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1. Introduction 

At present, there are three experimentally measurable tests on General Theory of  

Relativity. They are the red shift, the deflection of starlight passing the sun and the 

perihelion precession of Mercury. Among all the three tests, perihelion precession of 

Mercury is the most important one. The reason is that the explanation on red shift 

does not require the use of Einstein’s equation. It can be done by using only 

conservation of energy and principle of equivalence. Similarly, the same problem for 

deflection of starlight passing the sun also arises. It can be explained using only 

special theory of relativity, principle of equivalence and classical optics. Moreover, 

the measurements do not agree with the one predicted by the theory. On the other 

hand, the same problems do not appear in perihelion precession of Mercury. As we 

will see later, the derivation of it requires the use of geodesic equations, which is 

closely related to the Einstein’s equation. Also, the result from theory is in excellent 

agreement with the measurements. So, the aim of this paper is to look at the 

relativistic explanation on perihelion precession of Mercury and the failure of a 

classical explanation of the shift. 

 In this paper, we will presuppose the knowledge of differential geometry and 

general relativity given by the first four chapters in the book General Relativity by 

Robert M. Wald. This includes some basic in tensor calculus and Riemann geometry, 

special theory of relativity and some basics in general theory of relativity including 

the Einstein’s equation. 

 We will begin our discussion by recalling the derivation of the classical Kepler 

problem and we will see that the two differential equations derived by the classical 

theory and relativistic theory are very closely related. Next, we will derive the 

Schwarzschild solution, which is a time-independent and radially symmetric metric 

for the free-space field equations. Then, we will use this solution to solve our 

relativistic Kepler problem and explain why there is a shift in perihelion of Mercury. 

(In the last part, we will look at one classical explanation on this problem and its 

failure.) 

 

 

 

 

 

 

 

 



2. Classical Kepler problem 

In this section, we will recall the classical solution to the Kepler problem. The 

problem is to prove that orbits of planets are ellipses and the Sun is located at one of 

the foci of the ellipse. This is also known as the Kepler’s First Law.   
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 Let us assume that the motion takes place in a plane and recall the well-known 

fact in Physics – Conservation of Energy. It says that if there is no net force acting on 

the system, then the total energy is constant. So,  
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rVvmE +=        (2.1) 

where E  is the energy of the planet which is constant, )0,,( 21 vvv =  is the velocity 

of the planet, m  is the mass of the planet and V  is the gravitational potential 

energy which depends only on r since we assume that the Sun is a sphere.  

If we let )0,,( 21 xxx =  be the position vector, then )0,,( 21

dt

dx

dt
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write (2.2) in polar coordinate by letting )0,sin,(cos)0,sin,cos( θθθθ rrrx == .  

By Leibnitz rule, we have 
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Substitute (2.2) into (2.1), we get 
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     (2.3) 

Another fact that comes from Physics is Conservation of Angular Momentum. Let us 

look at this in more detail. Angular momentum is by definition  

      pxL ×=         (2.4) 

where mvp =  is the linear momentum. Conservation of Angular Momentum says 

that if there is no net torque acting on the system, then angular momentum is constant. 

And torque is defined by Fx ×=τ , where F  is the force vector. To prove this, we 

differentiate (2.4) with respect to time and use Leibnitz rule. 

      pxpx
dt

dL �� ×+×=        (2.5) 
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Since vx =
�

, 0=×=× mvvpx
�

. (2.5) becomes 

      px
dt
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But Fmavmp ===
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, so (2.6) is just 

      0==×= τFx
dt

dL
       (2.7) 

Here, 0=τ  since we assume there is no net torque to the system. Therefore, angular 

momentum is conserved. Let us go back to the Solar system. In there, the angular 

momentum is conserved since there is no force that is not parallel to x . Next, let us 

rewrite (2.4) in a more familiar form. To do this, we apply polar coordinate. 
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So the magnitude of angular momentum is  

θ
	

2mrl =          (2.8) 

which is the condition for central force field.  

Now let us go back to our discussion on the Kepler problem. If we differentiate (2.3) 

with respect to time, we get 

rrVmrrmrrrm











)('0 22 +++= θθθ      (2.9) 

Differentiate (2.8) with respect to time, it becomes 

θθ
���� 220 mrrmr +=         (2.10) 

Substitute (2.10) into (2.9), we have 
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One possible solution to (2.11) is 0=r
�

 which corresponds to a circular orbit. So, to 

obtain the other possible solution, we cancel r
�
 in (2.11) and get 
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To solve (2.12), we let  
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Differentiate (2.14) with respect to time and use (2.8) again, we get 
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Substitute (2.8), (2.13) and (2.15) into (2.12), we have 
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From Physics, we also know that 
r

GMm
rV −=)(  for any gravitational field 

generated by a spherical body, where 2211 /1067.6 kgNmG −×=  is called the 

gravitational constant and M  is the mass of the Sun. So (2.16) becomes 
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The right side of (2.17) is just a constant, so we can solve this ODE. Clearly, 
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GMm
u p =  is a particular solution of (2.17) and )cos( δθ += Cuh  is the general 

solution of 0" =+uu  where C and δ  are arbitrary constants. Therefore, the general 

solution of (2.17) is 
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We orient the system so that 0=δ , so (2.18) becomes 
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which is the equation of ellipse in polar coordinates with one of its foci at the origin. 

So the Sun is located at the origin and the orbit is elliptical. Therefore, this solves the 

classical Kepler problem. 

 Of course, this is not the end of the story. In 1859, French Astronomist, Le 

Verrier, discovered that there is a perihelion advanced of Mercury by 38”  per century. 

Le Verrier is the one who discovered Neptune by calculating the position of it from 

irregularities in Uranus’s orbit. He tried to apply the same theory to this perihelion 

shift of Mercury by hypothesizing a planet Vulcan between Mercury and the Sun, and 

he spent much time on looking for this planet. Obviously, he did not succeed and this 

perihelion shift is eventually explained by Einstein’s General Theory of Relativity.  

 

 

 

 

 

 



3. The Schwarzschild Solution 

Before discussing the perihelion shift, we have to derive the Schwarzschild 

solution. So, imagine we have an empty space, then the metric will be given by the 

space-time interval 222222 dzdydxdtcds +++−= . In polar coordinates, it is 
222222222 sin φθθ drdrdrdtcds +++−=     (3.1) 

where smc /100.3 8×=  is the speed of light.  

Now imagine we put a massive body at the origin, then space-time will curve down 

like a trough (This is how Einstein think about it). The metric corresponds to this 

setting with the following assumptions is called the Schwarzschild Solution.  

 If we consider this metric as a “space-time trough”, it should be almost flat if we 

go very far away from the central mass. So, as ∞→r , we should get back (3.1) and 

this is our first assumption. Next, we will assume that the central mass is stationary, so 

the metric is not changing with time. This assumption helps us a lot in simplifying our 

metric since 2ds  should be invariant if we replace dt  by dt− . So all terms 

involving dt  is zero except 2dt . The third assumption is that the mass of the central 

body is evenly distributed. This means that the metric is radially symmetric. So, if we 

change θd  to θd−  or change φd  to φd− , 2ds  should again not change. 

Therefore, we expect a diagonal solution like the following one. 

)sin(')'('')'(')'(' 22222222 φθθ ddrrCdrrBdtcrAds +++−=   (3.2) 

where )'(' and )'('),'(' rCrBrA  are some unknown functions. 

To simplify further, we choose a new coordinate ')'( rrCr = , then 
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Next, we want to calculate the Cristoffel Symbols. From (4.2), we know that  
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2
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2
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and all other components of the metric vanishes. The metric is diagonal and so the 

inverse is easy to calculate. 
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Now, we know all the entries in the metric, so we can use (3.1.10 inWald)  
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to calculate the Cristoffel Symbols. Keep in mind that BA  and  depends only on r  

and substitute φθ ==== 3210  and ,, xxrxtx  into (3.6). So, we get 
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For the empty space surrounding the body, 0=µνT . So Einstein’s equation becomes  

0
2

1 =−≡ µνµνµν RgRG       (3.8) 

Multiply (3.8) on both sides by µνg  and contract, then (3.8) will give us 0=R . 

Therefore, if we substitute 0=R  into (3.8), then we have 

0=µνR         (3.9) 

Now, let us compute 221100  and , RRR . From definition of Ricci tensor (3.2.25 in 

Wald), we have         

b
abcac RR =        (3.10) 

Also, we have formula (3.4.4 in Wald),  
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So, we get the following equations.  
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By adding (3.12) and (3.13), we get )'(
2'2'2
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constant  =AB . To determine this constant, we use the first assumption that we will 

get back the space-time interval as ∞→r . Compare (3.1) and (3.2), we get 
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Now, consider (3.14) together with 0)'( =AB , then  
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Integrate (3.16) on both sides, then Kr
B

r +=  for some constant K . So, together 

(3.15), we have 

      
Kr

r
B

r

rK
A

+
=+= ,       (3.17) 

In order to determine what K  is, we consider again at ∞→r  and we put a test 

body at rest relative to the central mass M. Since it is at rest initially, 
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. So if we parameterize the geodesic using time, then the 
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So, by (4.8), we get 
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At ∞→r , 3/1 r  decreases much faster than 2r . So (4.16) becomes 

2

2

3

32

2

2

0
2

2

222 r

Kc

r

Kc

r

Kc

dt

rd

t

→+=
=

 as ∞→r     (4.17) 

The left hand side of (4.15) is acceleration of the test body. Since the relativistic effect 

at ∞→r  is negligible, we should get back Newton’s Law of Gravitation. So (4.17) 

becomes 
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Kc −= , where M  is the central mass at the origin and 
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Now, rewrite (4.2) using (4.15) and (4.18), we get 
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And (4.19) is the Schwarzschild metric that we are looking for. 

 

5. Perihelion of Mercury 

Consider the setting in section 4. If we replace the central mass by the Sun and put the 

Planet Mercury into the system. Since mass of the Sun is much bigger than mass of 

Mercury, we can approximate the situation by assuming that Mercury has zero mass 

and so the Sun won’t be affected by Mercury’s gravitational field. By theory of 

General Relativity, we know that Mercury will travel along the geodesic described by 

(4.19). So, let us consider the geodesic equations (?) together with (4.8). 
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To simplify these equations, consider (5.1). If we let 0 and 
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planet Mercury will lie in the plane defined by the relation 
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πθ = . The geodesic 

equations (5.2) and (5.3) becomes 
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Let us solve (5.6) first. If we multiply both sides of (5.6) by 2r and integrate with 

respect to s, then we get 
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for some constant 1K . 

Similarly, we can solve (5.4) by multiplying both sides by 2A  and integrate.  
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for some constant 2K . 

Instead of solving (5.5), let us go back to the Schwarzschild metric (4.2) and solve a 

first order ODE. Divide both sides of (4.2) by 2ds  and set 
2

πθ = , we get 
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Substitute (5.7) and (5.8) into (5.9), we get 
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We can also change (5.10) to an ODE depending on φ and r  instead of sr  and  by 
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Let us substitute 
r

u
1=  into (5.11) and apply (4.15) and (4.18), 
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Differentiate (5.12) with respect to φ , 
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φd

du
 gives the solution =r constant which is the circular orbit. If 0≠

φd

du
, then 

we can simplify (5.13) and get a second order differential equation. 
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