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1 Spherically symmetric black holes

1.1 Schwarzschild solution

A black hole is a region in space with gravitation so strong that even light
cannot escape from it. First, let us consider a black hole in empty space. All
static spherically symmetric solutions of vacuum Einstein equations were found
by Schwarzschild in 1915. In spherical coordinates (t, r, θ, ϕ), the Schwarzschild
solutions have the following form

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (1.1)

where G is Newton’s gravitational constant, c is the speed of light, and M is
a papameter. This metric is singular at the points where r = 2GM

c2 and r = 0.
The constant rg = 2GM

c2 is called Schwarzschild or gravitational radius, and
the surface r = rg is called Schwarzschild sphere. The spacetime inside the
Scwarzschild sphere is an example of a black hole. Let us study this example.

The coordinates (t, r, θ, ϕ) form the Schwarzschild reference frame. This
frame is valid for the region outside of the black hole. In the Schwarzschild
metric, denote by g00, g11 coefficients with c2dt2 and dr2 respectively.

1.2 Radial motion of light

The following equation describes the radial motion of light in the Schwarzschild
reference frame

dr

dt
= ±c(1− rg

r
). (1.2)

Here t is the time measured by a distant observer. Since light always propagate
along null geodesics ds2 = 0, and since motion is radial, dθ = dϕ = 0. If in
equation (1.1) we put ds = dθ = dϕ = 0, we get equation (1.2). Denote by
dτ =

√
−g00dt the physical time. When r is close to rg the physical time is

much slower than the coordinate time. What happens with light in the vicinity
of the Schwarzschild sphere from the standpoint of a distant observer?

1) Speed of light tends to 0 as r tends to rg.

1



2) It takes infinite time for a light ray to reach rg (though the proper time
is equal to 0). To find the coordinate time we integrate (1.2).

3) Light becomes blueshifted if it goes away from the black hole, and red-
shifted if it goes towards the black hole. Indeed, consider light signals emitted
radially from the point r = r1 at a coordinate time interval ∆t. Since the
spacetime is static, when the signals reach an observer at the point r = r2

the coordinate time interval between them will be the same. The correspond-
ing proper time intervals ∆τ1,∆τ2 are equal to

√
−g00(r1)∆t,

√
−g00(r2)∆t

respectively. If ω1, ω2 are frequencies of these light signals measured at points
r = r1, r2 respectively, then

ω1

ω2
=

∆τ2

∆τ1
=

√
g00(r2)
g00(r1)

=

√
1− rg

r2

1− rg

r1

. (1.3)

1.3 Radial motion of particles

Consider a free radial motion of a non-relativistic particle in the Schwarzschild
reference frame. Since gravitational field is static, the energy E =
mc2√−g00/

√
1− v2/c2 of the particle is conserved. Here v is the physical ve-

locity of the particle, i.e. v =
√

g11dr/
√
−g00dt. If the particle is at rest at

infinity, then E = mc2. It follows that the free radial motion of this particle is
described by the following equation

dr

dt
= ±

(
1− rg

r

)√rg

r
c (1.4)

Notice that for r � rg, this equation takes the form

dr

dt
=

2GM

r
.

The latter describes the motion of the particle in the Newtonian gravitatinal
field created by a spherically symmetric body of mass M . Thus the parameter
M in the expression for the Schwarzschield metric can be interpreted as the
mass of the gravitational source.

The coordinate time (measured by the clock of a distant observer) required
for the particle to reach the gravitational radius is infinite, because it was infinite
even for light rays. Let us find the corresponding proper time, i.e. time measured
by the clock of the particle itself. Since proper time is equal to the length of
geodesic given by equation (1.4), we get

∆T =
2
3

rg

c

((
r1

rg

) 3
2

−
(

r

rg

) 3
2
)

, (1.5)

where ∆T is the proper time of fall from r1 to r. For any r > 0, in particular, for
r = rg, this time is finite. Thus for an observer moving along with the particle
it takes finite time to reach the black hole.
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1.4 Lemâıtre coordinate frame

In order to study the spacetime within the black hole, we need to choose a
reference frame that is nonsingular for r ≤ rg. The most natural choice is a
reference frame fixed to freely falling particles that have zero velocity at infinity.
A new time coordinate T is the time measured by the clock fixed to the falling
particle. A new radial coordinate r1 is the coordinate that marks particles and
remains unchanged for each of them, i.e. the motion of each particle is given
by the equation r1 = const. We still have freedom in choice of T and r1. To fix
coordinates (T, r1) let us identify a point (0, r1) in the new coordinates with the
point (R, r1) in the old ones, where R = (2/3)rg(r/rg)3/2 (under these conditions
metric (1.6) does not contain term dTdr1). The coordinate r is recovered from
(r1, T ) by the equation (1.5). In other words, if a freely falling particle begins the
motion at the point r1, it arrives at the point r in the proper time interval T . To
simplify this relation let us take instead of r1 a new coordinate R written above.
Now an equation r = const defines a line R − cT = const in the (T,R)-plane.
In the new coordinates (T,R, θ, ϕ) Schwarzschild metric takes the form

ds2 = −c2dT 2 +
rgdR2

r
+ r(dθ2 + sin2 θdϕ2), (1.6)

where r = r
1
3
g (

3
2
(R− cT ))

2
3 ).

This metric is nonsingular everywhere except for the points where r = 0. The
coordinates (T,R, θ, ϕ) form so-called Lemâıtre reference frame. It is valid in
the region r > 0. The Schwarzshild sphere in this frame is given by the equation
3/2(R− cT ) = rg.

1.5 Spacetime within the black hole

The world lines of radial light rays in the Lemâıtre coordinates are described by
the following equation

c
dR

dT
= ±

( 3
2 (R− cT )

rg

) 1
3

. (1.7)

As shown in Figure 1, the whole future light cone at any point within the
black hole lies within the black hole. Thus neither particles nor light can escape
from the black hole. They will move towards the singularity at r = 0. This
is the direction into the future. Equation (1.7) shows that world lines of both
outgoing and ingoing light rays reach the singularity at r = 0 in finite coordinate
time T . The Schwarzshild sphere traces an event horizon of the black hole.

Notice that lines r = const are timelike if r > rg, lightlike if r = rg and
spacelike if r < rg. This is the reason why spacetime inside the Schwarzschild
sphere is no longer stationary, i.e. the “time translation” vector field d

dt is
not timelike. The coordinate −r can be chosen as a time coordinate inside
the black hole, while t becomes a spatial radial coordinate. Thus we obtain
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Figure 1: Black hole in the Lemâıtre coordinates.

another frame of reference inside the black hole. In this frame, time and spatial
directions change their roles.

1.6 Kruskal coordinates

A coordinate frame is said to be complete, if every geodesic either extends to
all values of its natural parameter or arrives to the true physical singularity. A
singularity is called physical if it can not be removed by any change of coordi-
nates. By this definition both Schwarzschild and Lemâıtre coordinate frames
are incomplete. In the Lemâıtre coordinates, consider a particle moving freely
along the radius away from the Schwarzschild sphere. Its world line continued
to the past will reach the event horizon in finite proper time, say τ0. But the
corresponding coordinate time is infinite because no particle can escape from
the event horizon. Thus in proper time τ0 in the past history of the particle,
there was no black hole inside the event horizon. An eternal black hole does not
exist in any complete extension of the Schwarzschild coordinates.

One of the possible complete extensions of the Schwarzschild coordinates is
given by the Kruskal coordinates. First, let us choose the coordinate system
(u, v) fixed to the radial light rays, e.g. u = ct − r∗, v = ct + r∗, where r∗ =
r+rg ln |r/rg−1| is the so-called tortoise coordinate. Second, we reparameterize
null geodesics to avoid coordinate singularity at r = rg. Finally, we get Kruskal
coordinates (T,X, θ, ϕ connected to the coordinates (t, r, θ, ϕ) by the following
transformation: (

T
X

)
=
∣∣∣∣ r

rg
− 1
∣∣∣∣1/2

er/2rg

(
cosh(ct/2rg)
sinh(ct/2rg)

)
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Figure 2: Spacetime in the Kruskal coordinates.

In these coordinates the metric takes the form

ds2 =
4r3

g

r
e−r/rg (−dT 2 + dX2) + r2(dθ2 + sin2 θdϕ2),

and radial light rays propagate along the lines (T ±X) = const as in flat space.
In the (T,X)- plane the curves r = const, t = const are respectively hyperbolas
X2 − T 2 = const and lines passing through the origin.

Kruskal spacetime is divided into 4 regions by hypersurfaces X ±T = 0 (see
Figure 2). Both regions I and III are isometric to the region of the Schwarzschild
spacetime outside of the black hole. Region II is the black hole, while region IV
is a white hole — the region obtained from the black hole by time reversal. No
signals emitted in II can reach the outside regions I or III. The opposite is true
for region IV: no signal emitted from I or III can enter it. If we consider sections
T = const > 0 we obtain two asymptotically flat regions connected by a tunnel
inside the black hole. The boundary of the tunnel consists of two event horizons:
they look like the black and white holes respectively for observers from regions
I and III. Since the global topology is not fixed by Einstein field equations we
may identify these regions and obtain a so-called wormhole (see Figure 3).

2 Hawking radiation

In flat Minkowski space, consider a scalar field ϕ(x) with mass m satisfying
the Klein-Gordon equation (� + (m/~)2)ϕ(x) = 0. It can be decomposed into
positive and negative frequencies according to

1
(2π)

3
2

∫
[akei(k,x)−iωkt + a+

k e−i(k,x)+iωkt]
d3k√
2ωk

, (2.1)
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Figure 3: Wormhole

where ωk =
√

k2 + (m/~)2. Here the integration over 4-dimensional space with
coordinates (ω, k1, k2, k3) is reduced to the integration over 3-dimensional hy-
persurface ω2−k2

1−k2
2−k2

3 = (m/~)2 by using the Klein-Gordon equation. Now
let us quantize ϕ(x). With every pair of functions ak, a+

k we associate a pair
of conjugate operators ak, a+

k called respectively the annihilation and creation
operators. They satisfy the following relations

[ak, a+
k′ ] = Id, if k = k′ and 0 otherwise ,

[ak, ak′ ] = [a+
k , a+

k′ ] = 0.

Let us describe the Fock space V of states with the action of these operators.
The vacuum state |0〉 ∈ V is defined by

ak|0〉 = 0 for any k,

and the other states are its images under the action of the creation operators.
Now consider quantum field theory on a globally hyperbolic curved spacetime

with metric gab. Denote by g the determinant of gab. The curved-space version
of (2.1) is

�gϕ +
m

~
ϕ = 0, where �g =

1
√

g
∂a[
√

ggab∂b]. (2.2)

Consider now two solutions u1, u2 of this equation and define their inner product
by the following formula

(u1, u2) = i

∫
Σ

(ū1∇au2 − u2∇aū1)nadV = (ū2, ū1).

Here na denotes the normal vector with respect to some spacelike hypersurface
Σ. The Klein-Gordon equation guarantees that this inner product is indepen-
dent of the choice of Σ. Choose an orthonormal basis uk, ūk of solutions. Note
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that in Minkowski space there always exists a distinguished basis, namely, eigen-
basis for the momentum operator. Any field ϕ can be expanded into the chosen
basis

ϕ(x) =
∫

(akuk + a+
k ūk)dµ(k),

where µ(k) is the used measure. As in the flat case a Fock space can be con-
structed from the vacuum state |0〉u that is normed by condition u〈0|0〉u = 1.
The crucial difference between flat and curved cases is that in a general space-
time there is no distinguished basis. Thus vacuum state |0〉u depends on the
chosen set of solutions u.

Therefore, one can expand the field ϕ into a different orthonormal basis
{vp, v̄p}

ϕ(x) =
∫

(bpvp + b+
p v̄p)dµ(p).

One can also expand one basis into the other

vp =
∫

(α(p, k)uk + β(p, k)ūk)dµ(p),

where α and β are the so-called Bogolubov coefficients:

α(p, k) = (uk, vp) β(p, k) = −(ūk, vp).

Then the ’old’ creation and annihilation operators are expressed in terms of the
’new’ ones

(ak, a+
k ) =

∫
(bp, b

+
p )
(

α(p, k), β(p, k)
β̄(p, k) ᾱ(p, k)

)
dµ(p).

The operator a+a ’measures’ the particle content of type k in a given state and
is called the particle number operator. Its expectation value 〈0|a+a‖0 > with
respect to the vacuum state is of course zero. However, the expectation value of
the ’new’ particle number operator b+b with respect to the ’old’ vacuum state
|0〉u does not vanish in general:

u〈0|b+
p bp|0〉u =

∫
|β(p, k)|2dµ(k).

Thus the ’old’ vacuum contains ’new’ particles!
However, for the static spacetime there exists a distinguished set of solutions

uk with positive frequencies that satisfies the equation

∂uk

∂t
= −iωkuk.

If a different set of solutions {vp} is a linear combination of the {uk} only, the
Bogolubov coefficient β(p, k) is zero and both sets of solutions share a common
vacuum.

Let us study an important example of particle creation in flat spacetime.
This example is closely related to particle creation of black holes. Consider
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a uniformly accelerated observer in 2-dimensional Minkowski spacetime with
coordinates T,X. The observer moves along the hyperbola X2 − T 2 = a−2,
where a is the norm of the proper acceleration. In coordinates (τ, ρ), s.t.(

T
X

)
= ρ

(
cosh(aτ)
sinh(aτ)

)
,

all such observers are static. The coordinates (τ, ρ) describe the so-called Rindler
spacetime with the metric

ds2 = dT 2 − dX2 = a2ρ2dτ2 − dρ2. (3.3)

This spacetime has coordinate singularity at ρ = 0. Thus the accelerated ob-
server in flat Minkowski space encounters a horizon, although there is no singu-
larity behind this horizon. The Rindler space is analogous to the Schwarzschild
space in Kruskal coordinates. The metric (3.3) is very similar to Schwarzschild
metric in the vicinity of the event horison

ds2 ≈ κρ2dt2 − dρ2 − 1
4κ2

(dθ2 + sin2 θdϕ2),

where ρ2 = 4rg(r − rg) and κ = 1/2rg is the so-called surface gravity. First
two terms on the right-hand side correspond exactly to the metic (3.3) with
the acceleration a replaced by the surface gravity κ. Consider a massless scalar
field ϕ in Minkowski spacetime. An inertial observer has a distinguished set of
solutions {uk} consisting of plane waves

uk(T,X) =
1√

4π|k|
e−i|k|T+ikX .

Thus ϕ is quantized according to (2.1)

ϕ(T,X) =
∫

(akuk + a+
k ūk)dk

The accelerated observer, however, has another disinguished set of solutions
{vp} according to (2.2) for the Rindler metric

vp(τ, ρ) =
1

4π|p|
e−i|p|τρip/a,

ϕ(τ, ρ) =
∫

(bpup + b+
p v̄p)dp.

Calculating the Bogolubov coefficient β(p, k) = −(ūk, vp), one finds that the
expectation value of the particle number operator b+

p bp with respect to the
standard Minkowski vacuum |0〉M is equal to

M 〈0|b+
p bp|0〉M =

∫
|β(p, k)|2dk = (volume)× 1

e2π|p|/a − 1
.
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This equation describes a Planckian distribution at a temperature

T =
~a

2πkB
, (2.4)

where kB is the Boltzmann constant. Thus a uniformly accelerated observer sees
a thermal distribution of particles in Minkowski vacuum. This demonstrates
that vacuum state is not unique even for flat spaces.

Since Rindler metric and Schwarzschild metric are very sumilar near the
horison, it is natural to expect that according to the equivalence principle,
there is a black hole radiation with temperature (2.4), where a is replaced by
κ. Indeed, it is true. It was proved by Hawking in 1975 that the black hole
produces particles according to the Plank distribution with the temperature

TBH =
~κ

2πkB
.

This effect is called Hawking radiation.
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