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1 Introduction

We know the Universe to be governed by four fundamental interactions:
namely, the strong and the weak nuclear forces, electromagnetism and grav-
itation. It is a driving concept to unify these forces into a single, compre-
hensive theory. Though this task is far from its completion, there has been
much progress.

The first great landmark in its development is attributable to James
Maxwell, who in 1864 brought together the seemingly unrelated concepts of
electricity, magnetism and optics into the now well known theory of electro-
magnetism. Nearly a hundred years later, the weak force too, was combined
with the electromagnetic by Glashow, Weinberg and Salam, giving rise to
the electroweak theory. Currently, attempts are being made to find a Grand
Unified Theory which would explain all the forces, except gravity, as man-
ifestations of the same fundamental interaction. We believe such a theory
is plausible because these forces are all governed by the same principle: the
gauge principle. In fact, we shall see that gravity also obeys this rule, which
begs the question, ”Are the four known forces all aspects of some single
unified force?” Well, nobody knows, nor is it the purpose of this paper to
chase that dream. Rather, we will investigate some of the historical devel-
opments which transformed this fundamental notion from a triviality into a
cornerstone of physics.

Between the times of Maxwell and Salam, there were a number of other
advances in unification. Many theories, such as Hermann Weyl’s attempt
to unify gravity and electricity in 1918, had to be abandoned. However, in
Weyl’s case, we shall see that a slight modification of his original proposal
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forms the foundation of what is now known as gauge theory. The generaliza-
tion of this concept, discovered by Yang and Mills, is the framework which
explains both nuclear forces. We will restrict our attention, to the gravita-
tional and electromagnetic (EM) forces. In particular, how they are both
derivable from the gauge principle.

2 First Notions of Gauge Invariance

Roughly speaking, the gauge principle states:

If a physical system is invariant with respect to some global (space-
time independent) group of continuous transformations, G, then
it remains invariant when that group is considered locally (space-
time dependant), that is G→ G(x).

Although this formulation is incomplete, we shall see under what con-
ditions local invariance is possible. Throughout the paper, we’ll use the
following notation.

Notation Indices run from 0 to 3, unless otherwise noted. Square brackets
[ ] denote anti-symmetrization. Repeated indices are summed over. Tensor
indices are raised and lowered in the usual manner by the metric. Finally,
we set c = 1.

2.1 Electromagnetism

The gauge principle was first recognized in electromagnetism, but in a rather
trivial sense. We require the following definitions:

Definition 1a). The electromagnetic 4-current density jµ = {ρ, j}, is a 4-
vector where ρ is the electric charge density and j is the 3-dimensional electric
current.
b) The electromagnetic 4-potential Aµ(x) = {φ(x),A(x)}, is 1-form where φ
and A are the electric and magnetic potentials, respectively.
c) Finally, the electromagnetic field tensor Fµν = ∂µAν − ∂νAµ, is a 2-form
which encodes the EM information, via Maxwell’s equations.
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With this notation, and appropriate units, Maxwell’s equations are com-
pactly written:

∂[αFµν] = 0 and ∂µF
µν = jν . (1)

Because of the equality of mixed partials, it follows that the transforma-
tion

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µα(x), (2)

leaves Fµν unchanged, for any differentiable scalar function α(x). Thus,
Maxwell’s equations are unaltered by adding a gradient. Such a transforma-
tion is now termed a gauge transformation, for reasons that will become more
clear. Furthermore, for fixed x it is easy to show that the transformations
(2) form a commutative (abelian) group, with a single continuous parameter
α(x).

For a long time, the EM potential Aµ was thought of only a mathematical
tool for simplifying calculations, only the field Fµν had any physical reality.
So this gauge freedom, that is the ability to add a gradient onto the potential,
was originally considered useful, but unphysical.

2.2 General Relativity

The idea of gauge invariance was first appreciated in Einstein’s theory of
General Relativity (GR). In fact, GR is derivable from the gauge principle,
where the gauge transformations are rigid motions in spacetime. To see this,
we must introduce the Christoffel connection,

Γλµν =
1

2
gλσ(∂νgµσ + ∂µgνσ − ∂σgµν)

where the gµν are the spacetime metric coefficients. An infinitesimal space-
time interval’s squared length is given by the 2-form

ds2 = gµνdx
µdxν . (3)

When a (co)vector is parallel transported an amount dxν , its components
vary as

dvλ = −vµΓλµνdxν or dvµ = vλΓ
λ
µνdx

ν . (4)
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Since we write the scalar product between two vectors (at the same point) as
u · v = gµνu

µvν , then a vector’s squared length is given by |v|2 = (gµνv
µvν) =

(vνv
ν). We see that this length is invariant under parallel transport

dv2 = d(vνv
ν) (5)

= dvνv
ν + vνdv

ν

= vλΓ
λ
µνdx

µvν − vνv
µΓνµλdx

λ

= 0.

In order for derivatives to remain co-ordinate invariant, that is gauge in-
variant, we must modify the partial derivative operator. Otherwise, a change
of co-ordinates, from primed to unprimed, for a covector’s partial derivative
yields:

∂µ′v
ν′ = (∂µ′x

µ∂νx
ν′∂µ + ∂µ′x

µ∂µνv
ν′)vν . (6)

The first term is fine, however, the second term is not a tensorial transfor-
mation. So, instead we use the covariant derivative, ∇µ(Γ), defined as

(∇µ)
λ
ν = δλν∂µ + Γλµν

(where δαβ is the Kronecker delta) so that

∇µ′v
ν′ = ∂µ′x

µ∂νx
ν′∇µv

ν . (7)

In other words, the covariant derivative transforms tensorialy. We will
see that covariant derivatives are at the heart of gauge theory; through them,
global invariance is preserved locally. The final essential geometric ingredient
for GR is the Riemann curvature tensor, which can be expressed in terms of
the connection, or the covariant derivative, as

Rλ
σµν = ∂µΓ

λ
σν − ∂νΓ

λ
σµ + ΓλαµΓ

α
σν − ΓλανΓ

α
σµ

= [∇σ,∇µ]
λ
ν .

Note that the second definition highlights the non-commutivity of parallel
transport, which tells us about the curvature of spacetime. We will write the
contracted Riemann tensor Rλ

µνλ ≡ Rµν , and the Ricci scalar R ≡ Rν
ν . Now

we can write Einstein’s field equations for gravitational interactions:

Rµν −
1

2
Rgµν = Tµν (8)

where Tµν is the (symmetric) stress-energy tensor.
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3 Weyl’s Unified Theory

As powerful and profound as Einstein’s gravitational theory was, many felt
it was only the beginning. To describe both known forces (the nuclear forces
were not yet discovered), the EM field tensor had to be put in by hand.
Many, including Einstein himself, sought a unified theory to explain both
phenomena, preferably in a geometric fashion like GR.

The first attempt to generalize GR to encompass EM, was proposed by
Weyl three years later. Unhappy with Riemannian geometry, Weyl devel-
oped his purely infinitesimal geometry which did not allow comparison at a
distance.

3.1 Scale Invariance

As is well known, in Euclidean geometry, translation of a vector preserves
its length and direction. In Riemann’s geometry, the Christoffel connection
guarantees length preservation, however, a vector’s orientation is path de-
pendant. However, the angle between to vectors, following the same path,
is preserved under translation. Weyl wondered why the remnant of planar
geometry, length preservation, persisted. After all, our measuring standards
(rigid rods and clocks) are known only at one point in spacetime. To measure
lengths at another point, we must bring our measuring tools along with us.
According to Weyl, only the relative lengths of any two vectors (at the same
point), and the angle between them, are preserved under parallel transport;
the length of any single vector is arbitrary. To encode this mathematically,
Weyl made the following substitution

gµν(x) → λ(x)gµν(x). (9)

Where the conformal factor λ(x) is an arbitrary, positive, smooth function
of position. Weyl required that in addition to GR’s co-ordinate invariance,
formulas must remain invariant under the substitution (9). Weyl called this
a gauge transformation.

Remark 1. This was the first deliberate application of the gauge principle.
In Riemann’s geometry, the metric is fixed up to a global scale factor. Weyl’s
idea was to make that scale a local property of the metric.
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Remark 2. The term gauge was introduced into mathematics and physics
by Weyl during this period. Until now, its use in this paper has been purely
from a modern perspective.

In this setting, if a vector, vα, at a point P = (x1, x2, . . . xn) is parallel
transported to the point P ′ = (x1 + dx1, x2 + dx2, . . . xn + dxn), then

vα → vα + dvα where dvα = −vµ{αµν}dxν . (10)

This transformation is identical to the Riemannian case, except the Christof-
fel connection Γ has been replaced by a similar object, the conformal con-
nection { }, which is also symmetric in the lower indices.

3.2 The Conformal Connection

To find the conformal connection explicitly, consider two vectors, uα and vα,
at P . Under parallel transport to P ′, they become uα + duα and vα + dvα.
By Weyl’s hypothesis, the relationship between the vector’s scalar products
at each point is given by:

(gαβ + dgαβ)(u
α + duα)(vβ + dvβ) = (1 + dφ)(gαβu

αvβ). (11)

That is, the scalar products at P and P ′ are not equal, rather they are
proportional. The factor of proportionality 1 + dφ, which is infinitesimally
close to unity, distinguishes this geometry from Riemann’s. By expanding
(11) up to linear differential terms, we have

gαβu
αvβdφ = dgαβu

αvβ + gαβ(u
αdvβ + duαvβ) (12)

= dgαβu
αvβ − gαβ(u

α{βµν}vµdxν + vβ{αµν}uµdxν)
= dgαβu

αvβ − {αµν}uαvµdxν − {βµν}uµvβdxν ,

where we have used the substitution (10) for duα and dvβ, and then used the
metric to lower the indices of { }. For the above relation to hold, for any
vectors u and v, we require that

gαβdφ = dgαβ − {αβν}dxν − {βαν}dxν (13)

= ∂νgαβdx
ν − {αβν}dxν − {βαν}dxν ,
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where we have used the chain rule in the second line. Thus, dφ is a linear
differential form: dφ = φνdx

ν . Plugging this into the above, we find

gαβφν = ∂νgαβ − {αβν} − {βαν}. (14)

By cyclicly permuting α, β and ν, then subtracting the first arrangement
from the sum of the other two, and finally applying the inverse metric gνλ,
yields the conformal connection

{λαβ} = Γλαβ +
1

2
(δλαφβ + δλβφα + gαβg

νλφν),

where Γλαβ is the usual Christoffel connection, derived from the metric. Thus,
in Weyl’s geometry, the affine connection is doubly dependant; it is deter-
mined by a) the metric tensor gαβ and b) the covector φν . We will call this
covector the length connection, as it relates the scales between two points on
a manifold.

Remark 3. Unless the φν are known, the conformal connection is not
uniquely determined. Instead, there exists an equivalence class of connec-
tions which preserve relative lengths and angles under parallel transport.

3.3 Electromagnetic Interpretation

Now, if we perform the gauge transformation (9), since {αβν} = gαλ{λβν},
then (14) becomes (suppressing the x dependance),

λgαβφ
′
ν = λ∂νgαβ + gαβ∂νλ− λ{αβν} − λ{βαν} (15)

= λgαβφν + gαβ∂νλ.

From which we conclude, that the transformation

gµν → λgµν ⇔ φν → φ′
ν = φν +

∂νλ

λ
. (16)

Since λ is an arbitrary smooth positive function, we can just as well set
λ(x) = eα(x), for some function α(x). Now the gauge transformation reads

gµν(x) → eα(x)gµν(x) ⇔ φν(x) → φν(x) + ∂να(x). (17)

In this highly suggestive form, Weyl’s gauge transformation of the length
connection bears a striking resemblance to the gauge transformations of the
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EM potential, Aµ. Weyl postulated that of all the possible conformal connec-
tions in the equivalence class, only one had any relation to physics. Specifi-
cally, the connection where φν = e

γ
Aν , where e is the electron charge and γ

is an undetermined constant.
This is a most remarkable result. By allowing scales to vary between

points on a manifold, Weyl could to formulate a unified theory of EM and
gravity. The gravitational fields are encoded in the metric tensor, and EM
fields are derived from the length connection form. What is perhaps even
more remarkable is this theory sprung forth from a purely mathematical
concept: Weyl’s infinitesimal geometry. GR, however, was derived from an
entirely physical fact: the equivalence of inertial and gravitational mass.

With this choice of the length connection φ, the Weyl connection is writ-
ten

(λαβ) = Γλαβ +
e

2γ
(δλαAβ + δλβAα + gαβg

νλAν).

It depends on both the gravitational fields, gαβ, and the EM potential Aµ.
We can form all the objects from Riemannian geometry, such as the covariant
derivative and curvature tensors, by replacing the Christoffel connection with
Weyl’s.

Rather than develop Weyl’s geometry further, let’s return to equation
(11). Suppose a vector, vµ at P has the (squared) length l = gµνv

µvν , then
under parallel transport to P ′, this length changes by

dl = ldφ = l
e

γ
Aµdx

µ. (18)

If instead, this vector is (parallel) transported along the path C to some
distant point Q, then upon integrating (18), we find

l = loe
e
γ

∫
C
Aµ(x)dxµ

, (19)

where lo is l at P . So, a vector’s length is, in general, path dependant. At
this point, a clever reader might raise the following objection. Suppose we
have two identical clocks, at P . Let l be the length of a time-like vector cor-
responding to some unit of time. Now, transport the two clocks on different
paths C1 and C2, which both end at Q. Let l1 and l2 denote the new values
of l given by each clock, at the point Q. Then, by Stokes theorem, l1 = l2 if
and only if ∮

C1−C2

Aµ(x)dx
µ =

∫
D

Fµν(x)dx
µ ∧ dxν = 0 (20)
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where D = int(C1−C2) and Fµν = ∂µAν−∂νAµ is the EM field tensor. Thus,
in the presence of an EM field, the two clock rates will differ. As Einstein
pointed out, the frequency of the spectral lines of atomic clocks would depend
on the location, both past and present, of the atom. However, we know the
atomic spectral lines to be quite definite, and independent of position.

Einstein was able to refute Weyl’s theory, with this simple physical ar-
gument. Weyl probably wished he had not sent his paper to Einstein to be
published, since Einstein included this negation as a postscript. He, nonethe-
less, admired Weyl as a brilliant mathematician, and was greatly impressed
by his novel geometric ideas. Weyl, on the other hand, was not convinced
and continued to develop his true infinitesimal geometry. He thought,

It would be remarkable if in Nature there was realized instead
an illogical quasi-infinitesimal geometry, with an electromagnetic
field attached to it.

Weyl’s gauge theory was paid little heed during the next decade. With the
coming of the Quantum era, attention moved to the microscopic regime.

4 Gauge Theory Revived

As pointed out in the introduction, Weyl’s unified theory, though flawed,
was not utterly doomed. It was to find salvation during the development of
Quantum Theory.

4.1 Quantum Mechanics

In classical mechanics, a system, composed of a particle of mass m in a
potential V , is said to be conservative if the total energy E is a constant of
motion. That is to say, d

dt
E = 0. Conservative systems are described by the

Hamiltonian function

H(x,p) = E =
p2(t)

2m
+ V (t,x) (21)

which is just the sum of kinetic and potential energies (bold variables are
now 3-vectors). In Quantum Mechanics (QM), a particle is described by a
complex-valued wave function ψ(t,x). For simplicity, we shall only consider
non-relativistic QM, for spinless particles. Information is extracted from the
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wave function, by acting on it with linear operators. Following Schrödinger’s
lead, let’s replace the momentum variable p by the momentum operator
h̄
i
~∇ and the parameter E by the energy operator ih̄∂t, where h̄ is Planck’s

constant, and ~∇ is the usual 3-dimensional gradient operator. Applying both
sides to the wave function ψ we have found the Schrödinger equation

ih̄∂tψ(t,x) = − h̄

2m
~∇2ψ(t,x) + V (t,x)ψ(t,x). (22)

As a simple example, consider the plane wave

ψ(t,x) = ei(k·x−ωt) (23)

which has momentum p = h̄k and energy E = h̄ω. It is not difficult to see

that it solves the free Schrödinger equation, that is V ≡ 0, and E = p2

2m
.

The probability of finding a particle in a given volume Ω is given by the
formula

Pψ(Ω) =
∫
Ω
|ψ(t,x)|2d3x. (24)

|ψ|2 has the natural definition then of a probability density. Wave functions
are always normalized so that the integral of the probability density over
all space equals unity. However, this does not determine ψ uniquely. For
example, ψ′ = eiαψ, for some real number α, (look familiar??) has the same
probability density as ψ. Thus, the states ψ and ψ′ are equivalent.

4.2 Phase Invariance

Because of this equivalence, we say that wave functions in QM have a global
phase symmetry. Recalling the plane wave model, we notice that multiplying
it by eiα is equivalent to adding a phase α to the argument. However, we can
go one step further.

If we believe the gauge principle (and why not?), then we can make this
phase invariance a local property of the matter wave by sending α→ α(t,x).
After all, we still have |ψ′|2 = (e−iα(t,x)ψ∗)(eiα(t,x)ψ) = |ψ|2. But this leads
to complications. Consider a function ψ which solves the free Schrödinger
equation, and perform the local phase transformation

ψ(t,x) → ψ′(t,x) = eiα(t,x)ψ(t,x). (25)
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The Schrödinger equation should remain unchanged, since both states are
equivalent. However, the transformed equation becomes (suppressing (t,x)
dependance)

ih̄∂t(e
iαψ) = − h̄2

2m
~∇2(eiαψ). (26)

Clearly, when the derivatives act on the exponentials, new terms will be
introduced. If we consider any single spacetime derivative, then we have

∂µ(e
iαψ) = i∂µαe

iαψ + eiα∂µψ (27)

6= eiα∂µψ.

The second line is what we want. We have encountered a similar problem
before, regarding co-ordinate invariance for GR. Then, we had to modify
the partial derivative, making it covariant. Instead of changing co-ordinate
frames, this time we are changing the phase. Let’s attempt a similar manip-
ulation. So, we seek a covariant derivative Dµ, such that under the transfor-
mation (25)

Dµψ → eiαDµψ, (28)

so Dµ must transform as,

Dµ → D′
µ = eiαDµe

−iα. (29)

Consider, then, the object

Dµ(x) = ∂µ + iAµ(x) (30)

where Aµ(x) is some covector field. Then under the local phase rotation,
(30) tell us that this covariant derivative transforms as

Dµ → D′
µ = ∂µ + iA′

µ (31)

(since the partial derivative operator is position independent). So it is this
covector field Aµ that must vary under phase changes. To find an explicit
form for this variation, we simply require that (28) and (31) coincide. That
is to say,

eiα(∂µ + iAµ)ψ = (∂µ + iA′
µ)e

iαψ (32)

= i∂µαe
iαψ + eiα∂µψ + iA′

µe
iαψ.

11



Which implies

A′
µ = Aµ − ∂µα. (33)

Thus, the modified Schrödinger equation

ih̄(∂t + iA0)ψ(t,x) = − h̄2

2m
(~∇+ iA)2ψ(t,x) (34)

is invariant under the simultaneous local transformations

ψ(t,x) → eiα(t,x)ψ(t,x) and Aµ(t,x) → Aµ(t,x)− ∂µα(t,x). (35)

4.3 Relation to Electromagnetism

The results of this local phase invariant are quite profound. We were forced
to change our momentum operator into h̄

i
(~∇+ iA). Thus, changes in a par-

ticle’s phase, which alters the 1-form Aµ, result in changes in its momentum.
According to Newton’s second law,

F = mẍ = ṗ (36)

( ˙ signifies time derivatives) there must exist a force which performs these
changes. That force is none other than EM. The equation

ih̄∂tψ(t,x) = − h̄2

2m
(~∇− iq

h̄
A)2ψ(t,x) + qφ(t,x)ψ(t,x) (37)

where q is a particle’s charge, is empirically known to govern the motion of
a charged particle in an arbitrary EM field. This is equivalent to equation
(35) if we multiply α and Aµ by q

h̄
. The gauge transformations now read

ψ(t,x) → e
iq
h̄
α(t,x)ψ(t,x) and Aµ(t,x) → Aµ(t,x) +

q

h̄
∂µα(t,x). (38)

So, local phase invariance introduces EM interactions.
Interestingly, the above transformations are identical to Weyl’s earlier

gauge transformations after a) replacing the metric gµν by the wave function
ψ, and b) setting the undetermined constant γ to h̄

i
. The first substitution

tells us that EM is a phenomenon that accompanies matter fields, and not,
as Weyl thought, the spacetime metric. Changing the constant γ from real
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to imaginary, takes Weyl’s conformal factor from the positive real axis to the
unit circle in the complex plane. Weyl’s non-physical path dependant vector
lengths become the well proven path dependant matter-wave phases.

Historically, these correlations were first pointed out by Schödinger and
London in the 1920’s, though only in a rather tentative manner. Then, in
1929, Weyl published the paper Electron and Gravitation which introduced
many now fundamental concepts, including a derivation of EM from the
gauge principle. Before its release, Weyl published a short summary to which
Pauli, upset by the mathematician’s intrusion into physics, replied,

I admire your courage; since the conclusion is inevitable that you
wish to be judged, not for your success in pure mathematics, but
for your true but unhappy love for physics.

However, after reading the whole article, Pauli wrote back saying,

Here I must admit your ability in Physics. Your earlier theory
with g′ik = λgik was pure mathematics and unphysical. Einstein
was justified in criticizing and scolding. Now the hour of your
revenge has arrived.

5 Gravity as a Gauge Theory

The procedure given above, to construct locally gauge invariant systems,
may be generalized to more complex symmetries. Doing so results in the
introduction of more complicated fields, and hence, new forces. We have
briefly seen how GR is a gauge (co-ordinate) independent theory. Let us
develop this more formally.

Note: To properly understand the gauge structure of GR requires much
more mathematical machinery than this paper shall develop. Instead, this
section shall sketch the proper approach to formulate a gauge invariant theory
of gravitation.

5.1 Vierbein Formalism

The Minkowski spacetime metric, as a matrix, is ηmn = diag(−1, 1, 1, 1).
Latin indices will be used to denote co-ordinates in this Minkowski basis,
while Greek indices are reserved for arbitrary reference frames. According
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to the Equivalence Principle, we may always choose our reference frame, at
each point in spacetime, as a Minkowskian one, so that there appears to be
no gravitational force! By re-expressing the Minkowski basis {xm} in terms
of a general one {xµ}, we see the effect of gravity. By formulating our physics
in the {xm} basis, they are independent of any relabelling {xµ}. This is the
gauge invariance of gravity. (Proceeding in this manner is particularly useful
for constructing spinors in curvilinear co-ordinates.)

The effects of gravity are contained in the changes of {xm} from point to
point. Expressing this basis in terms of the general one, we have

dxm = hmµ (x)dxµ where hmµ (x) ≡ ∂µx
m.

The transformation matrix hmµ (x) is called the vierbein. Likewise, we define
the inverse vierbein by

dxµ = hµm(x)dxm where hµm(x) ≡ ∂mx
µ.

We see, then, that an arbitrary spacetime metric can always be written

gµν(x) = ηmnh
m
µ (x)hnν (x). (39)

Lorentz transformations Λn
m (rotations in spacetime) are equivalent to a

change of basis. By requiring invariance under local Lorentz transformations,
we must introduce the covariant derivative for the {xm} basis, which depends
on some new field ωµ,

Dm = hµmDµ = hµm(∂µ + iωµ), (40)

with x dependance suppressed. To understand this operator in curved space-
time, consider the expression hmµDνvm. Though the calculations are beyond
the scope of this paper, the end result is that

hmµDνvm = ∂νvµ + Γλµνvλ with Γλµν ≡ hmµDνh
λ
m. (41)

From which we may define the familiar

∇νvµ ≡ ∂νvµ + Γλµνvλ.

If there is no torsion (Γλµν = Γλνµ), then Γλµν is the Christoffel connection. One
important consequence of this approach is to free the covariant derivative
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from the notion of parallel displacement. Instead the more fundamental
gauge principle is used.

Again, this section is by no means a rigorous derivation of GR from
the gauge principle, rather, it has been presented to highlight the analogies
between EM and GR as gauge theories. The inclined reader should consult
[3] for a complete account. Also suggested is Utiyama’s paper, Invariant
Theoretical Interpretation of Interaction, translated in [2], where a general
method for constructing gauge invariant interactions is developed, with EM,
Yang-Mills and GR as worked examples. Though published after Yang and
Mills historic paper, it was in fact, written one year prior.

5.2 Comparison of Gauge Groups

Gauge theory has a very natural formulation in terms of groups. Recall that
a group, G is a set of elements x satisfying

i) ∃ eεG such that ex = x, ∀ xεG
ii) ∀ xεG, ∃ yεG such that yx = e
iii) If x, yεG, then xyεG

Some known aspects of the gauge group structures of EM and gravitation will
be presented to highlight the differences between the two as gauge theories.

Recall the gauge principle states that ”systems invariant under a global
group of transformations, should remain invariant when that group is con-
sidered locally”. For EM, that group is, of course, the phase transformation
eiα(t,x). Each element may be represented as a point on the unit circle in the
complex plane, formally this group is known as U(1). It has a commutative
structure and a compact topology. Also, it depends on a single parameter
α(t,x). On the other hand, GR is invariant under change of co-ordinates;
that is rotations and translations in spacetime. These transformations form
a group, as well, called the Poincaré group (PG). There are 10 indepen-
dent parameters: six for the Lorentz transformations and four for spacetime
translations. Although translations are commutative, the (generalized) rota-
tions are not, thus PG has a non-commutative structure. Furthermore, PG
is non-compact since translations are unbounded.

Some other notable distinctions between the forces are the following. In
EM, the nature of interactions is determined by the sign of the charge q,
while for gravity all matter is attractive. Apart from the charge, all EM

15



objects arise from the 1-form (also called the connection) Aµ, while in GR it
is not the connection Γλµν but the 2-form gµν which plays the primary role.

The most remarkable fact, though, is the similarity between the two
forces. The gauge principle is truly fundamental to the nature of each force.

6 Conclusions

Perhaps the most important result is that we have found the necessary con-
dition to make symmetries local. It appeared in GR, and again for EM: the
covariant derivative. The gauge principle, presented near the outset of the
paper, should include the provision:

that partial derivatives be replaced by covariant ones, which de-
pend on some new vector field.

These fields correspond to the four known force fields. By generalizing the
procedure of section 4.2, we may develop gauge invariant theories for the
nuclear forces as well.

Clearly, the gauge principle’s role in modern physics is key. From it,
we can determine the nature of the force fields, as well as their interactions
with matter. It serves as the base upon which unification theories are built.
Whether a unified theory for all interactions will ever be developed is hard
to say. That the gauge principal will play a central role in it is hard to deny.
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