Perthelion of Mercury

Paul Lee

Student Number: 990209662

Course: General Relativity
(APM4265S)

Date: 21 March 2002



1. Introduction

At present, there are three experimentally measurable tests on General Theory of
Relativity. They are the red shift, the deflection of starlight passing the sun and the
perihelion precession of Mercury. Among all the three tests, perihelion precession of
Mercury is the most important one. The reason is that the explanation on red shift
does not require the use of Einstein’s equation. It can be done by using only
conservation of energy and principle of equivalence. Similarly, the same problem for
deflection of starlight passing the sun also arises. It can be explained using only
special theory of relativity, principle of equivalence and classical optics. Moreover,
the measurements do not agree with the one predicted by the theory. On the other
hand, the same problems do not appear in perihelion precession of Mercury. Aswe
will see later, the derivation of it requires the use of geodesic equations, which is
closely related to the Einstein’s equation. Also, the result from theory isin excellent
agreement with the measurements. So, the aim of this paper isto look at the
relativistic explanation on perihelion precession of Mercury and the failure of a
classical explanation of the shift.

In this paper, we will presuppose the knowledge of differential geometry and
general relativity given by the first four chapters in the book General Relativity by
Robert M. Wald. This includes some basic in tensor calculus and Riemann geometry,
special theory of relativity and some basics in general theory of relativity including
the Einstein’s equation.

We will begin our discussion by recalling the derivation of the classical Kepler
problem and we will see that the two differential equations derived by the classical
theory and relativistic theory are very closely related. Next, we will derive the
Schwarzschild solution, which is a time-independent and radially symmetric metric
for the free-space field equations. Then, we will use this solution to solve our
relativistic Kepler problem and explain why there is a shift in perihelion of Mercury.
In the last part, we will look at one classical explanation on this problem and its
fallure.



2. Classical Kepler problem

In this section, we will recall the classical solution to the Kepler problem. The
problem isto prove that orbits of planets are ellipses and the Sun is located at one of
the foci of the ellipse. Thisis aso known asthe Kepler's First Law.

Let us assume that the motion takes place in a plane and recall the well-known
fact in Physics — Conservation of Energy. It saysthat if there is no net force acting on
the system, then the total energy is constant. So,

E :%n'“vnz +V(r) (2.1)

where E isthe energy of the planet whichis constant, v =(v,,v,,0) isthe velocity
of the planet, m isthe massof the planet and V isthe gravitational potential
energy which depends only on r since we assume that the Sun is a sphere.

If welet x=(x;,X,,0) bethe position vector, then v=x= (Z—?,%,O) . Sowecan
write (2.2) in polar coordinate by letting x = (r cosé,r sin 8,0) = r (cosd,sin 6,0) .

By Leibnitz rule, we have

Vv =X = f(cos@,sin 8,0) +r(-sin 8,co0s8,0)0 = (f cos@ - rdsin &, sin 8+ r&cos,0) .
So, [V = (f cos@—rGsin 6) + (F sin 8+ G cos)? = 2 +r26? (2.2)

Substitute (2.2) into (2.1), we get

1 . :
E:Em(r2+r262)+V(r) (2.3)
Another fact that comes from Physics is Conservation of Angular Momentum. Let us
look at thisin more detail. Angular momentum is by definition

L=xxp (2.4)
where p=mv isthelinear momentum. Conservation of Angular Momentum says
that if there is no net torque acting on the system, then angular momentum is constant.
And torqueisdefined by 7 =xxF , where F istheforce vector. To prove this, we
differentiate (2.4) with respect to time and use Leibnitz rule.

dL

— = XXpP+XX| 25
m P p (2.5)



Since x=v, xxp=vxmv=0.(2.5) becomes

dL

— = XX[ 2.6

o p (2.6)
But p=nv=ma=F, s0(2.6)isjust

$:XXF:T:0 2.7

dt

Here, 7 =0 since we assume thereisno net torque to the system. Therefore, angular
momentum is conserved. Let us go back to the Solar system. In there, the angular
momentum is conserved since there is no force that isnot parallel to x. Next, let us
rewrite (2.4) in amore familiar form. To do this, we apply polar coordinate.
L = r(cos@,sin 8,0) x[mr (cosd, sin 8,0) + mr (-sin 8, cosé,0)6]
= L =r(cosb,sin 8,0) x mr (-sin 8,cosb,0)0

= L =nr26(0,0))

So the magnitude of angular momentum is
| =mr26 (2.8)

which is the condition for central force field.
Now let us go back to our discussion on the Kepler problem. If we differentiate (2.3)
with respect to time, we get

0=mft +mrré? + mr266 +V'(r)r (2.9)
Differentiate (2.8) with respect to time, it becomes
0=2mrré+nr26 (2.10)

Substitute (2.10) into (2.9), we have

0=mft +mrré? - 2mri @2 +V'(r)r

= mfi = mrr? +V'(r)r =0 (2.11)
One possible solutionto (2.11) is ¥ =0 which corresponds to a circular orbit. So, to
obtain the other possible solution, we cancel r in(2.11) and get

Forgr+ 0 (2.12)
m
To solve (2.12), we let
1
uld) =—— 2.13
(6) © (2.13)
By chainruleand (2.8), r becomes
e drdf 0Ly (2.14)
dt dé dt mr 2 m
Differentiate (2.14) with respect to time and use (2.8) again, we get
d dé d dé d I 12 12 2
i=—r=——I\f)=——| ——U' |=- u'=-—-u'u 215
dt  dt dH() dt de[ m j m?r 2 m? (215)

Substitute (2.8), (2.13) and (2.15) into (2.12), we have



-—u'u -——u’ +
m? m? m
" — (r)m
SUuHu=—o (2.16)
From Physics, we also know that V (r) = _GMm for any gravitational field
r
generated by a spherical body, where G = 6.67x10™"Nm?/kg? iscalled the
gravitational constant and M isthe mass of the Sun. So (2.16) becomes
2
uray = SMM (2.17)

I 2

Theright side of (2.17) isjust a constant, so we can solve this ODE. Clearly,
2

u, = GI\I/IZm isaparticular solution of (2.17) and u, = Ccos(@+J) isthe genera

solutionof u"+u=0 whereCand o arearbitrary constants. Therefore, the general
solution of (2.17) is

GMm?
u=

IZ

+Ccog(@+09) (2.18)

We orient the system so that J = 0, so (2.18) becomes

|2

2 2
u= GI\I/IZm +Ccosf or r= Gl\/im (2.19)
1+ 5 cosé
GMm

which is the equation of ellipse in polar coordinates with one of its foci at the origin.
So the Sunislocated at the origin and the orbit is elliptical. Therefore, this solves the
classical Kepler problem.

Of course, thisis not the end of the story. In 1859, French Astronomist, Le
Verrier, discovered that there is a perihelion advanced of Mercury by 38” per century.
Le Verrier isthe one who discovered Neptune by calculating the position of it from
irregularities in Uranus's orhit. He tried to apply the same theory to this perihelion
shift of Mercury by hypothesizing a planet Vulcan between Mercury and the Sun, and
he spent much time on looking for this planet. Obviously, he did not succeed and this
perihelion shift is eventually explained by Einstein’s General Theory of Relativity.



3. The Schwarzschild Solution

Before discussing the perihelion shift, we have to derive the Schwarzschild
solution. So, imagine we have an empty space, then the metric will be given by the
space-timeinterval ds? = c2dt? — (dx® + dy® +dz?) . In polar coordinates, it is

ds? = c?dt? - (dr® +r?d@? +r?sin’ &¢?) (3.1)
where ¢ =3.0x10°m/s isthe speed of light.
Now imagine we put a massive body at the origin, then space-time will curve down
like atrough (Thisis how Einstein think about it). The metric correspondsto this
setting with the following assumptions is called the Schwarzschild Solution.

If we consider this metric as a “ space-time trough”, it should be almost flat if we
go very far away from the central mass. So, as r — o, we should get back (3.1) and
thisisour first assumption. Next, we will assume that the central mass is stationary, so
the metric is not changing with time. This assumption helps us alot in simplifying our
metric since ds® should be invariant if wereplace dt by —dt. So al terms
involving dt iszero except dt®. The third assumption isthat the mass of the central
body is evenly distributed. This means that the metric is radially symmetric. So, if we
change d6 to -dé@ orchange d¢ to —dg¢, ds® should again not change.
Therefore, we expect a diagonal solution like the following one.

ds? = A'(r')c?dt? —[B'(r")dr'?+C'(r')r'* (d6% + sin® &¢?)] (3.2)
where A'(r'),B'(r')and C'(r') are some unknown functions.

To simplify further, we choose a new coordinate r =.,/C(r')r', then

1 dC
r = —r'+,/C(r") |dr' and so (3.2) becomes
2Jc() dr NJC(r') (3.2

ds? = A(r)c?dt? —[B(r)dr? +r?(d&? +sin? &d¢?)] (3.3)

— A'[y! 2 D" \Ar'2 — D'/ 1dC| ' 2
where A(r) = A'(r')and B(r)dr< =B'(r')dr' = B'(r") > C(r')Wr +JC(r') | dr

Next, we want to calculate the Cristoffel Symbols. From (4.2), we know that
Y00 =C*A, O =-B,0y :_rz’ggg =-r’sn’@ (34)

and all other components of the metric vanishes. The metric is diagonal and so the

inverse is easy to calculate.

00 _i 1 _ _l 2 _ _
oA"Y B'Y

Now, we know all the entries in the metric, so we can use (3.1.10 inWald)

1 5 1
Sl =— , 35
r? J r’sin?@ (35)

g



0 0
rpW :Enga(agva + 90 _ g#"j (3.6)

2% ox* ox’  ox?

to calculate the Cristoffel Symbols. Keep inmind that Aand B dependsonly on r
and substitute x° =t,x' =r,x* =@and x* = ¢ into (3.6). So, we get

o zgzgm[agoo .99, _agloj zg[ij[cza_Aj _A
2% or ot  ox? ) 2\c*A o ) 2A

Similarly,
1 2 A0 1
Fog =2 i, = CA roo B
2A 2B 2B
— — q 2
M2 =_r s =_rsne 9 M2n :E
B B r
rz, =1 %% = —sindcosd 35 =cotd (3.7)
r
3% =cotd s :E M3 :E
r r

For the empty space surrounding the body, T, =0. So Einstein’s equation becomes

1

G,, =R,, =R, =0 (3.8)

v

Multiply (3.8) on both sidesby g** and contract, then (3.8) will giveus R=0.
Therefore, if we substitute R=0 into (3.8), then we have

R, =0 (3.9)

Now, let uscompute Ry, R, and R,,. From definition of Ricci tensor (3.2.25in
Wald), we have

b

R = R (3.10)
Also, we have formula (3.4.4 in Wald),
R’ = T = T Sl =T %) (311
So, we get the following equations.
0=Ry =Ry’ = ai" Mo~ a?(O [vo + T %0l =T %ol a0

_0(c*A +cZA'[£j+cZA'[Ej+CZA'[gj_2[ﬁj C’A
or\ 2B ) 2B\2A) 2B\2B) 2B\r 2A )\ 2B
2 o 12 '
[ o AB_A* 2A

2B 2A ot




Fe)l 12 '
o AB AT 2N

—— - +="=0 (3.12)
2B 2A r
o)l 12 1
Smilarly, 0=R, =——| - A+ 2B, A° | 278
2A 2B 2A 1B
Fe)l 12 1
L _pe ABL AT 28R (3.13)
2B 2A B
0=R, =R’ =~ cotg-2[ )42 _corrg- L2, (AB) (3.14)
06 or\B) B Blr 2AB
By adding (3.12) and (3.13), we get 0:%+ZAB :i(AB)' and so
r

rB rB

AB = constant . To determine this constant, we use the first assumption that we will
get back the space-timeinterval as r — co . So, compare (3.1) and (3.2), we get
Ar)=B(r')=C'(r')=1 as r - o . Sofrom(3.2), we have

-2
1 dC
A(r)=A(r')=1and B(r) =B'(r' —1r'+yC(r' =1
(r)=A(r) (r) (){ZC(r')dr' \/()}
Therefore, the constant is 1 and we get
1
B== 3.15
A (3.15)
Now, consider (3.14) together with (AB)'=0, then

0=csc? H—ai[LBj—cot2 2]
r

o(r)_

Integrate (3.16) on both sides, then LB =r+K for someconstant K. So, together

(3.15), we have
_ K+r B= r

r r+K
In order to determinewhat K is, we consider again the case where r — o and we
put atest body at rest relative to the central mass M. We look at the geodesic equation
given by (3.3.5 inWald).

A (3.17)

dx” 4 oy
F+Zr aTTY =0 (3.18)

where x*(t) isthe geodesic.
In this case, the test body will move along the geodesic. Also, the test body is at rest



initially, % =% = d—f =0att =0. So if we parameterize the geodesic using time,

2
dt dt _ ﬂ+rloo
dt?

2
then (3.18) becomes ﬂ+Floo — =0.
dt?

dt dt

t=0 t=0

So, by (4.8), we get

2 2 A0 2 2 21 2
ar =—r100:_cAz_c_[”Kji[K”j:Cf+°K3 (3.19)
at ., 2B 20 r jdr r 2r 2r
At r - oo, 1/r® decreases much faster than r?. So (3.19) becomes
2 2 2 3 2
dr| _cK+cK _,CKaSI’—>00 (3.20)

dt?|_, 2r2  2r® o 2r?

The left hand side of (3.20) is acceleration of the test body. Since the relativistic effect
a r - oo isnegligible, we should get back Newton's Law of Gravitation, which is

2
—Grl\z/l . (;rf :—Gr—'\z/l,where M isthe mass of the

central body at the origin and G = 6.67x10™"Nm? / kg?. Therefore, the constant is
- 2GM

¢z
Now, rewrite (3.3) using (3.17) and (3.21), we get

ds® = [CZ —@jdt2 —-r?(sin® &¢? +d6%) -
r

So, by (3.20), we have

K=

(3.21)

dr?

&
cr

And (3.22) is the Schwarzschild metric that we are looking for.

This solution to the field equations was found in 1916 by Karl Schwarzschild. It
can be used to explain neutron stars, pulsars and black holes. Now, we are going to
use it to account for the perihelion shift of Mercury. (Also, perihelion shift of Mercury
had already been explained in Einstein’s 1915 paper. But, | can't find a book which
explain this without using Schwarzschild solution.)

(3.22)




4. Perihelic Shift of Mercury

Consider the setting in section 4. If we replace the central mass by the Sun and put the
Planet Mercury into the system. Since mass of the Sun is much bigger than mass of
Mercury, we can approximate the situation by assuming that Mercury has zero mass
and so the Sun will not be affected by Mercury’s gravitational field. Also, assume that
the Sun is not rotating. This is reasonable since rotation of the Sun is small and the
Sunis huge. By theory of Genera Relativity, we know that Mercury will travel along
the geodesic. So, let us consider the geodesic equations (3.18) together with (3.7).

2 2
M Eﬂ% Hcose[d—qoj =0 (4.2
ds’> r dsds ds
2 ' 2 . 2 2
() 2] (o T {0 %) =0 o
ds ds 2B )\ ds ds B ds
2
d 20+2co ed_Hd_qa Zﬂd_(ﬂ (4.3)
ds ds ds r ds ds
2 1
a1, Adrdt_, (4.4)
ds® A dsds

To smplify these equations, consider (4.1). If welet @ = g and % =0 initialy, then

to

2
(4.1) tells us that ((jj f:O initially. But this just means that % will stay at zero for
< <

= =

al sand so Hzg for al s. Therefore, by setting 6=§and¥:0 initially, the
<

to

planet Mercury will lie in the plane defined by the relation @ =g. The geodesic

equations (4.2) and (4.3) becomes

2 ' 2 2
AR EEAT T
ds? ds 2B A\ ds B\ ds

2
d_go+gﬂd_¢: (4.6)
ds r ds ds

Let us solve (4.6) first. If we multiply both sides of (4.6) by r?and integrate with
respect to s, then we get

0=r28°0, o o do_ rzg[d_coj+m(ﬂ_<o:g[rzd_<oj

ds’ ds ds ds\ ds ds ds ds ds



d
:>r2—¢=Kl (4.7

for some constant K, .
Similarly, we can solve (4.4) by multiplying both sidesby A’ and integrate.

_dt . drdt_ ,d(dt) dAdt d(  dt
0=A——S+A——=A—| — |[+——=—| A—
ds ds ds ds\ds/ dsds ds\ ds
dt _
jAE_KZ (4.8)

for some constant K, .
Instead of solving (4.5), let us go back to the Schwarzschild metric (3.3) and solve

that first order ODE. Divide both sides of (3.3) by ds® and set & :g , We get

dt )’ dr)? dqojz
1=A(r)c? — | =B(r)| — | -r? == 4.9
(r) [dsj ( )[dsj [ds (49)
Substitute (4.7) and (4.8) into (4.9), we get
2 2 2 2
1=K —B[ﬂj —rz[ﬁgj (4.10)
A ds r
Similar to the classical problem, we can also change (4.10) to an ODE depending on
rand¢ instead of rands by writing ﬂzi% and apply (4.7) again.
ds deds
2y 2 2 2 2
1= ¢ _BR fdr ) Ky (4.12)
A r de r

Let us subgtitute u = e into (4.11) and apply (3.17) and (3.21),
r

21 2 2
1=K g U)oz
A de

2
= ¢? —2uGM =c¢*K,* - ﬂ(f(?j - u?K,*(c® —2uGM) (4.12)
@

Differentiate (4.12) with respect to ¢,

2
_oeM M = perk 2l MUY AU ek 2 ML gegmk 2 (413
dg dg \ d¢ dg dg



% =0 givesthe solution r =constant which isthe circular orbit. If % # 0, then
Y Y

we can smplify (4.13) and get a second order differential equation.

d2u GM 3GM ,
+u= + u

u= 4.14
dg? Klzcz c2 ( )

Compare this equation with (2.17) corresponding to the classical problem. They look

M 2. since perihelion shift is small, we

amost the same except for theterm —
c

should expect thistermto be small and in fact CM _ 4.42x107% <<1.

CZ
This ODE is well-known problem in applied Mathematics and it can be solved using

perturbation expansion. So let
2
[3(22/'} } (4.15)

and we substitute (4.15) into (4.14). Ignoring the higher order terms, we get

) = (@) +> 5 1(9) +O

2 2
du0+u0+3Gi\/|dul+3Gi\/l u = GD/I +3Gi\/l u2 (4.16)
d¢’ c® d¢¥ ¢ K,¢* ¢

Equate the zeroth-order termsin (4.16), we have

d?u, GM
+u, =20 (4.17)
d#  ° Kz

Equate the first-order termsin (4.16), we have
d’u,
d¢*

So, if solve (4.17) similar to what we did in section 2, we get

ru, =u,> (4.18)

U, KGlz\f:z + Ccog(p+0) (4.19)

1

Again, we choose an appropriate orientation of the axes, sothat d =0. So (4.19)
becomes

M
+Ccosg (4.20)
K,c?

(4.17) and (2.17) are essentially the same, so we canrelate C to the length of major
axis, 2a, and the eccentricity, e, of the dlliptical orbit. In polar coordinates, equation

u, =

of élipseis r = i where x =-d isthedirectrix. So rewrite (4.20) and
1-ecosg



K,’c?

compare, we get 1 = GM ! = CKGZM 5 . S0 the eccentricity is
u
0 22 +C cosgp 1+GlMccosqo
1
2 2
e= _CKye and we have
GM
eGM
C=- (4.22)
K,c?
Substitute thisinto (4.20) we have
U, = % (1-ecosgp) (4.22)

\ Mercury

Now we haveto determine K, intermsof a and €. From (4.22), we know that

U, isminimzedat ¢ =0 andismaximizedat ¢ =7 . That means r=i is
u0

maximizedat ¢ =0 and minimizedat ¢ =7.S0

1

Uo

1
Uy

=2a (4.23)

6=0

o=m

By (4.22), (4.23) can be rewritten as

1 1

+

GM GM

K 22 @+e) 1-¢)
1

=2a

K, ’c?
= —1 =a
GM (1-€?)

K, c?
_aGM (1-¢?)

CZ

= K, (4.24)
So (4.22) becomes

U, = m (1-ecosg) (4.25)



Next, we have to solve (4.18). So, substitute (4.25) into (4.18), we have

d’u, +u, = ;(1— 2ecosg+ 4€” cos’ ¢)
d# = a’(l-€?)?
N d®u, fU = 1 (1+ 2e* — 2ecos@+ 2e* cos2¢) (4.26)
d¢2 1 a2 (1_ e2)2 .

The homogeneous solution to (4.26) is periodic and will be small comparing to (4.25)

(since it will have

>— beforeit), so we only need the non-homogeneous solution
c

which will increaseas 6 increases. To find the non-homogeneous solution to (4.26),

we can separate (4.26) into three equations.

d?v, _1+2¢? d?v, _ 2ecos@ d?v, _ 2e? cos2¢
V=3 2v2 ' TV, =73 272 tV; =3 2\2

d¢’ a’(l-e?) d¢? a’(1-e?) d¢? a’(l-e?)
(4.27)

Then u, =v, +v, +v, isanon-homogeneous solution to (4.26) where v,,v,,v, are

particular solutionsto (4.27). And they are
1+2€° e . 2e°
V=E————, V,=——————@Sn®y, V,=—-—————C0S2 4.28
Cramey T waey Y T ey O U
where v, and v, can be easily found using method of undetermined coefficient and
v, can be found using variation of parameters.

Combining (4.28) and (4.25), (4.15) becomes

u() = (1-ecosg)

a(l-¢e?)
, , (4.29)
L3GM | 1+2e7 e sin - 2e C0S290
CZ aZ(l_eZ)Z aZ(l_eZ)Z 3a2(1_e2)2

@sin @ isthe non-periodic term which account for the

e
Clearly, ~—————

y a.2 (1_ e2)2
perihelion shift. To determine what exactly the perihelion shift is, we rewrite (4.29)

and make some approximation again.
1 e 3GM

u(ep) = - cos@— Sin
@ al-e*) a(l-€?) ¢ c? az(l—e2)2¢ ¢
) ) (4.30)
L3GM | 1+2e7 2e C0S2
c? |a’(l-€*)? 3a?(l-€?)?
2 2
Again, since 3Gi\/| 21+2e2 ST 2e 5 C0s2¢| issmall and periodic, it will

c” |a“(l-e)° 3a‘(1-e9)

not influence the orbit much for large ¢ . Therefore, we ignore thisterm and look at

L e ey 3OM
al-¢e®) a(l-e?) c?

e .
2 (1-) @sn@ (4.31)



To smplify (4.31), consider cos(¢ — £¢) = cosegcos¢g +singgsing . For ¢ small,

we can approximate this by
coS(¢ — £¢) = COS¢ + £¢Sing (4.32)
Replace £ in(4.32) by % and apply it on (4.31), then we have
ac“(1-¢%)
1 e 3GM
u(g) = - co§ p————— 4.33
@ a(l-e*)? a(l-¢?) {qp acz(l—ez)qp} (4.33)

Compare (4.33) with the classical solution (2.19), we see that (4.33) described an
dliptical orbit for ¢ small and we will see the effect of perihelion shift for ¢ large.

Perihelion occurswhen r isminimized or when u is maximized, so differentiate

c 2 {1_ EGM 2 }sin{qo— EGM 2 qo}.So,
a(l-e9) ac(1-e%) ac (1-¢e%)

(4.33) we will get u'(¢) =

3GM _
@‘m}”’“ 439

will give maximum u or approximately

3GM
=2m 1+ —— 4.35
4 { acz(l—ez)} (4.39)
. 3GM . .
Here, we use again the fact that — > Issmall. So, instead of 27, the
ac“(1-e9)
successive periheliawill occur at intervals of
3GM
Ap=2m1+—— 4.36
? ,{ acz(l—ez)} (4.36)
Therefore, for each revolution the perihelion will advance an amount
67GM
= 4.37
% ac’(1-¢€?) (4.37)

Using (4.37), one can calculate the perihelion shift of Mercury to be 42.89 sec
per century and the observational result gives 42.6+1.0 sec per century. This
agreement with the experimental result and the fact that this shift cannot be explained
using classical theory serve as an important verification of the Genera Theory of
Relativity.



5. A Classical Explanation on Perihelic Shift

We mentioned at the end of Section 1 that Le Verrier tried to explain the perihelic
shift of Mercury by hypothesizing a planet Vulcan. But such an explanation was given
up since such planet is never found. However, if we assumed that the Sunis a dightly
flattened sphere into an dlipsoid, then the planetary orbits will be shift. Here is avery
brief (because time is running out) discussion of this explanation.

In our new system with a dightly flattened sphere, conservation of energy and
conservation of angular momentum still hold. The only thing that changes isthe
potential. So, let us calculate the potential created by a sphere which is widened by a
bulge around its equator. Develop the potential in spherical harmonics (which | don’t
know the detail), the leading two terms will be of the form

29
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where D issome constant depends on the deformation.
Since r ishuge and the deformation from the sphere is small, we ignore the terms

O[%j . Assume the motion of the planets is restricted to the plane described by the
r

relation @ = g , then (5.1) becomes
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where B =2DGM .
By equation (2.16), we have
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Theconstant B depends on deformation of the sphere which is assumed to be small,
so we can apply perturbation theory. (5.3) isvery similar to (4.14). If we do asimilar
calculation as what we did in Section 4, we will get
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Let T bethe period of revolution expressed in units of centuries, then the perihelic
shift per century is given by
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Next, we will expressed (5.5) interms of R, the mean distance of the planet from the
Sun. Then by (2.8), we have
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Integrate (5.6) with respect to t over one revolution, we get
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Also, by Kepler's third law which can be easily proven using Newton's Law of
Gravitation, we have

where K is the Kepler constant which is the same for al planets. Using (5.7) and (5.8),
(5.5) becomes
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Let us do the same thing using the result we found in Section 4. By (4.37), we have
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Substitute (5.8) into (5.10), we have
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Compare (5.5) and (5.11), we see that the R dependence of the two equationsisthe
main difference. So, let us take the logarithm on both sides of (5.5) and (5.11), then
logS and logR will give alinear relation. The classical theory will predict alinear
relation with dope —7/2=-3.5 whilerelativity theory will give alinear relation
with dope -5/2=-2.5.

Observed data from reference (3) Mercury Venus Earth
Mean distance fromthesun R |58x10% 108x10" 149x 10"
Observed shift S 43.11+0.45 8.4+48 50+1.2

If weplot logS against logR using the observed data and draw the best-fit line,
we will get a straight line with lope —2.30+ 0.26. This showsthat General Theory
of Relativity gives a much better explanation on perihelic shift than this classical
explanation. In fact, there is no classical theory that can explain this perihelic shift, so
Mercury Perihelion remains to be the verification of the General Theory of Relativity.
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