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Abstract. The (Cauchy) initial value formulation of General Relativity is

developed, and the maximal vacuum Cauchy development theorem is reviewed.
There is a short discussion of the evolution equations and associated guage

choices, and global results are mentioned briefly in the conclusion.

1. Introduction and Motivation

General Relativity is a theory relating a Lorentzian space-time metric g on a 4-
dimensional manifold M to the matter content of the manifold. The Einstein equa-
tion itself is a second-order partial differential equation in the metric. Therefore, it
should be possible to obtain a solution of the equation in some neighbourhood of a
subset of M given certain initial conditions on that subset.

To describe the subset being considered, we need some definitions from causality.
The Lorentz metric g on M divides tangent vectors into three classes, depending
on whether their magnitude is positive, negative, or zero. A curve γ ⊂M is said to
be spacelike if gabt

atb > 0, timelike if gabt
atb < 0 and null if gabt

atb = 0 everywhere
along γ where t is the tangent vector to γ. Given a time-orientation ofM, we define
the future domain of dependence of a set S ⊂ M as D+(S) := {p ∈ M| all past-
directed inextendible non-spacelike curves through p intersect S}. D−(S) is defined
similarly. The domain of dependence of S is defined as D(S) := D+(S) ∪D−(S).

Physically, all we can hope to predict given initial conditions on a set S ⊂ M
are conditions on D(S). Assuming that nothing can travel faster than light, data
on S should also be sufficient for this purpose. To simplify the causal analysis, we
assume that S is achronal ; that is, S∩J+(S) = ∅, where J+(S) := {p ∈ S| p can be
reached from S by a non-spacelike curve}. This follows automatically in a universe
where time-travel is impossible. If Σ is a closed achronal set such that D(Σ) = M,
we say Σ is a Cauchy surface for M. In [Wald], it is shown that any such Σ is an
embedded submanifold of M of codimension one. Thus, Σ is a three-dimensional
hypersurface. In general, M may not admit a Cauchy surface, for example if M
contains singularities, but we can always restrict M so that it does. If M permits
a Cauchy surface, we say it’s globally hyperbolic.

We thus restrict our attention to globally hyperbolic space-timesM and subman-
ifolds Σ which are Cauchy surfaces for M on which we define our initial conditions.
An important result from causality analysis is given in [Wald]: If M is a globally
hyperbolic space-time, there exists a global time function f : M → R such that
each surface of constant f is a Cauchy surface. Thus, M can be foliated by Cauchy
surfaces and the topology of M is R× Σ where Σ is any Cauchy surface.

This result suggests that we view the problem as solving for the evolution of a
spatial metric h along the gradient of the global time function. Our initial data
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will consist of a spacelike Cauchy surface Σ, a metric h defined on Σ, and some
kind of time derivative of h. In the next section we will clarify what h and it’s time
derivative are.

2. Differential Geometry of Hypersurfaces

The assumption that Σ is an achronal (hence spacelike) hypersurface of the
space-time manifold M has important consequences arising from the differential
geometry.

Assuming Σ is orientable, given a Lorentz metric g on M we can choose a
normal n, i.e. an everywhere timelike vector field n on Σ such that gabn

anb = −1
and gabn

avb = 0 ∀v ∈ TΣ. We then define

(2.1) hab = gab + nanb

Evaluated on TΣ, h is a Riemannian metric. Note that ha
b (where the index is

raised by g) is the projection operator on TM into TΣ. To see both these claims,
if u ∈ TM with u =

∑3
i=0 aiv

i, where v0 = n and vi, i = 1, 2, 3 are a basis for TΣ,
we have:

habu
b = gabu

b + gacn
cgbdn

dub

=
3∑

i=0

aig(vi, .) + gacn
c

3∑
i=0

g(n, vi)

= a0g(n, .) +
3∑

i=1

aig(vi, .) + a0g(n, .)

= g(
3∑

i=1

aiv
i, .)

Since gab is the inverse operation to the final expression, ha
bu

b = gachcbu
b =∑3

i=1 aiv
i, i.e. ha

b is the projection operator into TΣ. Also, since by the same
calculation the v0 component of u is irrelevant in habu

a, we have habu
aub =

g(
∑3

i=1 aiv
i,

∑3
i=1 aiv

i), and since the v0 component is responsible for the Lorentz
signature of g, h is Riemannian.

The projection operator allows us to view tensors on M as tensors on Σ by
contracting indices with ha

b. For example, if T a1...ak

b1...bl
is a (k, l)-tensor on M,

then ha1
c1

...hak
ck

h d1
b1

...h dl

bl
T c1...ck

d1...dl
is a (k, l)-tensor on Σ.

Thus, if Da denotes the h-compatible derivative operator on Σ, we can verify
that

(2.2) DeT
a1...ak

b1...bl
= ha1

c1
...h dl

bl
h f

e ∇fT c1...ck

d1...dl

where ∇a is the g-compatible derivative operator on M.
We can define a tensor Kab on Σ, the extrinsic curvature of Σ, by

(2.3) Kab = hc
ahd

b∇dnc

It can be shown that

(2.4) Kab = hc
ahd

b∇dnc = −1
2
Lnhab =

1
2
N−1[ḣab −DaNb −DbNa]
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where ḣ is the the “time derivative” Lthab of h and N and Na are the lapse function
and shift vector, to be defined in section 5 below in terms of n and the global
time function. The second equality follows from the expansion of Lie derivatives as
covariant derivatives and the definition of h, and the third equality follows similarly
and from the definitions of N and Na. The details of the proof take some time and
may be found in [Wald], Appendices C and E.

Equation (2.4) shows that K is symmetric, and determines the “time derivative”
(i.e. the Lie derivative in the direction of the gradient of the global time function)
of h. Thus, the initial data set should consist of a set (Σ,K, h), where Σ is a 3
dimensional Riemannian manifold with metric h and K is a symmetric (0, 2)-tensor
field on Σ. In the next section we’ll see that h and K are not independent, but first
we’ll need two more equations.

Let H d
abc denote the Riemann curvature tensor of Σ. By definition, H d

abc ωd =
DaDbωc −DbDaωc. Using the definitions of Da and Kab, one derives Gauss’ equa-
tion:

(2.5) H d
abc = h f

a h g
b h k

c hd
jR

j
fgk −KacK

d
b + KbcK

d
a

Similarly, one can check that Codacci’s equation holds:

(2.6) DaKa
b −DbK

a
a = Rcdn

dhc
b

See [Wald] section 10.2 or [H&E] section 2.7 for details of the derivations.

3. The Constraint Equations

The Einstein equation is a second-order partial differential equation containing 10
independent components. However, not all of these components contain information
about the time evolution of h. In particular, the four components Gabn

a contain no
second order time derivatives of the metric. The Gauss-Codacci equations allow us
to show this, and at the same time to derive the four constraints these components
impose on initial data sets (Σ, h,K).

The Einstein equation is

(3.1) Gab = Rab −
1
2
gabR = 8πTab

The expression Gabn
b contains 4 components, which can be expressed pointwise by

contracting the index a with elements of a basis of TM. If we choose a basis such
as the one in the previous section, i.e. v0 = n and vi, i = 1, 2, 3 are a basis for TΣ,
we can obtain the four constraints by considering hb

aGbcn
c and Gabn

anb, where
the first expression contains the expressions v(i)aGabn

b, i = 1, 2, 3 via hb
a’s action

as a projection.
Evaluating the first expression and using the Codacci equation (2.6), we obtain

(3.2) 8πhb
aTbcn

c = hb
aGbcn

c = hb
aRbcn

c = DbK
b
a −DaKb

b

where we have used the fact that hb
agbcn

c = 0, by definition of n and h.
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Evaluating the second expression and using the Gauss equation (2.5), we obtain

8πTabn
anb = Gabn

anb

= Rabn
anb +

1
2
R

=
1
2
Rabcd(gac + nanc)(gbd + nbnd)

=
1
2
Rabcdh

achbd

=
1
2
{H + (Ka

a)2 −KabK
ab}

That is,

(3.3) 8πTabn
anb =

1
2
{H + (Ka

a)2 −KabK
ab}

where the last step follows from the Gauss equation (2.5). We see that equations
(3.2) and (3.3) refer only to the initial data on Σ; they are the constraint equations
which our initial data set (Σ, h,K) must satisfy. If we are solving a system involving
matter fields (Tab 6= 0), the left-hand sides of (3.2) and (3.3) should be given as
part of the initial data set.

4. Harmonic Coordinates

In general, it’s impossible to say anything about the existence of solutions to an
arbitrary partial differential equation. The Einstein equation (3.1) is not necessarily
in any form for which existence results are known. Indeed, by expanding the Ricci
tensor Rµν in terms of Christoffel symbols and coordinate derivatives, and further
expanding the Christoffel symbols into coordinate derivatives of the metric, we have

(4.1) Rµν = −1
2

∑
α,β

gαβ{−2∂β∂(νgµ)α + ∂α∂βgµν + ∂µ∂νgαβ}+ Fµν(g, ∂g)

where F is a function of components of g and their first derivatives. Contracting to
get the Ricci scalar, we get a complicated equation that’s not of any particularly well
understood form. But because of the general covariance of the Einstein equation,
we have the freedom to impose a convenient guage (coordinate system) to change
the form of the equation to one for which existence theorems exist.

The simplest such choice of coordinates, due to Choquet-Bruhat (1962), are
harmonic coordinates, coordinate functions xµ satisfying �xµ := ∇a∇axµ = 0.
Expanding this coordinate condition, we can calculate

0 = �xµ = ∇agab∂bx
µ

=
∑
α,β

1√
|g|

∂α(
√
|g|gαβ∂βxµ)

=
∑
α

1√
|g|

∂α(
√
|g|gαµ)

=
∑
α

(∂αgαµ +
1
2
gαµ

∑
ρ,σ

gρσ∂αgρσ)



THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY 5

where the second and fourth equalities come from the formula for a contracted
Christoffel symbol and the formula for the derivative of a determinant. Using this
expression, we can cancel most of the second derivatives in (4.1) to calculate Rab

in harmonic coordinates:

(4.2) RH
µν := Rµν +

∑
α

gα(µ∂ν)�xµ = −1
2

∑
α,β

gαβ∂α∂βgµν + F̂µν(g, ∂g) = 0

This equation is known as the reduced Einstein equation. It’s importance comes
from a theorem due to Leray (1952) that says that any system of the form

(4.3) gab(x;φj ;∇cφj)∇a∇bφi = Fi(x;φj ;∇cφj)

(where ∇ is any derivative operator and φj are any unknown functions on M),
which has a solution (φ0)j , also has a unique solution φj on a neighbourhood O
of Σ for any initial data on a Cauchy surface Σ provided the initial data on Σ are
close to the initial data for (φ0)i on Σ, and this solution gab(x, φj ,∇aφj) is globally
hyperbolic on O. Equation (4.2) is of this form with φ = g. Note that the reduced
Einstein equation presented here is for the vacuum case only. For matter fields that
are of the appropriate form, e.g. which keep the reduced Einstein equation in the
form (4.3), the rest of the discussion still applies.

To prove local existence of a solution to Einstein’s equation, we first use the
reduced Einstein equation to prove existence for initial data close to Minkowski
space. We choose h and K close to flat on a coordinate neighbourhood U of Σ
which satisfy the constraint equations (3.2) and (3.3), and specify (gµν , ∂gµν/∂t)
on Σ such that they induce h and K. This leaves freedom in ∂g to ensure that
�xµ = 0 on Σ. We can then apply Leray’s theorem to produce g on a portion O
of M with U as its Cauchy surface, such that the equation (4.2) holds. Since this
solution is given in local coordinates, we can confirm that the harmonic coordinate
condition holds throughout O, and therefore g on O is a solution of the Einstein
equation.

For initial conditions not close to flat spacetime, it can be shown that by rescaling
the initial data we can make it arbitrarily close to flat. The coordinate transfor-
mations used in the scaling pass through Einstein’s equation, and so a solution
generated by rescaling can be transformed to give a solution on the original initial
data.

Local uniqueness of the developments generated in harmonic coordinates with
respect to arbitrary developments follows from uniqueness in Leray’s theorem after
an appropriate coordinate transformation. A global development, i.e. one which
contains all of Σ can then be constructed by patching local developments using
local uniqueness. A Zorn’s lemma argument can be used to prove existence of a
maximal development of Σ, and its uniqueness can be shown using the Hausdorff
property.

Thus, using harmonic coordinates, one can prove the following important theo-
rem, due to Choquet-Bruhat and Geroch (1969):

Theorem 1. Let (Σ, h,K) be an initial data set with Σ a three-dimensional man-
ifold, h a Riemannian metric on Σ, and K a symmetric (0, 2)-tensor on Σ, such
that h and K satisfy the constraint equations (3.2), (3.3). Then (Σ, h,K) has a
unique, up to isometry, maximal vacuum Cauchy development. That is, there ex-
ists a unique spacetime M with metric g such that Σ is a Cauchy surface for M,
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the induced metric and curvature on Σ are h and K, g is a solution to the vacuum
Einstein equation, and every other such manifold can be embedded isometrically
into M. The solution is also stable, in the sense that that g depends continuously
on h and K in an appropriate topology.

As previously mentioned, if the stress-energy tensor Tab is of the appropriate
form, this result can be extended to non-vacuum spacetimes. In particular, the
Einstein-Klein-Gordon and Einstein-Maxwell equations are of this form ([Wald],
p.267). It should be noted that there are other ways of reducing the Einstein
equation to prove local existence of solutions. In each case, a similar procedure
of checking that the guage choice and constraint equations propagate through the
reduced solution is necessary to show that it’s a solution of the original equation.

5. The Evolution Equations

The maximal vacuum Cauchy development theorem shows that for any initial
data set (Σ, h,K) satisfying the constraint equations, the initial value formulation
of General Relativity is well posed. To actually solve the initial value problem,
we can take advantage of the existence of a global time function to evolve data
on the Cauchy surface with respect to time. Because the normal vector field n
introduced on Σ will not, in general, coincide with the time gradient, we define the
lapse function N and the shift vector X by the formula ∂t = Nn+X. We can then
derive expressions for the time derivatives of h and K. Starting with h, we have:

L∂t
hij = (∂t)c∇chij + hcj∇i(∂t)c + hic∇j(∂t)c

= (Nnc + Xc)∇chij + hcj∇i(Nnc + Xc) + hic∇j(Nnc + Xc)
= Nnc∇chij + hcj∇iNnc + hic∇jNnc + LXhij

= N(nc∇chij + hcj∇in
c + hic∇jn

c) + LXhij

= NLnhij + LXhij

where the fourth equality follows from the Liebnitz rule and the fact that nchac = 0.
Applying (2.4), we get

(5.1) L∂t
hij = −2NKij + LXhij

We can similarly derive an expression for the time evolution of K:

(5.2) L∂t
Kij = −∇i∇jN + N(Rij + Hij + trKKij − 2KimKm

j ) + LXhij

Equations (5.1) and (5.2) are known as the evolution equations. While the Einstein
equation was not used in the derivation of (5.1), it is used in the derivation of (5.2).
The form of (5.2) presented here corresponds to the vacuum Einstein equation,
and expresses the component of the Einstein equation that was not involved in
the constraint equations, Gabh

a
ch

b
d. (This separation of the Einstein tensor is

sometimes referred to as a “3+1 split”.)
Note that we have introduced two new objects, X and N , in this formulation.

This allows us to rephrase the initial value problem as looking for a map t 7→
(h(t),K(t), X(t), N(t)) on some interval (ta, tb), satisfying the evolution equations,
with h, K, X, and N specified at some time t0 ∈ (ta, tb). At each time t, the image
of the map can be seen as one leaf of a foliation of M by Cauchy surfaces. It can be
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shown that if the initial data satisfies the constraint equations, so does its evolution
on each leaf. Since the constraint equations combined with the evolution equations
are equivalent to Einstein’s equation in a vacuum, the space-time constructed by
letting M = Σ×(ta, tb) and g = −N2dt2+hij(dxi+Xidt)(dxj +Xjdt) is a solution
to the vacuum Einstein equation.

The introduction of X and N do not introduce new freedoms into the system;
they just correspond to fixing a guage. Their choice determines the properties of the
solution curve. Particular choices of X and N may introduce singularities that are
not present in the Cauchy development itself, for example by introducing degenerate
foliations. An example is the Gauss foliation condition, N = 1, X = 0. In this case
the foliation flows in the direction of its normal, and thus, even in Minkowski space
a foliation with leaves of non-zero curvature will develop singularities, i.e. when a
leaf folds into itself. ([Andersson], 2.2.)

We can describe certain guage choices as time guages or spatial guages depending
on whether they constrain N or X. A variety of time and spatial guages have been
studied, and local existence and uniqueness results have been given for some of them
([K&N]). A particularly interesting time guage is the constant mean curvature, or
CMC, guage, which requires that the leaves of the foliation have constant mean
curvature, i.e. trK = ct, where ct depends only on the global time function. If
M is globally hyperbolic and satisfies the physically plausible timelike convergence
criterion RabV

aV B for all timelike V , then there exists at most one Cauchy surface
with a given mean curvature. If there are sequences of Cauchy survaces with mean
curvature tending uniformly to +−∞, M is said to have crushing singularities. If
M satisfies the timelike convergence criterion and has crushing singularities, then
M can be foliated globally by CMC hypersurfaces. In this case it makes sense
to set ct = t. Using the evolution and constraint equations we can then derive
−∆N + |K|2N = 1 which shows that the CMC guage is a time guage.

A CMC foliation may imply statements about the beginning and end of the
universe. A mean curvature of −∞ in the past corresponds to a “big bang”, and
a curvature of +∞ in the future corresponds to a “big crunch”. A 3-manifold has
Yamabe type -1 if it admits no Riemannian metric with scalar curvature R = 0
(which implies no metric of positive scalar curvature), type 0 if it admits a metric
with R = 0 but no metric with R = 1 and type +1 if it admits a metric with
R = 1. Because all leaves in the foliation are diffeomorphic, they all have the same
Yamabe type. If Σ is of Yamabe type -1, by (3.3), since KabKab >= 0 and the
left-hand side is positive by the dominant energy condition, M cannot contain a
leaf of mean curvature (= trK) 0. This suggests that the interval on which the
foliation exists is (−∞, 0). In the cases of Yamabe type 0 or +1, the foliation should
exist on (−∞, 0) and (−∞,∞), respectively. These statements, concerning global
existence in the CMC guage, are at present conjectures but have been proved under
symmetry assumptions. Even if the conjecture holds, it may not be the case that
the CMC foliation covers M, though type +1 foliations will. ([Andersson], [K&N])

6. Conclusion

In general, the question of global existence of solutions to the Cauchy initial
value problem is still an open problem. The two general approaches are to restrict
to symmetrical spacetimes or to show existence for small data, that is, data close
to initial data for which solutions are known (i.e. to show stability of a known
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spacetime). There are various results for different types of symmetries. A symmetry
of a manifold M is an isometry M 7→M. One type of symmetry is that generated
by a Killing field, a vector field on M whose flow is an isometry. Symmetries
generated by sets of Killing fields can be classified in terms of the dimension of
their generating Lie algebra. [Andersson] reviews results for 1, 2, and 3 dimensial
algebras. For an example of what these symmetries mean, consider a space with
a 3-dimensional isometry group generated by spacelike Killing fields, known as a
Bianchi, or spatially homogenous, spacetime. In a Bianchi spacetime, the orbits of
the isometry group are three-dimensional Cauchy surfaces. This implies that any
point in space can be mapped onto any other point in space isometrically. The
existence of global CMC foliations has been proved for certain of these symmetrical
spacetimes. For spacetimes with no symmetries, only a handful of small-data results
are known (see [Andersson] or [Rendall] for a review, or [K&N] for one such result).

There are also initial value formulations other than the Cauchy one. [Rendall]
mentions the characteristic initial value problem, which gives initial data on one
or more null (rather than spacelike) hypersurfaces. The advantage is apparently
that the constraint equations reduce to ordinary differential equations. A local
existence theorem exists for the case where data is given on two null hypersurfaces
which intersect transversally on a spacelike hypersurface. Another variant is to
specify data on a light cone, but there is no existence theorem for this case.
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