , p , and Λ  are each positive 

(the original one did only if 0<p  which is not the case for most of the known matter in 
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the universe), it is known as the Einstein static solution.  Although this solution is static, 

it is unstable.  All three parameters must be fine tuned, and any deviation from these 

sends the solution away from its static state.  After the expansion was observed it was 

thought the cosmological constant was no longer needed and was for the most part set to 

zero.  Einstein then stated that its creation was his greatest regret. 

 

Recently, the cosmological constant has made a comeback, this time in the form of the 

vacuum energy.  However, this interpretation, originating in particle theory, is itself 

puzzling.  The constant is expected to be much larger than current experimentally 

determined upper bound.  The new equations are equivalent to the original ones if we set 

µνµν π
g

G
T vac

8
)( Λ−=      (7.2) 

to be the energy of the vacuum.  This has the form of a perfect fluid with p−=ρ .  

Looking back at the energy conservation equitation (3.5) we see this implies the vacuum 

energy density is independent of a , as should be expected.  Since the energy density of 

matter and radiation decreases as the universe expands this vacuum energy will tend to 

dominate as the universe expands, we say a universe in such a state is vacuum-dominated.  

Since the matter and radiation terms dominate when the universe is dense, the vacuum 

energy has little effect on the Big Bang and cannot be used to try and avoid it. 

 

Carroll’ s article The Cosmological Constant contains much information on this topic.  

For a concise description of cosmology with a cosmological constant see p.139 of 

Hawking and Ellis.  It turns out that vacuum only universes have only two exact 

solutions, the famous de Sitter and anti-de Sitter space for 0>Λ  and 0<Λ  respectively. 

 

 

8. Conclusions 

 

We found that the universe almost certainly began with a big bang.  This led us to more 

interesting questions.  Which universe do we live in, i.e. will our universe expand forever 

or collapse in the big crunch scenario?  How old is our universe?  A lot of research is 
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going into answering these questions and has resulted in a lot of controversy.  Estimates 

of the Hubble constant are between 50 and 100 km/s/Mpc where 1 Mpc = 1 megaparsec 

≈  3× 1019 km.  Estimates are obtained by measuring the redshift of distant light sources 

and it is hard to accurately measure such large distances.  That is why there is such a 

large error in the estimate.  It is believed that most of the energy in the universe is 

concentrated in ordinary matter in galaxies.  By estimating the mass density of the 

universe an estimate of 0.04 for Ω  is obtained.  Thus it appears that our universe is open.  

However, recently it has been suggested that the amount of dark matter in the universe 

could be much higher than originally thought, this would bring Ω  closer to 1.  An 

interesting question is why we seem to be so close to the critical value.  If we assume that 

the universe was matter-dominated for most of its existence and 0=k  we find that 

13
3

2 ≈=
H

tcrit  billion years.     (8.1) 

If the universe is closed then its age will be smaller than this and if it is open it will be 

larger.  We can also estimate the age of the universe from the age of the oldest known 

objects, globular star clusters.  Estimates by this method put the age of the universe 

between 10 and 20 billion years.  The closeness of this to the critical age is more 

evidence that the universe really did start with a big bang, however the uncertainty does 

not allow us to conclude whether or not the universe is open or closed. 

 

Einstein’s theory has predicted a very interesting universe; far different from the 

conventional one we were thought to live in less than a hundred years ago.  By trying to 

answer one question it has led to many interesting unanswered questions.  Perhaps its 

most important feature is its ability to explain two observed phenomena that apparently 

no other theory of space and time significantly different than Einstein’s can account for, 

the cosmic background radiation and the over abundance of 2H, relics of the Big Bang.
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