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1. Introduction

At present, there are three experimentally measurable tests on General Theory of
Relativity. They are the red shift, the deflection of starlight passing the sun and the
perihelion precession of Mercury. Among all the three tests, perihelion precession of
Mercury is the most important one. The reason is that the explanation on red shift
does not require the use of Einstein’s equation. It can be done by using only
conservation of energy and principle of equivalence. Similarly, the same problem for
deflection of starlight passing the sun also arises. It can be explained using only
special theory of relativity, principle of equivalence and classical optics. Moreover,
the measurements do not agree with the one predicted by the theory. On the other
hand, the same problems do not appear in perihelion precession of Mercury. Aswe
will see later, the derivation of it requires the use of geodesic equations, which is
closely related to the Einstein’s equation. Also, the result from theory isin excellent
agreement with the measurements. So, the aim of this paper isto look at the
relativistic explanation on perihelion precession of Mercury and the failure of a
classical explanation of the shift.

In this paper, we will presuppose the knowledge of differential geometry and
general relativity given by the first four chapters in the book General Relativity by
Robert M. Wald. This includes some basic in tensor calculus and Riemann geometry,
special theory of relativity and some basics in general theory of relativity including
the Einstein’s equation.

We will begin our discussion by recalling the derivation of the classical Kepler
problem and we will see that the two differential equations derived by the classical
theory and relativistic theory are very closely related. Next, we will derive the
Schwarzschild solution, which is a time-independent and radially symmetric metric
for the free-space field equations. Then, we will use this solution to solve our
relativistic Kepler problem and explain why there is a shift in perihelion of Mercury.
(Inthelast part, we will look at one classical explanation on this problem and its
failure)



2. Classical Kepler problem

In this section, we will recall the classical solution to the Kepler problem. The
problem isto prove that orbits of planets are ellipses and the Sun is located at one of
the foci of the ellipse. Thisis aso known asthe Kepler's First Law.

Let us assume that the motion takes place in a plane and recall the well-known
fact in Physics — Conservation of Energy. It saysthat if there is no net force acting on
the system, then the total energy is constant. So,

E :%n'“vnz +V(r) (2.1)

where E isthe energy of the planet whichis constant, v =(v,,v,,0) isthe velocity
of the planet, m isthe massof the planet and V isthe gravitational potential
energy which depends only on r since we assume that the Sun is a sphere.

If welet x=(x;,X,,0) bethe position vector, then v=x= (Z—?,%,O) . Sowecan
write (2.2) in polar coordinate by letting x = (r cosé,r sin 8,0) = r (cosd,sin 6,0) .

By Leibnitz rule, we have

Vv =X = f(cos@,sin 8,0) +r(-sin 8,co0s8,0)0 = (f cos@ - rdsin &, sin 8+ r&cos,0) .
So, [V = (f cos@—rGsin 6) + (F sin 8+ G cos)? = 2 +r26? (2.2)

Substitute (2.2) into (2.1), we get

1 . :
E:Em(r2+r262)+V(r) (2.3)
Another fact that comes from Physics is Conservation of Angular Momentum. Let us
look at thisin more detail. Angular momentum is by definition

L=xxp (2.4)
where p=mv isthelinear momentum. Conservation of Angular Momentum says
that if there is no net torque acting on the system, then angular momentum is constant.
And torqueisdefined by 7 =xxF , where F istheforce vector. To prove this, we
differentiate (2.4) with respect to time and use Leibnitz rule.

dL

— = XXpP+XX| 25
m P p (2.5)



Since x=v, xxp=vxmv=0.(2.5) becomes

dL

— = XX[ 2.6

o p (2.6)
But p=nv=ma=F, s0(2.6)isjust

$:XXF:T:0 2.7

dt

Here, 7 =0 since we assume thereisno net torque to the system. Therefore, angular
momentum is conserved. Let us go back to the Solar system. In there, the angular
momentum is conserved since there is no force that isnot parallel to x. Next, let us
rewrite (2.4) in amore familiar form. To do this, we apply polar coordinate.
L = r(cos@,sin 8,0) x[mr (cosd, sin 8,0) + mr (-sin 8, cosé,0)6]
= L =r(cosb,sin 8,0) x mr (-sin 8,cosb,0)0

= L =nr26(0,0))

So the magnitude of angular momentum is
| =mr26 (2.8)

which is the condition for central force field.
Now let us go back to our discussion on the Kepler problem. If we differentiate (2.3)
with respect to time, we get

0=mft +mrré? + mr266 +V'(r)r (2.9)
Differentiate (2.8) with respect to time, it becomes
0=2mrré+nr26 (2.10)

Substitute (2.10) into (2.9), we have

0=mft +mrré? - 2mri @2 +V'(r)r

= mfi = mrr? +V'(r)r =0 (2.11)
One possible solutionto (2.11) is ¥ =0 which corresponds to a circular orbit. So, to
obtain the other possible solution, we cancel r in(2.11) and get

Forgr+ 0 (2.12)
m
To solve (2.12), we let
1
uld) =—— 2.13
(6) © (2.13)
By chainruleand (2.8), r becomes
e drdf 0Ly (2.14)
dt dé dt mr 2 m
Differentiate (2.14) with respect to time and use (2.8) again, we get
d dé d dé d I 12 12 2
i=—r=——I\f)=——| ——U' |=- u'=-—-u'u 215
dt  dt dH() dt de[ m j m?r 2 m? (215)

Substitute (2.8), (2.13) and (2.15) into (2.12), we have



-—u'u -——u’ +
m? m? m
" — (r)m
SUuHu=—o (2.16)
From Physics, we also know that V (r) = _GMm for any gravitational field
r
generated by a spherical body, where G = 6.67x10™"Nm?/kg? iscalled the
gravitational constant and M isthe mass of the Sun. So (2.16) becomes
2
uray = SMM (2.17)

I 2

Theright side of (2.17) isjust a constant, so we can solve this ODE. Clearly,
2

u, = GI\I/IZm isaparticular solution of (2.17) and u, = Ccos(@+J) isthe genera

solutionof u"+u=0 whereCand o arearbitrary constants. Therefore, the general
solution of (2.17) is

GMm?
u=

IZ

+Ccog(@+09) (2.18)

We orient the system so that J = 0, so (2.18) becomes

|2

2 2
u= GI\I/IZm +Ccosf or r= Gl\/im (2.19)
1+ 5 cosé
GMm

which is the equation of ellipse in polar coordinates with one of its foci at the origin.
So the Sunislocated at the origin and the orbit is elliptical. Therefore, this solves the
classical Kepler problem.

Of course, thisis not the end of the story. In 1859, French Astronomist, Le
Verrier, discovered that there is a perihelion advanced of Mercury by 38” per century.
Le Verrier isthe one who discovered Neptune by calculating the position of it from
irregularities in Uranus's orhit. He tried to apply the same theory to this perihelion
shift of Mercury by hypothesizing a planet Vulcan between Mercury and the Sun, and
he spent much time on looking for this planet. Obviously, he did not succeed and this
perihelion shift is eventually explained by Einstein’s General Theory of Relativity.



3. The Schwarzschild Solution

Before discussing the perihelion shift, we have to derive the Schwarzschild
solution. So, imagine we have an empty space, then the metric will be given by the
space-timeinterval ds? = —c?dt? + dx? + dy? + dz>. In polar coordinates, it is

ds? = —c?dt® +dr? +r2d@% +r?sin? &l¢? (3.1)
where ¢ =3.0x10°m/s isthe speed of light.
Now imagine we put a massive body at the origin, then space-time will curve down
like atrough (Thisis how Einstein think about it). The metric correspondsto this
setting with the following assumptions is called the Schwarzschild Solution.

If we consider this metric as a “ space-time trough”, it should be almost flat if we
go very far away from the central mass. So, as r — o, we should get back (3.1) and
thisisour first assumption. Next, we will assume that the central mass is stationary, so
the metric is not changing with time. This assumption helps us alot in simplifying our
metric since ds® should be invariant if wereplace dt by —dt. So al terms
involving dt iszero except dt®. The third assumption isthat the mass of the central
body is evenly distributed. This means that the metric is radially symmetric. So, if we
change d6 to -dé@ orchange d¢ to —dg¢, ds® should again not change.
Therefore, we expect a diagonal solution like the following one.

ds? = —A'(r')c?dt® + B'(r')dr'?+C'(r")r'? (d6? +sin? &d¢?) (3.2)
where A'(r'),B'(r')and C'(r') are some unknown functions.

To simplify further, we choose a new coordinate r =.,/C(r')r', then

1 dC
r = —r'+,/C(r") |dr' and so (3.2) becomes
2Jc() dr NJC(r') (3.2

ds? = ~A(r)c?dt® + B(r)dr ? +r?(d6? +sin® &ig?) (3.3)
-2

— A'[y! 2 D" \Ar'2 — D'/ 1dC| ' 2
where A(r) = A'(r')and B(r)dr< =B'(r')dr' = B'(r") > C(r')Wr +JC(r") | dr

Next, we want to calculate the Cristoffel Symbols. From (4.2), we know that
goo:_CZA’gu:B’gzz:rzagggzrzsmze (3.4)

and all other components of the metric vanishes. The metric is diagonal and so the
inverse is easy to calculate.

00 _— 1 11

9T
Now, we know all the entries in the metric, so we can use (3.1.10 inWald)

2_ 1 g% = 1
rz’ r’sin?@’

1
=—, 3.5
g B g (3.5



0 0
rpW :Enga(agva + 90 _ g#"j (3.6)

2% ox* ox’  ox?

to calculate the Cristoffel Symbols. Keep inmind that Aand B dependsonly on r
and substitute x° =t,x' =r,x* =@and x* = ¢ into (3.6). So, we get

o zgzgm[agoo .99, _agloj :1[ 1 j[_cza_Aj _A
2% or ot  ox? ) 2\-c?A or ) 2A

Similarly,
1 2 A0 1
Fog =2 i, = CA roo B
2A 2B 2B
— — q 2
M2 =_r s =_rsne 9 M2n :E
B B r
rz, =1 %% = —sindcosd 35 =cotd (3.7)
r
3% =cotd s :E M3 :E
r r

For the empty space surrounding the body, T, =0. So Einstein’s equation becomes

1

G,, =R,, =R, =0 (3.8)

v

Multiply (3.8) on both sidesby g** and contract, then (3.8) will giveus R=0.
Therefore, if we substitute R=0 into (3.8), then we have

R, =0 (3.9)

Now, let uscompute Ry, R, and R,,. From definition of Ricci tensor (3.2.25in
Wald), we have

b

R = R (3.10)
Also, we have formula (3.4.4 in Wald),
R’ = T = T Sl =T %) (311
So, we get the following equations.
0=Ry =Ry’ = ai" Mo~ a?(O [vo + T %0l =T %ol a0

_0(c*A +cZA'[£j+cZA'[Ej+CZA'[gj_2[ﬁj C’A
or\ 2B ) 2B\2A) 2B\2B) 2B\r 2A )\ 2B
2 o 12 '
[ o AB_A* 2A

2B 2A ot




1 1 |2 1
a-AB_AT 2R, (3.12)
2B 2A r

Smilarly, 0=R, =— B oA B

1 . AB  A? 2AB
- A'+ +—+
2A

D 12 '
:>_A"+£+A_+@:o (3.13)
2B 2A 1B

o:Rﬂzﬂgﬂ”:—flane—g{l}+3—cm20—1{3+§ﬂﬁj (3.14)
B) B Blr 2AB

By adding (3.12) and (3.13), weget 0= 2R + ZAI;B = %(AB)' and so

r r r
AB = constant . To determine this constant, we use the first assumption that we will
get back the space-timeinterval as r — co. Compare (3.1) and (3.2), we get

A(r)=B'(r')=C'(r") =1. So from (3.2), we have

-2
1 dC
A(r)=A(r')=1and B(r) =B'(r' —1r'+yC(r' =1
(r)=A(r) (r) (){ZC(r')dr' \/()}
Therefore, the constant is 1 and we get
1

B=- (3.15)

Now, consider (3.14) together with (AB)'=0, then

0=csc? H—ai[LBj—cot2 2]
r

o(r)_

Integrate (3.16) on both sides, then LB =r+K for someconstant K. So, together

(3.15), we have
_ K+r B= r

r r+K
In order to determinewhat K is, we consider againat r — o and we put atest
body at rest relative to the central mass M. Sinceit isat rest initially,

A

(3.17)

% =% :% =0att =0. So if we parameterize the geodesic using time, then the
. . d2x* dx® dx°| d?r

eodesic equation (?) becomes 0= ——+T* = +t =0.

J equation () a? T dt| . at® |

So, by (4.8), we get



2 2 A0 2 2 21 2
ar :—rloo:_cA:_C_[”Kji[K”j:Cf+CK3 (4.16)
at ., 2B 20 r jdr r 2r 2r
At r - oo, 1/r® decreases much faster than r?. So (4.16) becomes
2 2 2 3 2
dr| _cK+cK _,CKaSI’—>00 (4.17)

dt?|_, 2r2  2r® o 2r?

The left hand side of (4.15) is acceleration of the test body. Since the relativistic effect
a r - oo isnegligible, we should get back Newton's Law of Gravitation. So (4.17)

2
;f GM , where M isthe central mass at the origin and
r
G =6.67x10™Nm?/kg?. Therefore, the constant is
-2GM
K= o (4.18)
Now, rewrite (4.2) using (4.15) and (4.18), we get
2
ds = 2= ZM 2 1 r2(sin?a@ig? + do?) +— (4.19)
r [ ZGMJ
1-—
cr

And (4.19) is the Schwarzschild metric that we are looking for.

5. Perihelion of Mercury

Consider the setting in section 4. If we replace the central mass by the Sun and put the
Planet Mercury into the system. Since mass of the Sun is much bigger than mass of
Mercury, we can approximate the situation by assuming that Mercury has zero mass
and so the Sun won't be affected by Mercury’s gravitationa field. By theory of
General Relativity, we know that Mercury will travel along the geodesic described by
(4.19). S0, let us consider the geodesic equations (?) together with (4.8).

2 2
M Eﬂ% Hcose[d—qoj =0 (5.1)
ds’> r dsds ds
2 ' 2 . 2 2
() 2] () () (oo e
ds ds 2B )\ ds ds B ds
2
d 20+2co ed_Hd_qa Zﬂd_(ﬂ (5.3)
ds ds ds r ds ds
2 1
d t+ﬁﬂﬂzo (5.4)

ds? A ds ds



To smplify these equations, consider (5.1). If welet @ = g and % =0 initialy, then
<

2

(5.1) tells us that ((jj 9 =0 initialy. But this just means that do will stay at zero for

2 ds

= =

al sand so Hzg for al s. Therefore, by setting 6=§and¥:0 initialy, the
<

=

planet Mercury will lie in the plane defined by the relation @ =g. The geodesic

equations (5.2) and (5.3) becomes

2 2 At 2 ' 2 2
o R RO IR
ds 2B A ds 2B )\ ds B\ ds
2
d_¢+gﬂd_¢ =0
ds® r ds ds
Let us solve (5.6) first. If we multiply both sides of (5.6) by r?and integrate with

2 2
respect to s, then we get O:r2d—go+2rid—¢:rzi[d—qaj+d(r )d_qozi[rzd_(ﬂj
ds ds ds ds\ ds ds ds ds ds

(5.6)

=>r-—=K, (5.7

for some constant K, .
Similarly, we can solve (5.4) by multiplying both sidesby A’ and integrate.

2.
0= Ad_£+Ali$: Ai[$j+d_p\$:£[ Ej
ds ds ds ds\ds/ dsds ds\ ds
dt _
= AE =K, (5.8

for some constant K, .
Instead of solving (5.5), let us go back to the Schwarzschild metric (4.2) and solve a

first order ODE. Divide both sides of (4.2) by ds® and set 8 :g , We get

dt )’ dr)? dqojz
1==A(r)c?| — | +B(r) — | +r? —= 5.9
(r) [dsj ()[dsj [ds (5.9)
Substitute (5.7) and (5.8) into (5.9), we get
2 2 2 2
1=K, +B[1J +r2[£21j (5.10)
A ds r

We can aso change (5.10) to an ODE dependingon r and¢ instead of r ands by



writing % = 3—;% and apply (5.7) again.

1=-

21, 2 2 2 2
CK, B ) LK (5.10)
A r dg r

Let us subgtitute u = 1 into (5.11) and apply (4.15) and (4.18),
r

2
c? —2uGM = —c*K,* + ﬂ(f(?j +U2K,*(c® - 2uGM) (5.12)
@

Differentiate (5.12) with respect to ¢,

2
—2c3|\/|$:2c2|<12 dudu +2uc2Kf%—6uZGMKf$ (5.13)
dg dg | d¢” dg dg

% =0 givesthe solution r =constant which isthe circular orbit. If % # 0, then
Y Y

we can smplify (5.13) and get a second order differential equation.
du, _ GM  3GM ,
tu=———+""u
d¢? K2c? ¢

(5.14)
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