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15 Minutes on Algebra a
Let T be a finite set of “tail labels” and H a finite set of
“head labels”. Set
My 5(T; H) := FL(T)"
“H-labeled lists of elements of the degree-completed free Lie
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(Tail Multiply tm{" is A = A J/ (u,v — w), satisfies “meta-

associativity”, tmiY J tmi = tmPY ) tmkv.

Head Multiply hmz” is A = (A\{z,y}) U (z = bch(Ag, \y)),

where
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satisfies bch(beh(a, ), ) = log(e®e®e) = beh(a, beh(3,7))
and hence meta-associativity, hmz” ) hm%* =

my” ) hmz?.
Tail by Head Action tha® is A +— X J RC)=, wherd
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e § injects u-knots into K (likely u-tangles too).
e § maps v-tangles to C%; the kernel is as above, and conje-

Cy,"': FL — FL is the substitution u — e 7ue?, or more
precisely,

1
G0 u— e () = u—[y,u] + Sl byl =
Note that C,
/ C# and hence “meta u®™ = (u®)Y”,
hmZ¥ )| tha"® = tha"® || tha"¥ || hmZY,
and tm ) /"™ = /R O J#m® and hence “meta
(uv)® = u®v™”, tm% [ tha™™® = tha"® || tha'® || tml.
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and RC; is the inverse of that.
C,oc//RC’;ﬂ

If X is a space, 71 ( X K K // tmuy:
is a group, mwo(X
—fis an Abelian group,
and 7 acts on mo.
K ) hm?Y K [ tha*:

cturally, that’s all. Allowing punctures and Cuts ) is onto
Operations , Connected
Punctures & Cuts | Sums.

Wheels.  Let M(T;H) = M,;(T;H) x CW(T'), where
CW(T) is the (completed graded) vector space of cyclic words

on T', or equaly well, on FL(

szﬁ

“Meta-
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where J,, ( ds div,(y/RC.) ) C %7, and
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Tangle concatenations — 71 X mo. With dm‘C‘ = tha //
ma | hma®
a b mab c
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Theorem Blue. All blue identities still hold.
()\1 @] )\2; w1 + UJQ).
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Merge Operation. (A1;wy)*(Ae;ws) 1=

Moral. To construct an M-valued invariant ¢ of (v-)tangles,
and nearly an invariant on K, it is enough to declare ¢ onf
the generators, and verify the relations that ¢ satisfies.
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Trees and Wheels and Balloons and Hoops: Why I Care

[The Invariant (. Set ((e,)

SRt (4D

(Theorem. ( is (log of) the unique homomor-

phic universal finite type invariant on IC%".
(... and is the tip of an iceberg) ‘

Paper in progress with Dancso, 0we/wko B
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See also [wef3/tenn, wef/bonn, wef /swiss, [wef /portfolig

formula-computable to all orders! Can we simplify?

( is computable! ¢ of the Borromean tangle, to degree 5:

. + cyclic colour
[ permutations,

for trees

Repackaging.  Given ((z — Ayz);w), set ¢z == >, CyApa,
replace \yy — Qg = Cutur =L and w — ev, use t, = e
and write o, as a matrix. Get “f calculus”.
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3 Calculus. Let 5(T; H) be

(Tensorial Interpretation. Let g be a finite dimensional Lie
algebra (any!). Then there’s 7 : FL(T) — Fun(®rg — g)
and 7 : CW(T') — Fun(®rg). Together, 7 : M(T;H) —
Fun(®rg — ©gg), and hence

e M(T; H) — Fun(®rg — UPH (g)).

( and BF Theory. (See Cattaneo-Rossi,
arXiv:math-ph/0210037) Let A denote a g-
connection on S* with curvature Fy4, and B a & §
g*-valued 2-form on S*  For a hoop 7, let = . /\I
hol, (A) € U(g) be the holonomy of A along 7. ‘lCatitaneo
For a ball v,, let O, (B) € g* be (roughly) the

integral of B (transported via A to 0o) on 7.

w | z Y w and the ay,’s are
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where € := 1+, (@) 1= 3, ay, and () 1= 3, , Vv, and let
1 x 1 T
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On long knots, w is the Alexander polynomiall

Loose Conjecture. For v € K(T'; H),
/ DADBe PA TT 95D R hol,,, (A) = €7 (¢(v)).

That is, ¢ is a complete evaluation of the BF TQFT.

‘Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-j&
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. FEvery step o
the computation is the computation of the i-~
nvariant of some topological thing (no fishy

.24 “God created the knots, all else in
‘= topology is the work of mortals.”
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Iay class: weP/aarhus Class next year: wef3/1350)

Leopold Kronecker (modified)

s (Gaussian elimination).
“lnvariant with an algebraic categorification, it is this one!

If there should be an Alexander z

See also (wef/regina, wef/caen), (wef/newton.

Paper in progress: wef3/kbh
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Trees and Wheels and Balloons and Hoops - Extrab / Recycling

Invauant #0. With II; denoting “honest
1”7, map v € K" (m,n) to the triple
(I11 (¥°), (us), (%)), where the meridian of
the balls u; normally generate Iy, and the
“longtitudes” x; are some elements of II;.
« acts like *, tm acts by “merging” two
meridians/generators, hm acts by multi-
plying two longtitudes, and tha"* acts by
“conjugating a meridian by a longtitude”: (but nearly)

(I, (u,...), (x,...) — (Ox(a)/(u = zaz™ ), (@,...), (z,...))

[Failure #0. Can we write the x’s as free words in the u’s?
If x = uv, compute = J tha"*

Ko
GO

Not computable!

_ a7 xT
r=uww = aw=uv"v=u"v=u""

Why ODEs? Q Find f s.t. f(z+y) = f(z)f(y).
A. df(s Lis+e) = Lf(s)f(e) = f(s)C.

INow solve thls ODE using Picard’s theorem or
[pOwWer series.

Scheme. o Balloons and hoops in R*, algebraic structure and
relations with 3D.

e An ansatz for a “homomorphic”
related to finite-type and to BF.

e Reduction to an “ultimate Alexander invariant”.

invariant: computable,

An RC? example.
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I mean business!

To =Rm[3, a]Rp[b, 2] Rp[1, 41;
§=To//dam[2, 1, 1] // dm[4, b, b] //
dm[1, a, a] // dm[3, a, al;
B[{5}] /. {w_LW:> (Deg[w] +1) ! w,

W_CH :» Deg[w] ! w}

(x

u[CHS[-[a], -2 [ab], -3 [aab] - 3 [abb],

-4 [aaab] - 42 [aabb] - 60 [abab] - 4 [abbb],

-5 [aaaab] - 110 [aaabb] - 180 [aabab] +
aabbb] - 180 [ababb] - 5 [abbbb] ],
{a), 0, -24 (aab

~60 (aaab) + 60 (aabb), -120 (aaaab) +

900 (aaabb) + 360 (aabab) - 120 (aabbb)] «
hla] Ls[-2 (a) +2(b), 9 (ab), 26 (aab)

26 (abb), 60 (aaab) - 255 (aabb) + 60 (abbb),

119 (aaaab) - 1504 (aaabb) + 118 (aabab) +

1504 (aabbb) « 1386 (ababb) - 119 (abbbb)

110
h[b] LS[2

The 8 quotient, 1.
Lie algebra.

e Arises when reducing by relations satisfied by the weight
system of the Alexander polynomial.

e Arises when g is the 2D non-Abelian|




