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ABSTRACT. The working mathematician fears complicated words but loves pictures and
diagrams. We thus give a no-fancy-anything picture rich glimpse into Khovanov’s novel
construction of “the categorification of the Jones polynomial”. For the same low cost we
also provide some computations, including one that shows that Khovanov’s invariant is
strictly stronger than the Jones polynomial and including a table of the values of Khovanov’s
invariant for all prime knots with up to 11 crossings.
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1. INTRODUCTION

In the summer of 2001 the author of this note spent a week at Harvard University visiting
David Kazhdan and Dylan Thurston. Our hope for the week was to understand and improve
Khovanov’s seminal work on the categorification of the Jones polynomial [Kh1, Kh2]. We've
hardly achieved the first goal and certainly not the second; but we did convince ourselves
that there is something very new and novel in Khovanov’s work both on the deep concep-
tual level (not discussed here) and on the shallower surface level. For on the surface level
Khovanov presents invariants of links which contain and generalize the Jones polynomial but
whose construction is like nothing ever seen in knot theory before. Not being able to really
digest it we decided to just chew some, and then provide our output as a note containing
a description of his construction, complete and consistent and accompanied by computer
code and examples but stripped of all philosophy and of all the linguistic gymnastics that
is necessary for the philosophy but isn’t necessary for the mere purpose of having a working
construction. Such a note may be more accessible than the original papers. It may lead
more people to read Khovanov at the source, and maybe somebody reading such a note will
figure out what the Khovanov invariants really are. Congratulations! You are reading this
note right now.

1.1. Executive summary. In very brief words, Khovanov’s idea is to replace the Kauffman
bracket (L) of alink projection L by what we call “the Khovanov bracket” [L], which is a chain
complex of graded vector spaces whose graded Euler characteristic is (L). The Kauffman
bracket is defined by the axioms

0 =1 (OL)=(qg+q¢ )L (X)=(X)—q00.

Likewise, the definition of the Khovanov bracket can be summarized by the axioms
M=0-2z-0 [OH=Vell [X]=7(0-[x]%DPJ{}-0).

Here V is a vector space of graded dimension g + ¢!, the operator {1} is the “degree shift
by 1”7 operation, which is the appropriate replacement of “multiplication by ¢”, F is the
“flatten” operation which takes a double complex to a single complex by taking direct sums
along diagonals, and a key ingredient, the differential d, is yet to be defined.

The (unnormalized) Jones polynomial is a minor renormalization of the Kauffman bracket,
J(L) = (=1)"¢* 2~ (L). The Khovanov invariant H(L) is the homology of a similar
renormalization [L] [-n_]{n. — 2n_} of the Khovanov bracket. The “main theorem” states
that the Khovanov invariant is indeed a link invariant and that its graded Euler characteristic
is J (L). Anything in H(L) beyond its Euler characteristic appears to be new, and direct
computations show that there really is more in H(L) than in its Euler characteristic.

1.2. Acknowledgement. [ wish to thank David Kazhdan and Dylan Thurston for the week
at Harvard that lead to writing of this note and for their help since then. I also wish to
thank G. Bergman, BSF grant #1998-119, S. Garoufalidis, T. Gittings, J. Hoste, ISF grant
86/01-1, V. Jones, M. Khovanov, A. Kricker, G. Kuperberg, J. Rasmussen, A. Stoimenow
and M. Thistlethwaite for further assistance, comments and suggestions.
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2. THE JONES POLYNOMIAL

All of our links are oriented links in an oriented Euclidean space. We g
will present links using their projections to the plane as shown in the 1
example on the right. Let L be a link projection, let X be the set of p
crossings of L, let n = |X|, let us number the elements of X' from 1 to n 6
in some arbitrary way and let us write n = ny +n_ where ny (n_) is the
number of right-handed (left-handed) crossings in X'. (again, look to the
right). ny =4 n- =2

Recall that the Kauffman bracket [Ka] of L is defined by the formulas® (§) = 1, (OL) =
(g + ¢ Y)(L) and (X) = (X) — q(0(), that the unnormalized Jones polynomial is defined by
J(L) = (—=1)"¢™ 2"~ (L), and that the Jones polynomial of L is simply J(L) := J(L)/(q+
q ).

We name X and ) ( the 0- and 1-smoothing of X, respectively. With this naming convention
each vertex a € {0,1}* of the n-dimensional cube {0,1}? corresponds in a natural way to
a “complete smoothing” S, of L where all the crossings are smoothed and the result is just
a union of planar cycles. To compute the unnormalized Jones polynomial, we replace each
such union S, of (say) k cycles with a term of the form (—1)"¢"(¢ + ¢~*)*, where r is the
“height” of a smoothing, the number of 1-smoothings used in it. We then sum all these
terms over all a € {0,1}* and multiply by the final normalization term, (—1)"-q"+=2"-.
Thus the whole procedure (in the case of the trefoil knot) can be depicted as in the diagram
below. Notice that in this diagram we have split the summation over the vertices of {0,1}%
to a summation over vertices of a given height followed by a summation over the possible
heights. This allows us to factor out the (—1)" factor and turn the final summation into an
alternating summation:

L2

+

o+
[$))

LOur slightly unorthodox conventions follow [Kh1]. At some minor regrading and renaming cost, we could
have used more standard conventions just as well.
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2(71 & a(g+q~ () dPlata
@ D
3 \
) K \
@q-ﬁ-qlﬁ & a(g+q~ @ (q+q 1)2 (q+q~
000 O QO
(1)
&5 qlg+q™1) % (q+q 12
Q 011
v v i v
(g+q¢')? - 3qglg+qg) + 3¢0q+q ') - Pla+qt)?
(—=1)"— n+72n, . —1y—1
— gl g i+ +¢ ¢ L J@) = ¢ -

(with (nq,n_) = (3,0))

3. CATEGORIFICATION

3.1. Spaces. Khovanov’s “categorification” idea is to replace polynomials by graded vector
spaces? of the appropriate “graded dimension”, so as to turn the Jones polynomial into
a homological object. With the diagram (1) as the starting point the process is straight
forward and essentially unique. Let us start with a brief on some necessary generalities:

Definition 3.1. Let W = &, W, be a graded vector space with homogeneous components
{Wy.}. The graded dimension of W is the power series ¢gdim W := ) ¢™ dim W,,.

Definition 3.2. Let -{l} be the “degree shift” operation on graded vector spaces. That is,
if W =@p,, Wi, is a graded vector space, we set W{l},, == W,,_;, so that ¢dim W{l} =
¢ qdim W.

Definition 3.3. Likewise, let -[s] be the “height shift” operation on chain complexes. That

is, if C is a chain complex e cr L ert | of (possibly graded) vector spaces (we call
r the “height” of a piece C" of that complex), and if C = C]s|, then C" = C"* (with all
differentials shifted accordingly).

Armed with these three notions, we can proceed with ease. Let L, X', n and n4 be as in
the previous section. Let V' be the graded vector space with two basis elements v whose
degrees are +1 respectively, so that ¢qdimV = ¢+ ¢~1. With every vertex o € {0, 1} of the

2Everything that we do works just as well (with some linguistic differences) over Z. In fact, in [Khi]
Khovanov works over the even more general ground ring Z[c] where degc = 2.
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cube {0, 1} we associate the graded vector space V,(L) := V®*{r}, where k is the number
of cycles in the smoothing of L corresponding to a and r is the height |a| = ). o, of a (so
that ¢dim V(L) is the polynomial that appears at the vertex « in the cube at (1)). We then
set the rth chain group [L]” (for 0 < r < n) to be the direct sum of all the vector spaces at
height r: [L]" := @(WZM Vo (L). Finally (for this long paragraph), we gracefully ignore the
fact that [L] is not yet a complex, for we have not yet endowed it with a differential, and
we set C(L) :=[L][-n_|{ny — 2n_}. Thus the diagram (1) (in the case of the trefoil knot)
becomes:

2@1 @/{1} (Hvez
@ 100 QO 110
3 ;

)
* N X -
-

%

Vi1 %vm{z}
001 Q 011

_ |[@:ﬂ .'[77"—]{”-4-72”—} C(&).
(with (n4,n_) = (3,0))

The graded Euler characteristic x,(C) of a chain complex C is defined to be the alternating
sum of the graded dimensions of its homology groups, and, if the degree of the differential d
is 0 and all chain groups are finite dimensional, it is also equal to the alternating sum of the
graded dimensions of the chain groups. A few paragraphs down we will endow C(L) with a
degree 0 differential. This granted and given that the chains of C(L) are already defined, we
can state and prove the following theorem:

Theorem 1. The graded Euler characteristic of C(L) is the unnormalized Jones polynomial
of L:

Xq(C(L)) = J(L).
Proof. The theorem is trivial by design; just compare diagrams (1) and (2) and all

the relevant definitions. Thus rather than a proof we comment on the statement and the
construction preceding it: If one wishes our theorem to hold, everything in the construction
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of diagram (2) is forced, except the height shift [—n_]. The parity of this shift is determined
by the (—1)"- factor in the definition of J(L). The given choice of magnitude is dictated
within the proof of Theorem 2.

3.2. Maps. Next, we wish to turn the sequence of spaces C(L) into a chain complex. Let
us flash the answer upfront, and only then go through the traditional ceremony of formal
declarations:

2(71 v & [Ovee
@ @ 100 dl*o CO 110
& &

dx00 (%i%)

O
d«10 QO
S

di1x
d&
y®2 &5 Vv{1} V®2{2} @‘% Q V®3{3}
<f:::§)ooo doxo (f§££§) <féi%:) 101 11 (:> <:> 111
N O N
&b % GO
@

dye11
5 o
<:> 011

l€[=0 : l€[=2
v VO y V1 v V2 v
[e]" - [o]’ - [o]’ - [o]’
(3) _ [@m [=n-l{n+—2n_} C(&).

(with (n4,n_) = (3,0))

This diagram certainly looks threatening, but in fact, it’s quite harmless. Just hold on
tight for about a page! The chain groups [L]" are, as we have already seen, direct sums of
the vector spaces that appear in the vertices of the cube along the columns above each one
of the [L]" spaces. We do the same for the arrows d” — we turn each edge £ of the cube to
map between the vector spaces at its ends, and then we add up these maps along columns as
shown above. The edges of the cube {0, 1} can be labeled by sequences in {0, 1,}* with
just one x (so the tail of such an edge is found by setting x — 0 and the head by setting
* — 1). The height [£| of an edge & is defined to be the height of its tail, and hence if the
maps on the edges are called d¢ (as in the diagram), then the vertical collapse of the cube
to a complex becomes d" := 37, (—1)*d.

It remains to explain the signs (—1)¢ and to define the per-edge maps d¢. The former is
easy. To get the differential d to satisfy dod = 0, it is enough that all square faces of the cube
would anti-commute. But it is easier to arrange the d¢’s so that these faces would (positively)
commute; so we do that and then sprinkle signs to make the faces anti-commutative. One
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may verify that this can be done by multiplying d¢ by (—1)¢ := (—1)2<;%  where j is the
location of the x in €. In diagram (3) we’ve indicated the edges ¢ for which (—1)¢ = —1 with
little circles at their tails. The reader is welcome to verify that there is an odd number of
such circles around each face of the cube shown.

It remains to find maps d¢ that make the cube commutative (when taken with no signs)
and that are of degree 0 so as not to undermine Theorem 1. The space V,, on each vertex
« has as many tensor factors as there are cycles in the smoothing S,. Thus we put these
tensor factors in V,, and cycles in S, in bijective correspondence once and for all. Now for
any edge &, the smoothing at the tail of ¢ differs from the smoothing at the head of & by
just a little: either two of the cycles merge into one (see say £ = 0x0 above) or one of the
cycles splits in two (see say £ = 1x1 above). So for any £, we set d¢ to be the identity on the
tensor factors corresponding to the cycles that don’t participate, and then we complete the
definition of £ using two linear maps m : V@V — V and A:V — V ® V as follows:

Vy QU_ = U Vp QUy — Uy

V_Q@up— v v Q@uo+—0

(4) (OO=CD) — (VoV BYV) m:{

(5) (CDOCO0)— (VAVeV) A:{UJ“HU*@U_JFU_@U*
Vo — U QU_

We note that because of the degree shifts in the definition of the V,,’s and because we want
the d¢’s to be of degree 0, the maps m and A must be of degree —1. Also, as there is no
canonical order on the cycles in S, (and hence on the tensor factors of V,,), m and A must
be commutative and co-commutative respectively. These requirements force the equality
m(vy ® v_) = m(v_ ® vy) and force the values of m and A to be as shown above up to
scalars.

Remark 3.4. It is worthwhile to note, though not strictly necessary to the understanding of
this note, that the cube in diagram (3) is related to a certain (1 + 1)-dimensional topological
quantum field theory (TQFT). Indeed, given any (1 + 1)-dimensional TQFT one may assign
vector spaces to the vertices of {0,1}* and maps to the edges — on each vertex we have
a union of cycles which is a 1-manifold that gets mapped to a vector space via the TQFT,
and on each edge we can place the obvious 2-dimensional saddle-like cobordism between the
1-manifolds on its ends, and then get a map between vector spaces using the TQFT. The
cube in diagram (3) comes from this construction if one starts from the TQFT corresponding
to the Frobenius algebra defined by V', m, A, the unit v, and the co-unit ¢ € V* defined by
€(vy) =0, €(v_) = 1. See more in [Kh1].

Exercise 3.5. Verify that the definitions given in this section agree with the “executive
summary” (Section 1.1).

3.3. A notational digression. For notational and computational reasons? it is convenient
to also label the edges of L. Our convention is to reserve separate interval of integers for
each component, and then to label the edges within this component in an ascending order
(except for one jump down) — see Figure 3 in Section 4. Given o € {0, 1}, we label every
cycle in the smoothing S, by the minimal edge that appears in it, and then we label the

3You may skip this section if the previous section was clear enough and you don’t intend to read the
computational Section 4.
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tensor factor in V,, accordingly. So for example (with L = & labeled as in Figure 3), the big
and small components of Sy;; = would be labeled 1 and 3 respectively, and thus Vjiy

would be V] ® V3{2}. The indices in the latter space have only a notational meaning that
allows us easier access to its tensor factors. Thus V] ® V3 = V ® V, yet the standard basis
elements of V; ® V3 have nice standard names: {v+v+, v+vi, v v+, o3l

With this notation, we can make the cube of Equation (3) a little more explicit. We denote
by A% the map which acts on a tensor product of labeled copies of V as the identity on all
factors except the one labeled Vi,in ;) which gets mapped by A of Equation (5) to V; @ V.
Likewise m;; denotes the natural extension by identity maps of m : V; ® V; — Vining 5. All
said, the cube in diagram (3) becomes:

5
q &Vl{l} LA | (COnen)
@ 100 d1x0 w 110
3 1
3 3 A

AIB
d*OO dll*
R I e SO @ N e <o I
—_— o—
000 doxo 010 O 101 dix1 Q O 111
mi2 Al2
doox dy11

@/1{1} Al3 %/1(8‘/3{2}
_
001 dox1 Q 011

Claim 3.6. The n-dimensional cube as in Equation (3) (just as well, (6)) is commutative
(for any L, and provided all maps are taken with no signs) and hence the sequences [L] and
C(L) are chain complexes.

3.4. The main theorem.

Proof. A routine verification.

Let H"(L) denote the rth cohomology of the complex C(L). It is a graded vector space
depending on the link projection L. Let Kh(L) denote the graded Poincaré polynomial of
the complex C(L) in the variable ¢; i.e., let

KW(L) = " qdimH"(L).

(When we wish to emphasize the ground field I, we write Khg(L).)

Theorem 2. (Khovanov [Khl]) The graded dimensions of the homology groups H" (L) are
link invariants, and hence Kh(L), a polynomial in the variables t and q, is a link invariant
that specializes to the unnormalized Jones polynomial at t = —1.
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3.5. Proof of the main theorem. To prove Theorem 2, we need to study the behavior of
[L] under the three Reidemeister moves® (R1): X « ~ , (R2): >OC « =T and

\ -
(R3): \A/ - 7 /\\ . In the case of the Kauffman bracket/Jones polynomial, this is done

by reducing the Kauffman bracket of the “complicated side” of each of these moves using the
rules (X) = (X)—q( () and (OL) = (¢+q~*)(L) and then by canceling terms until the “easy
side” is reached. (Example: < S > = < 2 > — q< ST > = (q+ q*1)< —~ > — q< — > =
q_1< —~ >) We do nearly the same in the case of the Khovanov bracket. We first need to
introduce a “cancellation principle” for chain complexes:

Lemma 3.7. Let C be a chain complex and let C' C C be a sub chain complex.
o If C' is acyclic (has no homology), then it can be “canceled”. That is, in that case

the homology H(C) of C is equal to the homology H(C/C') of C/C’.
o Likewise, if C/C' is acyclic then H(C) = H(C').

Proof.  Both assertions follow easily from the long exact sequence
. — H"(C') — H"(C) — H"(C/C") — H"T}(C) — ...
associated with the short exact sequence 0 — C' — C — C/C" — 0.

3.5.1. Invariance under (R1). In computing H( R ) we encounter the complex

(7) c=[R]=([&] = [R]1}).

(Each of the terms in this complex is itself a complex, coming from a whole cube of spaces
and maps. We implicitly “flatten” such complexes of complexes to single complexes as in
Section 3.2 without further comment). The complex in Equation (7) has a natural subcom-

plex
¢ = ([2], = [R]W)

We need to pause to explain the notation. Recall that [L] is a direct sum over the smoothings
of L of tensor powers of V| with one tensor factor corresponding to each cycle in any given
smoothing. Such tensor powers can be viewed as spaces of linear combinations of marked
smoothings of L, where each cycle in any smoothing of L is marked by an element of V. For
L = _2_ all smoothings have one special cycle, the one appearing within the icon _2_ .
The subscript vy in |[/O\]v+ means “the subspace of |[/O\] in which the special cycle is

always marked v, ”.
It is easy to check that C’ is indeed a subcomplex of C, and as v, is a unit for the product
m (see (4)), C" is acyclic. Thus by Lemma 3.7 we are reduced to studying the quotient

complex
c/Ch = ([“o\]]/u:o - O)

where the subscript “/v; = 0” means “mod out (within the tensor factor corresponding to
the special cycle) by v, = 0”. But V/(v; = 0) is one dimensional and generated by v_, and
hence apart from a shift in degrees, [[/o\]| Joy=0 is isomorphic to [[A]| The reader may

4We leave it to the reader to confirm that no further variants of these moves need to be considered. For
example, we check only the “right twist” version of (R1). The left twist version follows from it and from
(R2).
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[>oC]{1} & [>C]{2} poc]]v+{1} - [0C]{2}
C /
A T (start) T - T (acgclic) T
[>c<] —  [=x]{1} 0 — 0
[DOC]/v+:O{1} — 0 0 — 0
! C//
A T (rgi(/idcle) T 2 T (finish) T
P — X o — Bl
[>0C],, i1} — 0
Figure 1. A picture-only proof of in- (C/C’)/C"
variance under (R2). The (largely un- AT (acyclic)
necessary) words are in the main text. [DOC] 0

verify that this shift precisely gets canceled by the shifts [—n_]{n, — 2n_} in the definition
of C(L) from [L]. O

3.5.2. Invariance under (R2), first proof. In computing H( > ) we encounter the complex
C of Figure 1. This complex has a subcomplex C" (see Figure 1), which is clearly acyclic. The
quotient complex C/C" (see Figure 1) has a subcomplex C” (see Figure 1), and the quotient
(C/C")/C" (see Figure 1) is acyclic because modulo v, = 0, the map A is an isomorphism.
Hence using both parts of Lemma 3.7 we find that H(C) = H(C/C') = H(C"). But up to
shifts in degree and height, C” is just [X] Again, these shifts get canceled by the shifts
[—n_]{ns —2n_} in the definition of C(L) from [L]. O

3.5.3. Invariance under (R3), unsuccessful attempt. For the Kauffman bracket, invariance
under (R3) follows from invariance under (R2). Indeed, assuming relations of the form
(OL) = d{(L) and (X) = A(X) + B() () the move (R3) follows from (R2) without imposing
any constraints on A, B and d (beyond those that are necessary for (R2) to hold):

() =4( ) o (o) Al e (R = ()

The case of the Khovanov bracket is unfortunately not as lucky. Invariance under (R2) does
play a key role, but more is needed. Let us see how it works.

If we fully smooth the two sides of (R3), we get the following two cubes of complexes (to
save space we suppress the Khovanov bracket notation [] and the degree shifts {-}):
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m

- % R s

A
A/T /! /T 4

\V, V)
& & R 8

(8)
wxr H% 7u¢ — fC
/ / /! /
o R

The bottom layers of these two cubes correspond to the partial smoothings \>_</ and

_ V) —
’><‘ and are therefore isomorphic. The top layers correspond to ~ and ’X\ and it
is tempting to use (R2) on both to reduce to

0 /0 /\Rf\ 0
I
|

wxr H% 7u¢ — )JC
/! /! /! /!
K AR

But this fails for two reasons. These cubes aren’t isomorphic (their bottom layers are
isomorphic and their top layers are isomorphic, but the maps between them are different),
and the (R2)-style reduction used to get here is invalid, for in the presence of the bottom
layers what would be the analog of C” simply isn’t a subcomplex. Fortunately, there is
a somewhat more complicated proof of invariance under (R2) that does lead to a correct
argument for invariance under (R3).

3.5.4. Invariance under (R2), second proof. We start in the same way as in the first proof
and reduce to the complex C/C" which is displayed once again in Figure 2 (except this time
we suppress the [] brackets and the degree shift {-} symbols). In C/C’ the vertical arrow
A is a bijection so we can invert it and compose with the horizontal arrow d,o to get a
map 7 : 20C,, o — X . We now let C" be the subcomplex of C/C’ containing all
a € DC and all pairs of the form (3,78) € 20C,,, ¢ ® X (see Figure 2). The
map A is bijective in C” and hence C"” is acyclic and thus it is enough to study (C/C")/C".

What is (C/C")/C"?7 Well, the freedom in the choice of « kills the lower left corner of C/C’,
and the freedom in the choice of 3 identifies everything in the upper left corner with some
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DOC/UJrfO — 0 ﬁ - 0
| o=
D)
plo e o po e a o 0
C/C/ C///

g
B=Tp
Figure 2. A second proof of invari-
0

ance under (R2).
(C/C/)/C/l/

things in the lower right corner (this is the relation § = 73 appearing in Figure 2; in more
detail it is (8,0) = (0,70) in DOC,,, - ® X ). What remains is just the arbitrary
choice of v in the lower right corner and hence the complex (C/C’)/C" is isomorphic to the
complex C” of Figure 1 and this, as there, is what we wanted to prove. 0]

3.5.5. Invariance under (R3). We can now turn back to the proof of invariance under (R3).
Repeat the definitions of the acyclic subcomplexes C' and C"” as above but within the top
layers of each of the cubes in Equation (8), and then mod out each cube by its C' and C”
(without changing the homology, by Lemma 3.7). The resulting cubes are

U
P VA

v}
P € NP vy =0 0 12 E€7X 0

\V) )ok

71 ENA” 0 52 € N Jv4=0

0

d1,%01 d2 %01

wxr \X( UC g fC

/ d1 10 / / da,x10 k/7

¥ ¥ & "

Now these two complexes really are isomorphic, via the map YT that keeps the bottom
layers in place and “transposes” the top layers by mapping the pair (5i,71) to the pair
(B2,72). The fact that T is an isomorphism on spaces level is obvious. To see that T is an
isomorphism of complexes we need to know that it commutes with the edge maps, and only
the vertical edges require a proof. We leave the (easy) proofs that 7 o dy 1 = dasm and
dy 10 = T2 © da 10 as exercises for our readers. O

3.6. Some phenomenological conjectures. The following conjectures were formulated in
parts by the author and by M. Khovanov and S. Garoufalidis based on computations using
the program described in the next section:
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Conjecture 1. For any prime knot L there exists an even integer s = s(L) and a polynomial
KK (L) in t*' and ¢! with only non-negative coefficients so that®

(9) Khg(L) = q¢* ' (1+¢* + (1 +tg") KK (L))

Conjecture 2. For prime alternating L the integer s(L) is equal to the signature of L and
the polynomial KI (L) contains only powers of tq>.

We have computed Khg(L) for all prime knots with up to 11 crossings and the results are
in complete agreement with these two conjectures®.

We note that these conjectures imply that for alternating knots Ki' (and hence Khg and
Khy,) are determined by the Jones polynomial. As we shall see in the next section, this is

not true for non-alternating knots.

As a graphical illustration of Conjectures 1 "l olelslalslolal o [1l2ls
and 2 the table on the right contains the dimen- |
sions of the homology groups HJ,(1010) (the i’ 5 !
coefficients of "¢ in the invariant Kh(10109)) 1 301
for all » and m in the relevant range. Con- -3 (4+1)] 2
jecture 1 is the fact that if we subtract 1 from -5 5 [(3+1)
two of the entries in the column r = 0 (a “pawn g 1 g 1
move”), the remaining entries are arranged in 11 G

a -
“knight move” pairs of the form with }2 1 i -
a -17

a > 0. Conjecture 2 is the fact that further- -19 1

more all nontrivial entries in the table occur on
just two diagonals that cross the column r = 0
at m = 0 +1 where o0 = —4 is the signature of 101¢9. Thus after the fix at the » = 0 column,
the two nontrivial diagonals are just shifts of each other and are thus determined by a single
list of entries (1244654321, in our case). This list of entries is the list of coefficients of
KB (10100) = v 74+ 2u™% + 4u™5 + 4u™* 4+ 6u=3 + 5072 + 4u! + 3 + 2u + u? (with u = t¢*).
As an aside we note that typically dim H], (L) is much smaller than dimC}, (L), as illus-
trated in Table 1. We don’t know why this is so.
A further phenomenological conjecture is presented in [Ga]. This paper’s web page [BN]
will follow further phenomenological developments as they will be announced.

4. AND NOW IN COMPUTER TALK

In computer talk (Mathematica [Wo| dialect) we represent every link projection by a list
of edges numbered 1, ..., n with increasing numbers as we go around each component and by
a list crossings presented as symbols Xj;,; where ¢,...,[ are the edges around that crossing,
starting from the incoming lower thread and proceeding counterclockwise (see Figure 3).

An earlier version of this conjecture stated also that Khr,(L) = ¢° (1 + ¢®) (1 + (1 +tg®) KN (L)),
where Fy denotes the field of two elements. Using the program from this paper J. Rasmussen (private
communication) found that this Fo formula fails for the knot 8;g.

SExcept that for 11 crossing prime alternating knots only the absolute values of s and the signature were
compared.
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7| -6 -5 -4 -3 -2 -1 0 1 2 | 3
m
3 1/1
1 0/1 | 0/5 |2/10]0/4
1 0/2 | 0/13 | 0/36 | 0/59 | 3/60 |1/30|0/6

-3 0/1 [ 0/10 | 0/45 | 0/120 | 0/220 | 0/304 | 0/318 |5/237|2/110] 0/30 | 0/4
5 0/8 [ 0/70 | 0/270 | 0/600 | 0/862 | 0/847 |5/564|4/237| 0/60 | 0/10 |0/1
-7 |0/28[0/210] 0/675 |0/1200|0/1288|6,/847 [4/318| 0/59 | 0/5
-9 |0/56/0/350| 0/900 |0/1200 | 4/862|5/304| 0/36 | 0/1
-1 |0/70(0/350] 0/675 | 4/600 | 6/220 | 0/13
13 |0/56(0/210|2/270[4/120| 0/2
15 |0/28[1/70| 4/45
17 | 0/8 [2/10
19 [1/1

Table 1. dim H],(10100)/ dimC},(10100) for all values of » and m for which CJ,,(10100) # 0.

N
PaN

lw

Figure 3. The crossing Xz, the right handed trefoil knot X524 X5362X3146 and the
Miller Institute knot (aka 62) Xg}1074’11X9,4710’5X5737672X11,771276X1797278X7,178’12 (we've used
a smaller font and underlining to separate the edge labeling from the vertex labeling).

4.1. A demo run. We first start up Mathematica [Wo| and load our categorification pack-
age, Categorification® (available from [BNJ]):

Mathematica 4.1 for Linux
Copyright 1988-2000 Wolfram Research, Inc.
-— Motif graphics initialized --
In[l]:= << Categorification®
Loading Categorification‘...
Next, we type in the trefoil knot:
In[2]:= L = Link[X[1,5,2,4], X[5,3,6,2], X[3,1,4,6]];

Let us now view the edge 0x1 of the cube of smoothings of the trefoil knot (as seen in
Section 3.3, this edge begins with a single cycle labeled 1 and ends with two cycles labeled
1 and 3):

hﬂﬂ:: {S[L, "oo1"], S[L, "ox1i"], SI[L, "011"]}
Out[3]= {cl1], c[1] -> c[1l*c[3], c[1]*c[3]}

Next, here’s a basis of the space Vp1; (again, compare with Section 3.3):
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In[4:= VIL, "011"]
Out[4]= {vm[1]*vm[3], vm[3]*vp[1], vm[1]*vp[3], vp[1]l*vp[31}

And here’s a basis of the degree 2 elements of Vj1; (remember the shift in degrees in the
definition of V,!):

In[5]:= V[L, "111", 2]
Out[5]= {vm[2]*vm[31*vp[1], vm[1]*vm[3]*vp[2], vm[1]*vm[2]*vp[3]}

The per-edge map d is a list of simple replacement rules, sometimes replacing the tensor
product of two basis vectors by a single basis vector, as in the case of dy, = myo, and
sometimes the opposite, as in the case of dy,q = A'?:

In[6]:= d[L, "00x"]

Out[6]= {vpl[1l*vp[2] -> vp[1], vm[2]*vp[1] -> wvm[1], vm[1]*vp[2] -> wvm[1],
vm[1]*vm[2] -> 0}

In[7):= d[L, "0%1"]

Out[7]= {vpl1] -> vm[3]*vp[1] + vm[1]1*vp[3], vm[1] -> vm[1]*vm[3]}
Here’s a simple example. Let us compute di,; applied to Vip::

In[8]:= V[L, "101"] /. d[L, "1%1"]

Out[8]= {vm[1]*vm[2]*vm[3], vm[2]*vm[3]*vp[1],
vm[1]*(vm[3]*vp[2] + vm[2]*vp[3]), vp[1l*(vm[3]*vp[2] + wvm[2]*vp[3])}

And now a more complicated example. First, we compute the degree 0 part of |[@]]1
Then we apply d! to it, and then d? to the result. The end result better be a list of zeros,
or else we are in trouble! Notice that each basis vector in [@] "2 s tagged with a symbol of

the form v[...] that indicates the component of |[@)]] "% to which it belongs.
In[9]:= chains = KhBracket[L, 1, 0]

Out[9]= {v[0, 0, 11*vm[1], v[0, 1, Ol*vm[1], v[1, O, Ol*vm[1]}

In[10]:= boundaries = d[L] [chains]

Out[10]= {v[1, 0, 1lxvm[1]*vm[2] + v[0, 1, 1]*vm[1]*vm[3],
v[1, 1, OJ*vm[1]*vm[2] - v[0, 1, 1]*vm[1]*vm[3],

-(v[1, 0, 11*vm[1]1*vm[2]) - v[1, 1, Ol*vm[1]*vm[2]}
In[11]:= d[L] [boundaries]
Out[11]= {0, 0, 0}
Because of degree shifts, the degree 3 part of C*(Q) is equal to the degree 0 part of |[@)]] h
In[12]:= CC[L, 1, 3] == KhBracket[L, 1, 0]
Out[12]= True

It seems that H?(Q) is one dimensional, and that the non trivial class in H?*(®) lies
in degree 5 (our program defaults to computations over the rational numbers if no other
modulus is specified):
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In[13]:= gBettilL, 2]
Out[13]= q"5

Here’s Khovanov’s invariant of the right handed trefoil along if its evaluation at ¢ = —1,
the unnormalized Jones polynomial J(&):

In[14]:= kh1 = Kh[L]

Out[l4]= q + q"3 + g 5*t"2 + q"9*t"3
In[15]:= kh1 /. t -> -1

Out[15]= q + "3 + g5 - 9”9

We can also compute Khg, (&) and use it to compute J(&) again (we leave it to the reader
to verify Conjecture 1 in the case of L = Q):

In[16]:= kh2 = Kh[L, Modulus -> 2]
Out[16]= q + q"3 + g 5*t"2 + Q7*t"2 + q 7*t"3 + q"9*t"3
In[17:= kh2 /. t -> -1

Out[l7]= q + "3 + "5 - q"9

The package Links‘ (available from [BN]) contains the definitions

of many interesting knot and link projections including Millett’s 10 @61

crossing hard-to-simplify unknot (shown on the right) and the knots 137\9
5; and 10q32 (knot numbering as in Rolfsen’s [Ro]): 2 ) u Y
In[18]:= << Links‘ 1

Loading Links‘...

In[19]:= MillettUnknot

Out[19]= Link[X[1, 10, 2, 111, X[9, 2, 10, 3], X[3, 7, 4, 61, X[15, 5, 16, 4],
x5, 17, 6, 161, X[7, 14, 8, 15], X[8, 18, 9, 17],
X[11, 18, 12, 19], X[19, 12, 20, 13], X[13, 20, 14, 1]1]

In[20]:= Kh[MillettUnknot]
Out[20]= q~(-1) + q
In[21):= kh3 = Kh[Knot[5, 1]]

Out[21]= q~(-5) + q~(-3) + 1/(q"15%t"5) + 1/(q 11xt~4) + 1/(q"11%t"3) +
1/(q~7*t"2)

In[22]:= kh4 = Kh[Knot[10, 132]]

Out[22]= q~(=3) + q~(-1) + 1/(q"15%t"7) + 1/(q"11*t"6) + 1/(q"11*t"5) +
1/(q"9*t~4) + 1/(q°7*t"4) + 1/(q"9*t"3) + 1/(q"5*t~3) +
2/(q"5%t"2) + 1/(g*t)

In[23:= (kh3 /. t -> -1) == (kh4 /. t -> -1)

Out[23]= True
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These are excellent news! We have just learned that our program is not confused by
complicated mess, and even better, we have just learned that Khovanov’s invariant is strictly
stronger than the Jones polynomial, for J(5;) = J(1032) whereas Kh(5;) # Kh(10132).

Here are two further pieces of good news:

In[24]:= diffl = Together [Kh[Knot[9, 42]] - Kh[Mirror[Knot[9, 42]1]]]
Out[24]= (1 + q 4%t - t72 + q4¥t"2 - q4*t"3 + q 6%t"3 + q 8%t"3 - q 4*%t~4 +
QT 10%t"4 - q 6%t"5 - q 8%t"5 + q 10%t"5 - q 10%t"6 + q"14%t"6 -
QT 10%t"7 - q~14%t"8)/(q T*t"4)
In[25]:= diff2 = Expand[q~9*t~5*(Kh[Knot[10, 125]]1-Kh[Mirror [Knot[10, 125111)]
Out[25]= 1 + q 4%t - t°2 + q 4*t"2 - q 4*t"3 + q 6%t"3 + q 8*t"3 - g 4*t"4 +
q~10*%t"4 - gq"6*t"5 - 2%q"8*t"5 + 2%q~10*%t"5 + q~12%t"5 - q"8*t"6 +
Q 14%t°6 - q 10%t"7 - q 12%t°7 + q 14%t°7 - q"14xt"8 + q 18%t°8 -
qQ 14%t"9 - q~18%t"10
In[26):= {diff1, diff2} /. t -> -1
Out[26]= {0, 0}

Thus we see that Kh detects the facts that 945 # 945 and 10,95 # 10,95 whereas the Jones
polynomial doesn’t detect that. See also Section 4.5.

4.2. The program. The program Categorification.m and the data file Links.m demon-

strated in this article are available on the web at [BN]. Here’s a complete listing of Categorification.m
(the package takes up less than 70 lines of code, demonstrating that categorification must

be quite simple):

BeginPackage["Categorification‘"]; Print["Loading Categorification®..."]
Link; X; S; V; c; vp; vm; KhBracket; v; d; q; np; nm; CC; t; Betti; gBetti; Kh
Begin[" ‘Private‘"]

np [L_Link]
nm[L_Link]

Count[L, X[i_,j_,k_,1_1 /; j-1==1
Count[L, X[i_,j_,k_,1_1 /; 1-j==1

SetAttributes[p, Orderless]

S[L_Link, s_String] := S[L, Characters([s] /. {"0"->0, "1"->1}]

S[L_Link, a_List] := Times @@ (Thread[{List @@ L, a}] /. {
{X0i_,j_,k_,1_1, 0} :> pl[i,j]l[Min[i,jl] plk,1] Min[k,1]1],
{X[i_,j_,k_,l_], 1} > p[i,l][Min[i,l]] p[j,k][Min[j,k]],

{x_X, "x"} :> x

) //. pli_,j 1.1 plij_,k_1[n_]1 :> pli,k] Min[m,n]] //. {

X0i_,j_,k_,1_.] pli_,j_ 1 [m_] plk_,1_J[n_] :> (c[m] c[n] -> c[Min[m,n]]),
XMi_,j_,k_,1] pli_,1 J[m_] plj_,k_1[n_1 :> (cMin[m,n]] -> clm] c[nl)
Y /70 pll,1m_17_. > clm]

Deglexpr_] := Count[expr, _vp, {0,1}] - Count[expr, _vm, {0,1}]

V[L_Link, s_String, deg___] := V[L, Characters[s] /. {"0"->0, "1"->1}, deg]
V[L_Link, a_List] := List @@ Expand[S[L, al /. x_c :> ((vp @@ x) + (vm Q@ x))]
V[L_Link, a_List, deg_Integer] :=

Select[V[L, al, (deg == Degl[#] + (Plus @@ a))&]
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d[L_Link, s_String] := d[L, Characters[s] /. {"0"->0, "1"->1}]
d[L_Link, a_List] := S[L, al] /. {
(clx_lcly_1->clz_1)*_. :>
{vp@x vp@y -> vp@z, vpOx vm@y -> vm@z, vmOx vpQy -> vm@z, vmO@x vm@y -> O},
(clz_l1->clx_lcly_1)*_. :> {vp@z -> vp@x vm@y + vm@x vpQy, vm@z -> vm@x vm@y}

}
KhBracket [L_Link, r_Integer, deg___] := If[r<0 || r>Length[L], {0},
Join @@ ( ((v @@ #) V[L, #, degl)& /@
Permutations[Join[Table[0, {Length[L] - r}], Table[1l, {r}]]]
)
]

CC[L_Link, r_Integer, deg_Integer] := KhBracket[L, r+nm[L], deg-np[L]+2nm[L]]

d[L_Link] [expr_] := Expand[expr] /. s_*xa_v :> Expand[
sign=1; Sum[ If[ a[[i]l]==0,
sign * ReplacePart(a, 1, i] * s /. d[L, List @@ ReplacePart[a, "x", i]],
sign *= -1; 0
1, {i, Lengthlal} ]
]

Options[Betti] = {Modulus -> Infinity}

Rank[L_Link, r_Integer, deg_Integer, opts___] := Rank[L,r,deg,opts]
modulus = (Modulus /. {opts} /. Options[Betti]);
0ff[Solve::svars];
b0 = CC[L, r, degl; 11 = Length[bl = CC[L, r+1, degl]l;
eqs = (#==0)& /@ d4[L][b0] /. MapThread[Rule, {bl, vars = Array[b, 11]}];
rk = Which[b0 == {} || 11 == 0, O,

modulus === Infinity, Length[First[Solveleqs, vars]]l],

True, Length[First[Solvel
Append[eqgs, Modulus == modulus], vars, Mode -> Modular

111 -1

Il
~

1;
On[Solve::svars]; rk
)
Betti[L_Link, r_Integer, deg_Integer, opts___] := Betti[L,r,deg,opts] = (
b = Length[CC[L,r,degl]-Rank[L,r,deg,opts]-Rank[L,r-1,deg,opts];
Print [StringForm["Betti[¢‘,“‘] = “‘", r, deg, bl]; b
)
gBetti[L_Link, r_Integer, opts___] := (

degs = Union[Deg /@ KhBracket[L, r+nm[L]]] + np[L] - nm[L] + r;
(Bettil[L, r, #, optsl& /@ degs) . q~degs
)

Kh[L_Link, opts___] := Kh[L, opts] =
Expand [Sum[t"r * gBetti[L, r, opts], {r, -nm[L], Length[L]-nm[L]}]]

End[]; EndPackagel[]
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4.3. KN (L) for prime knots with up to 10 crossings. Conjecture 1 on page 12 introduces
an integer s = s(L) and a polynomial K#'(L). By direct computation using our program we
verified that these quantities are determined by Khq(L) for all knots with up to 11 crossings.
These quantities easily determine Khgy(L) (and also Khyp,(L), at least up to knots with 7
crossings), as in the statement of Conjecture 1.

There are many fewer terms in Ki'(L) as there are in Khg(L) or in Khy,(L) and thus
with the rain forests in our minds, we’ve tabulated s and KI (L) rather than Khg(L) and/or
Khg,(L). To save further space, we've underlined negative numbers (1 := —1), used the
notation a’, to denote the monomial at"¢™ and suppressed all “+” signs. Thus KK (77) =
7+ oz + o + 24 2¢% + g2 + ¢°% is printed as 1525152023 1313.

Staring at the tables below it is difficult not to notice that s(L) is often equal to the
signature o = o(L) of L, and that most monomials in most KI'(L)'s are of the form ¢"¢* for
some r. We've marked the exceptions to the first observation by the flag & and the knots
where exceptions to the second observation occur by the flag #. All exceptions occur at
non-alternating knots. (And for your convenience, these are marked by the flag ).
Acknowledgement and Warning. The combinatorial data on which I based the com-
putations was provided to me by A. Stoimenow (see [St]), who himself borrowed it from
J. Hoste and M. Thistlethwaite [HT], and was translated to our format by a program writ-
ten by D. Thurston. The knot pictures below were generated using R. Scharein’s program
KnotPlot [Sc]. The assembly of all this information involved some further programming and
manual work. I hope that no errors crept through, but until everything is independently
verified, I cannot be sure of that. I feel that perhaps other than orientation issues (some
knots may have been swapped with the mirrors) the data below is reliable. Finally, note
that we number knots as in Rolfsen’s [Ro], except that we have removed 1062 which is equal
to 10161 (this is the famed “Perko pair”). Hence Rolfsen’s 10463, 166 are ours 10162, 165

All data shown here is available in computer readable format at [BN, the file Data.m].

k3 o; s; flags I k3 o; s; flags I Nk o; s; flags
KW (L) KKW(L) KW (L)
31; 2 2

s

4q; 0; 0

1>
[

52; 2

5 4342
Liolsly

]

62; 2; 63; 0; O

1515151513 121213191313

T2; 2 2 73; 4; 4
15,15,151313 1313132818,

7s; 4; 4 76; 2 2
15,15,25 152213 15,152322151013

]

[\

T4; 2; 2
2513132318,

77; 0; 0

15231520251513

— =~ — o

‘»—‘\\I = oo [ =
o —_ .

= [ 0o

‘»—t\m —

T [0 [=

IS feo sl
I L
=) o
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k5 o; s; flags k; o; s; flags nk; o; s; flags
KKW(L) KKW(L) KW (L)
81; 0; 0 82; 4 4 83; 0; 0
6 14437241 6 15 1403,21 4,241
1121§1§1;1§1% 1i211g1§2§1;1§1% 152;12182%1%
84; 2 2 85; 4; 4 86; 2 2

15132315102313

1320152528181%,

15,15,2528232513

87; 2; 2

1513132023231313

8s; 0; O

1513252023231313

89; 0; O

1515252320251313

810; 2; 2

151525202535 1313

8115 2; 2

812; 0; O

1515332520331313

813; 0; O
152725203523 1313

815; 4; 4

8 57 66 45 949362
17621421547025362%

816; 2 2

15,25353733202313

817; 0; 0

1528333530332313

818; O; 0

1535334549333313

—_
‘»—A\@
M)

—
‘»—A\U‘
f=}

[\V]
00 &
w
o [w
N
[N
[\>]
N [
—
oo
—
[

OGS SEHSELE -

819; 6; 6; OB 8203 0, 0, ¢ 8215 2% 2 O
131814 15,151518 155150 15261515

91; 8 8 92; 2 2 93; 6; 6
1515,13,15 195,15,15,15,151513 1313132815529, 1%
94; 4; 4 955 2; 2 96; 6; 6

9 o7 16 55 Z 312
1127417527025 1513

2317282515028, 1%

9 18 o7 56 g 46312
11s116214215310152 14

97; 4; 4

9 18 o7 56 95 46312
178176 21421531025 2% 13

9s; 2; 2

9o; 6; 6

9 18 Q7 66 95 46312
11s17631421231025 2 14

910; 4; 4
2523335270372 1%

9113 4; 4

13151035332834150 15,

912; 2; 2

913; 4; 4
2523345270332 114176

914; 0; 0
15232530353328131%,

915; 2; 2
1315204333333¢13015,

916; 6; 6
153323483303%22741%

9175 2 2

15,2528433520351313

918; 4; 4

9 18 o7 76 g 46362
s 1763143124103836 21

919; 0; 0

920; 4; 4

114275370 334531251012

921 2; 2

1325204343333415,15,

922; 2; 2

151233353043332314

923; 4; 4

9 98 Q7 b 5 940352
1152763143125103836 21

9243 0; O

925; 2 2
T 66 ob 44,3 ,201
1{74 2{72 3@ 454645331 8 1 %

926 2; 2
132325434343332413,

928; 2, 2

19,23 35554745302513

929; 2; 2
5 4.3 ,2,1
1302545434340352718
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k5 o; s; flags k; o; s; flags nk; o; s; flags
KKW(L) KKW(L) KW (L)
9313 2 2 9325 2 2 9335 0; 0

15333350555343281%,

935; 2; 2

9 o7 16 o5 od1352
17831417527035 1624

936; 4; 4

1315203333333417,15,

9385 4 4
9 o8 47 46 n5 4,32
11s21641441501045 %631

939; 2; 2

1325305553484427015,

940; 2; 2
6 05 r4,3-241
112370 Sg6g716§484% 131

9413 0; 0

9423 2, 0; b

15151514

943; 4 4 <
131815151318

944; 0; 0; ¢

9455 2 2 O

946; 0; 0; <&
6 4,351
115115

947; 2, 2 &
15231530252323

O4s; 2, 2 &
1325103333132¢

9490 4, 4;
2523283315029,

101; 0; O

102; 6; 6

8 47 46 55 14637241
6114175210 1526151512

10s; 0; O

PHE0CEEeR-

104; 2; 2

15182315202313281%,

105; 4; 4

121315202333282813015,

),

K

§

o

o

107; 2; 2

10s; 4; 4

100; 2 2

1513232530333328141%,

1010; 0; 0

152523304533382813015,

1012; 2; 2

151525304543333813015,

1013; 0; 0

10145 45 4

15527,3%, 5345524325101

1015; 2; 2

1016; 2; 2

1512332540433333141%,

1017; 0; O

10195 25 2
5 0403 4241
13025364345304523 1315

2; 2

1511,2%,2303535 232515

1021; 4; 4

8765;321
16 11421247035463123 1012

1022; 0; 0
15123335404333331513,

1023; 2; 2
132935435353483313015,

1024; 25 2

15417,35,47, 455543351013

1025; 4; 4

125ttt 010

1026; 0; 0

14224243535343331413,

1027; 2; 2

17,2%,43, 556263553025 17

102s; 0; O

152335305543383313017,

1020; 25 2

1030;  2; 2

15421,35,57, 556557352013
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I k5 o; s; flags I k; o; s; flags nk; o; s; flags
KKW(L) KKW(L) KW (L)
1031; 0; 0 1032; O; 0 1033; 0; 0

1034; 0; 0

131525203333282813,15,

103s; 0; 0

15153335494333331413,

1036;  2; 2

16214215470 454645 231613

1037; 0; 0

10383 25 2

1030; 4 4

15421,35,53, 555043351013

1040; 2; 2

122345506373584823015,

10415 2; 2
6 5 43,241
19527045566365404527 18

1042; 0; O

9 0
ﬁé})

2

S

1043; 0; O

104a; 25 2

1046; 6; 6

13201535232823015,17,

1047; 4; 4

151525203545283813015,

1010; 6; 6

1009 98 k7 46 25 949352
1302183165144126103536 24

10505 4; 4

131530335348443715,17,

1051; 2; 2

152345496363434313015,

1052; 2; 2

1053;  4; 4

1069 98 »7 6 55 4,302
130215316614572 710954631

1054; 2: 2

1055, 45 4

10659 o8 (7 g 5 140362
130218316514 412610%53621

D

1056; 4; 4
1315304563585447029, 174

1057; 2; 2
12224550 7373585823015,

10ss; 0; 0

e

&/

1059; 2; 2

15224355606363432413,

1060; 0; 0

1061; 4; 4

153315203523281313,

1062; 4; 4
151325303543333813015,

1063; 4; 4

1009 08 =7 46 £5 44,302
1502182765144125104536 21

1064; 2; 2

1513393;404343331815

1065; 2; 2

152333406553434813015,

10665  6; 6

109 8 7 6 ~5 44,352
150315416614615 710454622

1067; 25 2

106s; 0; 0

1069; 2: 2
1533456085 7368552301%,

1070; 2; 2

15154343506353432813

1072; 4; 4

131530556363644703%2174

1073; 25 2 10745 25 2 10755 0; O
17,25,43 6578756403313 15417,3%,50,456553332015 15324365706563432415,
1076;  4; 4 1077; 25 2 1078; 4 4

1330355355484302517,

121335495363484323015,

1079; 0; 0

10s0;  6; 6

1069 48 ~7 k6 ~5 4,32
150215476614512 710454622

10g1; 0; 0

PP BRRISH

DERBEIoRE

10s3; 2; 2

12334560 7373684323015,

SEEOER

10s4; 2; 2

122345607383685333015,




ON KHOVANOV’S CATEGORIFICATION OF THE JONES POLYNOMIAL 23
k5 o; s; flags k; o; s; flags nk; o; s; flags
KKW(L) KKW(L) KW (L)

1085; é; 4 1086; O; 0 1087; 0; 0

17,25,37, 455545432025 15

1535576370736343281%,

15254365607563483415,

10ss; 0; 0

10so; 2; 2

17,28,5%, 758393 73504513

1090; 0; 0

13255355607452432413,

1092; 4; 4

1325406583 78745703%2 174

1093;  2; 2

1004; 2; 2
15234345606353432415

1095; 2; 2
153353608583635523015,

1096; 0; 0
1432626180856353241%,

1097; 2; 2

1325407573 787443035517,

10983 4 4

109o; 0; 0

10100; 4; 4

12515 o ot

101013 4; 4
354368836707924743%61%

10102; 0; O

14224253636353432413,

10103; 2; 2

15,27,43,55 726355402313

10104; 0; O

10105; 2; 2

13255365798472523413,

10106; 2; 2
15284555606163432415,

10108; 2; 2

10100; 0; O

10111; 4; 4
1325405573636447029, 174

10112; 25 2
6 5 453521
15,3304576 7175604537 13

10113;  2; 2
1533558095103836343015,

1011435 0; O

101155 0; 0

10116; 2; 2

10117;  2; 2

153355709393766833015,

10119; 0; O

15326375809573583415,

ERERROHDRBER -

10120; 4; 4
5

10,9 8 7 o6 4,3 42
150315516814 812 1070 756641

10121; 2: 2

10122; 0; O

14325283800383 534417,

=y

2

2

»

9.8

7\
Ny,

e

10123; 0; O
5 4,302 1
13,456597105100956343 15

10124; & 8 OB

10125; 25 25 <&
15,15151613

101265 25 2; <&
T a5 1404362
11,27015262510

101275 4 4 <

8 17 a6 o5 403,241
161742193102536 1515

10128;  6; 6; Ob
151518162315,

10129; 0; 0; <&

10130; 0; 0; &
7 05 141302
13,270 151523510

101315 25 25 <&

101325 05 25 Ot

0133, 25 25 ¢
8 17 16 55 145312
136174115250 152 13

10134; 6; 6; <&
1523133513028, 174

10135; 0; 0; &
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k; o; s; flags k; o; s; flags nk; o; s; flags
KKW(L) KKW(L) KW (L)

101365 25 0; $oh 10137 0; 0; & 101383 25 25 &
4131201 4130201
151515241515315 151233273331 2323

10139; 6; 8; Odetd

1516151815011,

10140; 0; 0; &
7 5 4,2
Ligliolsly

10141; 0; 0; <&

10742; 6; 6; <
1515132525,

101435 25 25 &

101455 25 45 O

9 7 46 5 4443
el ligli0l6le

10147; 2 2, O
1515232720232313

101485 25 25 <& 10150; 45 45 <&

,,,,,,,, 1315202333232413,

10152;  6; 8 O

1049 8 o7 16 15 5543
135176174215 110 11025 16

10151; 2; 2; <>

1527353045432324

101535 0; 0; O
15,15151518151315

10154; 45 6; Odotd

1315281518290 115154136

10155; 0; 0; <&
1315202523281413,

101565 2, 2; <

10157; 4, 4, &
10354348583703%2174

10158; 0; 0; <&
1525453340452323

10160; 4 4; & 101615 45 65 O
3
6

b—‘m =
s
e 2
[N
0 s O
gl
o [wo
o
Y o
W= 7
52
SR
[
—
INN)
<>

1315162523132 13615,15,13,151818 19,13,34323231102}
101635 25 2 < 101645  0; 0; & 101655 25 25 <
153335405547 33 23 15,25354345303323 193332334425,26,17,

SO OBROE |
SHRHDBSDRS -

4.4. KW (L) for prime knots with 11 crossings. This data is available as a 20-page
appendix to this paper (titled “Khovanov’s invariant for 11 crossing prime knots”) and in
computer readable format from [BN].

4.5. New separation results. Following is the complete list of pairs of prime knots with up
to 11 crossings whose Jones polynomials are equal but whose rational Khovanov invariants are
diﬁerewl7 11?9)7 (51_710132>7 (527 117517)7 (727 11g8)7 (817 11%)7 (927 11?3)7 (9427%)7 (9437 11?2)7
(10125, 10125), (10130, 11§;), (10133, 1157), (10136, 115,), (115, 115,), (1155, 115,), (115, 117y5),
(1179, 11755), (115, 11%), (11755, 11753).

4.6. Kh(L) for links with up to 11 crossings. For links with more than one components,
we have computed Kh(L) (not KA (L), which does not make sense) for L with up to 11
crossings. The results are available as a 16 page appendix to this paper (up to 10 crossings)
and as a 26 page appendix (11 crossings) and in computer readable format from [BN]. Below
we only display the results for links with up to 6 crossings. The same acknowledgement and
warning of the previous section still applies:




[BN]

ON KHOVANOV’S CATEGORIFICATION OF THE JONES POLYNOMIAL 25

Kh(L) ng L  Kh(L)

L
2 @18181315 i @1@1%1%131213
57 1515151529201513 67 @ 1551513617, 15,13191%

63 1319151313131301%01121%413,1% | 63 @1&1%1%1@2%2&1@22111%3
6 15108 3515215251811 63 15231521 40421132819
63 15131713115311215
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A Quick Reference Guide to Khovanov’s Categorification of the Jones Polynomial
Dror Bar-Natan, August 17, 2004
)—a O«

The Kauffman Bracket: (0) =1; (OL)=(¢+¢ ")(L); (X)=( X .
1—smoothing

A > 0—smoothing
The Jones Polynomial: J(L)
Khovanov’s construction: [L]

(=1)"=g™+~2n= (L), where (ny,n_) count (X, X) crossings.
a chain complex of graded Z-modules;

<] »[x]{1}»0>;

height 0 height 1

M=0— 7 —o

height 0

[OL] = VelL]; [X] = Flatten (0 —

H(L) = H(C(L) = [L][-n-J{ny —2n_})

V' = span(vy,v_); degvy = +1; ¢qdimV = g+¢ ' with ¢dim© := E q" dim O,,;
O} = Opy s0  qdim O{1} = ¢' ¢dim O; -[s] :  height shift by s;

D m Ve QU v vy Quy — vy E>§
(QQ%CQ)—»(V@)V—A/) m: tEE
V_Quy v v Q®u_+—0 g‘;%:

&3
5%

P y H2 5
(CO2O0)—waver)  aftrmmersron S
Vo= U QU e E

(=1)— g+ 2

E - l —2 1 2__ 6 3 5 _ 9.
xample pogTtite g (with (ny,n_) = (3,0)) 1Hete—a
(q+q71)? - 3q(g+q7") + 3¢%(q+q7)? - Plg+qt)?
A A A A

=}
o
3
=1 -1 O 2 —1\2
3 alg+q 7*(q+q
g ( ) %) (@) ( ) )
; | CD
1 ~ 100 1x0 A~ 110 that’s a
4 cobordism!
5
= @)
= &9 §o
z + o + @
) dx00 di1s
@ﬁq’l)z & &1(%(1’1) a*(a+q)? QQO *la+g)?
Ve | ————— Vv{1} Ve2{2} Ves{3}
000 doso 010 O 101 41 Q O 111
& h
& o e
= + P + L2
9] d d
= 00% w11
g &/ do1
2
- q(g+q71) &) q*(g+q1)?
< v{1} - Q Ve2(2}
5 001 o1 011
2
Q
80 > (=1)%de (—1)&dg > (—1)%de
le1=0 I€/=1 Ié1=2
v VU v Vl v VQ v
0 d 1 d 2 d 3
[©] [e] [e] [e]

[[@J] [=n-{ny—2n_}
(with (n4,n-)=(3,0))

(here (—1)¢ := (—1)%i<i if & = %) = C(®).
Theorem 1. The graded Euler characteristic of C(L) is J(L).

Theorem 2. The homology H(L) is a link invariant and thus so is Khg(L) := > t" ¢dim Hj(C(L))
over any field F.
Theorem 3.

J(10132).

Conjecture 1. Kho(L) = ¢* ' (1 +¢* + (1 + t¢*)KI) and Khr,(L) = ¢* (1 +¢?) (1 + (1 + tg®) KK)

for even s = s(L) and non-negative-coefficients laurent polynomial Kh' = KI'(L).

Conjecture 2. For alternating knots s is the signature and Kk’ depends only on t¢>.

References. Khovanov’s arXiv:math.QA /9908171 and arXiv:math.QA /0103190 and DBN’s
http://www.ma.huji.ac.il/~drorbn/papers/Categorification/.

H(C(L)) is strictly stronger than J(L): H(C(51)) # H(C(10132)) whereas J(5;) =

Figure 4. A quick reference guide - cut, fold neatly and place in your wallet.




