Trees and Wheels and Balloons and Hoops

Dror Bar-Natan, Toronto, March 2013

 $\omega\epsilon\beta{:=}http{:}//www.math.toronto.edu/~drorbn/Talks/Toronto-1303$

15 Minutes on Algebra

Let T be a finite set of "tail labels" and H a finite set of balloons "head labels". Set

$$M_{1/2}(T;H) := FL(T)^H,$$

"H-labeled lists of elements of the degree-completed free Lie algebra generated by T".

$$FL(T) = \left\{2t_2 - \frac{1}{2}[t_1, [t_1, t_2]] + \ldots\right\} / {\text{anti-symmetry} \choose \text{Jacobi}}$$

... with the obvious bracket.

$$M_{1/2}(u,v;x,y) = \left\{ \lambda = \left(x \to \underbrace{v}_{x}, y \to \underbrace{v}_{y} - \underbrace{\frac{22}{7}}_{y} \underbrace{v}_{y}^{u} \right) \dots \right\}$$

Tail Multiply tm_w^{uv} is $\lambda \mapsto \lambda /\!\!/ (u, v \to w)$, satisfies "meta-More on associativity", $tm_u^{uv} /\!\!/ tm_u^{uw} = tm_v^{vw} /\!\!/ tm_u^{uv}$.

Head Multiply hm_z^{xy} is $\lambda \mapsto (\lambda \setminus \{x,y\}) \cup (z \to \operatorname{bch}(\lambda_x,\lambda_y))$, satisfies R123, VR123, D, and

$$bch(\alpha,\beta) := \log(e^{\alpha}e^{\beta}) = \alpha + \beta + \frac{[\alpha,\beta]}{2} + \frac{[\alpha,[\alpha,\beta]] + [[\alpha,\beta],\beta]}{12} + \dots$$
 oc: A as

satisfies $\operatorname{bch}(\operatorname{bch}(\alpha,\beta),\gamma) = \log(e^{\alpha}e^{\beta}e^{\gamma}) = \operatorname{bch}(\alpha,\operatorname{bch}(\beta,\gamma)) \bullet \delta$ injects u-knots into \mathcal{K}^{bh} (likely u-tangles too).

Tail by Head Action tha^{ux} is $\lambda \mapsto \lambda /\!\!/ RC_u^{\lambda_x}$, where cturally, that's all. Allowing punctures and cuts, δ is onto. $C_u^{-\gamma}$: $FL \to FL$ is the substitution $u \to e^{-\gamma} u e^{\gamma}$, or more Operations precisely,

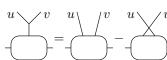
$$C_u^{-\gamma} : u \to e^{-\operatorname{ad} \gamma}(u) = u - [\gamma, u] + \frac{1}{2} [\gamma, [\gamma, u]] - \dots,$$

and RC_u^{γ} is the inverse of that. Note that $C_u^{\mathrm{bch}(\alpha,\beta)}$ $C_u^{\alpha/\!\!/RC_u^{-\beta}}/\!\!/C_u^{\beta}$ and hence "meta $u^{xy}=(u^x)^y$ ",

$$hm_z^{xy} /\!\!/ tha^{uz} = tha^{ux} /\!\!/ tha^{uy} /\!\!/ hm_z^{xy},$$

and $tm_w^{uv} /\!\!/ C_w^{\gamma /\!\!/ tm_w^{uv}} = C_u^{\gamma /\!\!/ RC_v^{-\gamma}} /\!\!/ C_v^{\gamma} /\!\!/ tm_w^{uv}$ and hence "meta $(uv)^x = u^x v^x$ ", $tm_w^{uv} /\!\!/ tha^{wx} = tha^{ux} /\!\!/ tha^{vx} /\!\!/ tm_w^{uv}$.

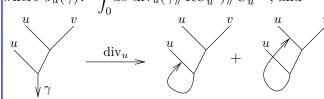
Wheels. Let $M(T; H) := M_{1/2}(T; H) \times CW(T)$, where CW(T) is the (completed graded) vector space of cyclic words on T, or equaly well, on FL(T):



and tha^{ux} by adding some J-spice:

$$(\lambda; \omega) \mapsto (\lambda, \omega + J_u(\lambda_x)) /\!\!/ RC_u^{\gamma},$$

where $J_u(\gamma) := \int_0^1 ds \operatorname{div}_u(\gamma /\!\!/ RC_u^{s\gamma}) /\!\!/ C_u^{-s\gamma}$, and



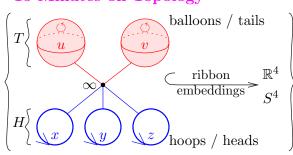
Theorem Blue. All blue identities still hold.

Merge Operation. $(\lambda_1; \omega_1) * (\lambda_2; \omega_2) := (\lambda_1 \cup \lambda_2; \omega_1 + \omega_2).$

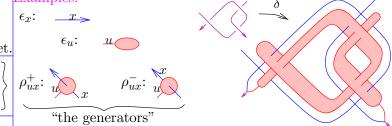
15 Minutes on Topology

"Ribbonknotted

and hoops"



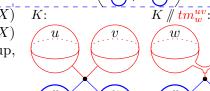
 $\operatorname{Examples}$



- and hence meta-associativity, $hm_x^{xy} /\!\!/ hm_x^{xz} = hm_y^{yz} /\!\!/ hm_x^{xy}$. $\bullet \delta$ maps v-tangles to \mathcal{K}^{bh} ; the kernel is as above, and conjectively.

Connected Punctures & Cuts | Sums. If X is a space, $\pi_1(X)$ K:

is a group, $\pi_2(X)$ is an Abelian group, and π_1 acts on π_2 .



newspeak!

 K / m_z^{xy} :

 $K /\!\!/ tha^{ux}$:

"Meta-Group-Action"

Propertie

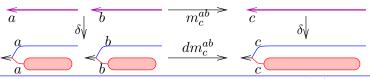
Operations. On M(T; H), define tm_w^{uv} and hm_z^{xy} as before, and tha^{ux} by adding some J-spice:

• Associativities: $m_a^{ab} \ /\!/ m_a^{ac} = m_b^{bc} \ /\!/ m_a^{ab}$, for m = tm, hm.

• " $(uv)^x = u^x v^x$ ": $tm_w^{uv} \ /\!/ tha^{ux} = tha^{ux} \ /\!/ tha^{vx} \ /\!/ tm_w^{uv}$,

• " $u^{(xy)} = (u^x)^y$ ": $hm_z^{xy} \ /\!/ tha^{uz} = tha^{ux} \ /\!/ tha^{uy} \ /\!/ hm_z^{xy}$.

Fingle concatenations $\rightarrow \pi_1 \ltimes \pi_2$. With $dm_c^{ab} := tha^{ab}$ $tm_c^{ab} /\!\!/ hm_c^{ab}$,



Moral. To construct an M-valued invariant ζ of (v-)tangles. and nearly an invariant on \mathcal{K}^{bh} , it is enough to declare ζ on the generators, and verify the relations that δ satisfies.

Trees and Wheels and Balloons and Hoops: Why I Care

The Invariant ζ . Set $\zeta(\epsilon_x) = (x \to 0; 0)$, $\zeta(\epsilon_u) = ((); 0)$, and The β quotient is M divi-

$$\zeta$$
: u x $\longrightarrow \left(\begin{vmatrix} u \\ x \end{vmatrix}; 0 \right)$ u $\downarrow x$ $\longleftrightarrow \left(- \begin{vmatrix} u \\ x \end{vmatrix}; 0 \right)$ ded by all relations that universally hold when when $\mathfrak g$ is the 2D non Abelian Lie algo-

Theorem. ζ is (log of) the unique homomorphic universal finite type invariant on \mathcal{K}^{bh} .

(... and is the tip of an iceberg)

Paper in progress with Dancso, ωεβ/wko

See also $\omega \varepsilon \beta/\text{tenn}$, $\omega \varepsilon \beta/\text{bonn}$, $\omega \varepsilon \beta/\text{swiss}$, $\omega \varepsilon \beta/\text{portfolio}$ formula-computable to all orders! Can we simplify

ded by all relations that unithe 2D non-Abelian Lie alge-

bra. Let $R = \mathbb{Q}[\![\{c_u\}_{u \in T}]\!]$ and $[u,v] = c_u v - c_v u$ $L_{\beta} := R \otimes T$ with central R and with $[u,v] = c_u v - c_v u$ for $u, v \in T$. Then $FL \to L_{\beta}$ and $CW \to R$. Under this,

$$\mu \to ((\lambda_x); \omega)$$
 with $\lambda_x = \sum_{u \in T} \lambda_{ux} ux$, $\lambda_{ux}, \omega \in R$,

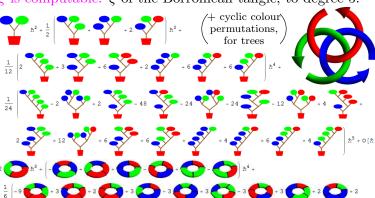
$$bch(u,v) \to \frac{c_u + c_v}{e^{c_u + c_v} - 1} \left(\frac{e^{c_u} - 1}{c_u} u + e^{c_u} \frac{e^{c_v} - 1}{c_v} v \right),$$

if $\gamma = \sum \gamma_v v$ then with $c_{\gamma} := \sum$

$$u /\!\!/ RC_u^{\gamma} = \left(1 + c_u \gamma_u \frac{e^{c_{\gamma}} - 1}{c_{\gamma}}\right)^{-1} \left(e^{c_{\gamma}} u - c_u \frac{e^{c_{\gamma}} - 1}{c_{\gamma}} \sum_{v \neq u} \gamma_v v\right)$$

 $\operatorname{div}_{u} \gamma = c_{u} \gamma_{u}$, and $J_{u}(\gamma) = \log \left(1 + \frac{e^{c_{\gamma}} - 1}{c_{\gamma}} c_{u} \gamma_{u}\right)$, so ζ is

is computable! ζ of the Borromean tangle, to degree 5:



Tensorial Interpretation. Let g be a finite dimensional Lie algebra (any!). Then there's $\tau : FL(T) \to \operatorname{Fun}(\oplus_T \mathfrak{g} \to \mathfrak{g})$ and $\tau: CW(T) \to \operatorname{Fun}(\oplus_T \mathfrak{g})$. Together, $\tau: M(T; H) \to$ $\operatorname{Fun}(\oplus_T \mathfrak{g} \to \oplus_H \mathfrak{g})$, and hence

+3 +3 +3 +3 +3 +3 +3 +3 +5 +0[h]⁶

$$e^{\tau}: M(T; H) \to \operatorname{Fun}(\oplus_T \mathfrak{g} \to \mathcal{U}^{\otimes H}(\mathfrak{g})).$$

BF Theory. (See Cattaneo-Rossi, arXiv:math-ph/0210037) Let A denote a \mathfrak{g} connection on S^4 with curvature F_A , and B a \mathfrak{g}^* -valued 2-form on S^4 . For a hoop γ_x , let $\operatorname{hol}_{\gamma_x}(A) \in \mathcal{U}(\mathfrak{g})$ be the holonomy of A along γ_x . For a ball γ_u , let $\mathcal{O}_{\gamma_u}(B) \in \mathfrak{g}^*$ be (roughly) the integral of B (transported via A to ∞) on γ_u .

Cattaneo

Loose Conjecture. For $\gamma \in \mathcal{K}(T; H)$,

$$\int \mathcal{D}A\mathcal{D}Be^{\int B\wedge F_A} \prod_u e^{\mathcal{O}_{\gamma_u}(B)} \bigotimes_x \operatorname{hol}_{\gamma_x}(A) = e^{\tau}(\zeta(\gamma)).$$

That is, ζ is a complete evaluation of the BF TQFT.

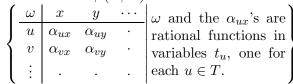
"God created the knots, all else in topology is the work of mortals.

Leopold Kronecker (modified)

Class next year: $\omega \epsilon \beta / 1350$ May class: ωεβ/aarhus

Paper in progress: ωεβ/kbh

Repackaging. Given $((x \to \lambda_{ux}); \omega)$, set $c_x := \sum_v c_v \lambda_{vx}$, replace $\lambda_{ux} \to \alpha_{ux} := c_u \lambda_{ux} \frac{e^{c_x} - 1}{c_x}$ and $\omega \to e^{\omega}$, use $t_u = e^{c_u}$, and write α_{ux} as a matrix. Get " β calculus".



$$hm_z^{xy}: \begin{array}{c|cccc} \omega & x & y & \cdots \\ \hline \vdots & \alpha & \beta & \gamma \end{array} \mapsto \begin{array}{c|ccccc} \omega & z & \cdots \\ \hline \vdots & \alpha+\beta+\langle \alpha \rangle \beta & \gamma \end{array},$$

$$R_{ux}^+ := \frac{1 \mid x}{u \mid t_u - 1}$$
 $R_{ux}^- := \frac{1 \mid x}{u \mid t_u^{-1} - 1}$.

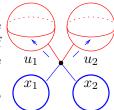
On long knots, ω is the Alexander polynomial!

Why happy? An ultimate Alexander invariant: Manifestly polynomial (time and size) extension of the (multivariable) Alexander polynomial to tangles. Every step of the computation is the computation of the invariant of some topological thing (no fishy

Gaussian elimination). If there should be an Alexander i nvariant with an algebraic categorification, it is this one. www.katlas.org The knot plas See also $\omega \epsilon \beta / {\rm regina}$, $\omega \epsilon \beta / {\rm caen}$, $\omega \epsilon \beta / {\rm newton}$.

Trees and Wheels and Balloons and Hoops - Extras / Recycling

Invariant #0. With Π_1 denoting "honest π_1 ", map $\gamma \in \mathcal{K}^{bh}(m,n)$ to the triple $(\Pi_1(\gamma^c), (u_i), (x_i))$, where the meridian of the balls u_i normally generate Π_1 , and the "longtitudes" x_i are some elements of Π_1 . * acts like *, tm acts by "merging" two meridians/generators, hm acts by multiplying two longtitudes, and tha^{ux} acts by "conjugating a meridian by a longtitude":



Not computable! (but nearly)

$$(\Pi, (u, ...), (x, ...)) \mapsto (\Pi * \langle \bar{u} \rangle / (u = x \bar{u} x^{-1}), (\bar{u}, ...), (x, ...))$$

Failure #0. Can we write the x's as free words in the u's?
If $x = uv$, compute x / tha^{ux} :

$$x = uv \to \bar{u}v = u^{\bar{u}v}v = u^{\bar{u}v}v = u^{u^{x}v}v = u^{u^{u^{x}v}v}v = \cdots$$

Why ODEs? Q. Find
$$f$$
 s.t. $f(x+y) = f(x)f(y)$.

A.
$$\frac{df(s)}{ds} = \frac{d}{d\epsilon}f(s+\epsilon) = \frac{d}{d\epsilon}f(s)f(\epsilon) = f(s)C$$
. Now solve this ODE using Picard's theorem or

power series.

Scheme. • Balloons and hoops in \mathbb{R}^4 , algebraic structure and relations with 3D.

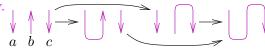
- An ansatz for a "homomorphic" invariant: computable, related to finite-type and to BF.
- Reduction to an "ultimate Alexander invariant".

An RC_u^{λ} example.

("//" is newspeak for "apply an operator" and for "composition left to right")

Meta-associativity

$$m_a^{ab} /\!\!/ m_a^{ac} = m_b^{bc} /\!\!/ m_a^{ab}.$$



$$= \left\{ \left(x: \bigvee^{u}, y: \left| -\frac{22}{7} \bigvee^{u} \right|^{v}; \bigvee^{u} \bigvee^{v}\right) \dots \right\}$$

I mean business!

 $T_0 = Rm[3, a] Rp[b, 2] Rp[1, 4];$ $\mathcal{E}[\{5\}]$ /. $\{w_LW \Rightarrow (Deg[w] + 1) ! w$ w_CW :→ Deg[w] ! w}

μ[CWS[-[a], -2 [ab], -3 [aab] - 3 [abb], -4 [aaab] + 42 [aabb] - 60 [abab] - 4 [abbb], -5 [aaaab] + 110 [aaabb] - 180 [aabab] + 110 [aabbb] - 180 [ababb] - 5 [abbbb]], h[b] LS[2 (a), 0, -24 (aab), -60 (aaab) +60 (aabb), -120 (aaaab) + 900 (aaabb) + 360 (aabab) - 120 (aabbb)] h[a] LS[-2 (a) + 2 (b), 9 (ab), 26 (aab) 26 (abb), 60 (aaab) - 255 (aabb) + 60 (abbb), 119 (aaaab) - 1504 (aaabb) + 118 (aabab) + 1504 (aabbb) + 1386 (ababb) - 119 (abbbb)]]

The β quotient, 1. • Arises when \mathfrak{g} is the 2D non-Abelian Lie algebra.

• Arises when reducing by relations satisfied by the weight system of the Alexander polynomial.